CMP1405A/CMB1405A

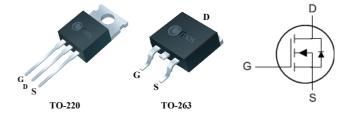
N-Channel Enhancement Mode Field Effect Transistor

General Description

The 1405A is a N-channel Power MOSFET. It has specifically been designed to minimize input capacitance and gate charge. The device is therefore suitable in advanced high-efficiency switching applications.

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free


Product Summary

BVDSS	RDSON	ID
68V	5.5mΩ	120A

Applications

- LED power controller
- DC-DC & DC-AC converters
- High current, High speed switching
- Solenoid and relay drivers
- Motor control, Audio amplifiers

TO-220/263 Pin Configuration

Туре	Package	Marking		
CMP1405A	TO-220	CMP1405A		
CMB1405A	TO-263	CMB1405A		

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	68	V	
V _{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current,VGS @ 10V	120	A	
I _D @T _C =100°C	Continuous Drain Current,VGS @ 10V	96	A	
I _{DM}	Pulsed Drain Current	360	A	
EAS	Single Pulse Avalanche Energy	800	mJ	
P _D @T _C =25°C	Power Dissipation	250	W	
T _{STG}	Storage Temperature Range -55 to 175		°C	
TJ	Operating Junction Temperature Range	-55 to 175	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
R _{θJA}	Junction-to-Ambient (PCB mount) ³		62	°C/W	
R _{θJC}	Junction-to-Case		0.5	°C/W	

N-Channel Enhancement Mode Field Effect Transistor

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_{D} =250uA	68			V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =30A			5.5	mΩ
V _{GS(th)}	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_{D}=250$ uA	2		4	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =60 V, V _{GS} =0V			1	uA
I _{GSS}	Gate-Source Leakage Current	V_{GS} =±20V , V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =10A		25		S
R _g	Gate Resistance	V_{DS} =0V , V_{GS} =0V , f=1MHz		2.5		Ω
Qg	Total Gate Charge	I _D =80A		115		
Q _{gs}	Gate-Source Charge	V _{DD} =44V		25		nC
Q _{gd}	Gate-Drain Charge	V _{GS} =10V		50		
T _{d(on)}	Turn-On Delay Time	V _{DD} =30V		25		
Tr	Rise Time	I _D =80A		24		
T _{d(off)}	Turn-Off Delay Time	R _G =2.4Ω		50		ns
T _f	Fall Time	V _{GS} =10V		23		
C _{iss}	Input Capacitance			6500		
C _{oss}	Output Capacitance	V_{DS} =25V , V_{GS} =0V , f=1MHz		1100		pF
C _{rss}	Reverse Transfer Capacitance			280		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current	$-V_G=V_D=0V$, Force Current			120	А
I _{SM}	Pulsed Source Current ¹				360	А
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =45A , T _J =25℃			1.2	V

Note :

1. The test condition is $V_{\rm DS}{=}30V$, $V_{\rm GS}{=}10V$, $L{=}1mH$, $I_{\rm D}$ =40A.

This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability wihtout notice.