

### MH182 Specifications Multi-Purpose Hall Effect Latch

MH182 Hall-Effect sensor is a temperature stable, stress-resistant latch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

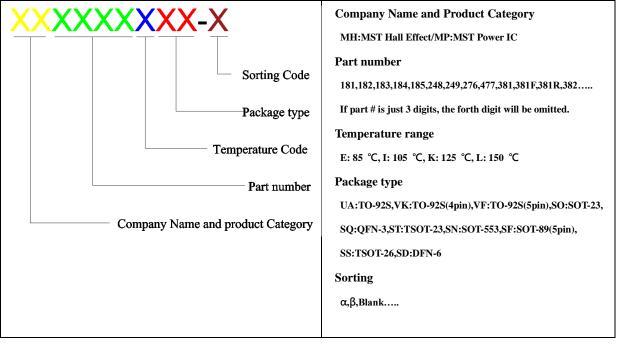
MH182 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output latches on, and only switches off when a north polarity field of sufficient strength is present.

MH182 is rated for operation between the ambient temperatures -40°C and 85°C for the E temperature range, and -40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

The package type is in a Halogen Free version was verified by third party Lab.

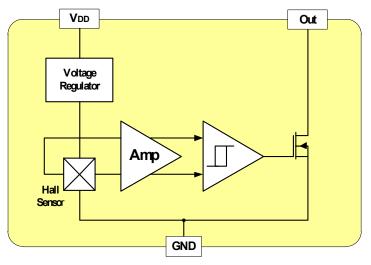
## Features and Benefits


- Chopper stabilized amplifier stage
- Optimized for BLDC motor applications
- New miniature package / thin, high reliability package
- Operation down to 3.0V
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free

## **Applications**

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection




## **Ordering Information**



| Part No. | Temperature Suffix                          | Package Type |  |
|----------|---------------------------------------------|--------------|--|
| MH182KUA | K (-40°C to + 125°C)                        | UA (TO-92S)  |  |
| MH182KSO | K (-40°C to $+ 125$ °C)                     | SO (SOT-23)  |  |
| MH182EUA | E (-40°C to + 85°C)                         | UA (TO-92S)  |  |
| MH182ESO | $E (-40^{\circ}C \text{ to} + 85^{\circ}C)$ | SO (SOT-23)  |  |

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

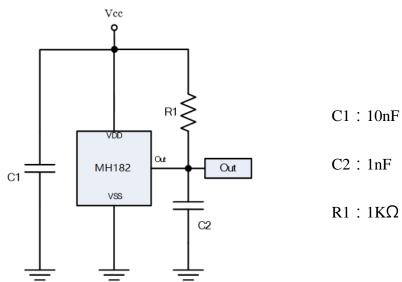
## **Functional Diagram**





## *MH182 Specifications* Multi-Purpose Hall Effect Latch

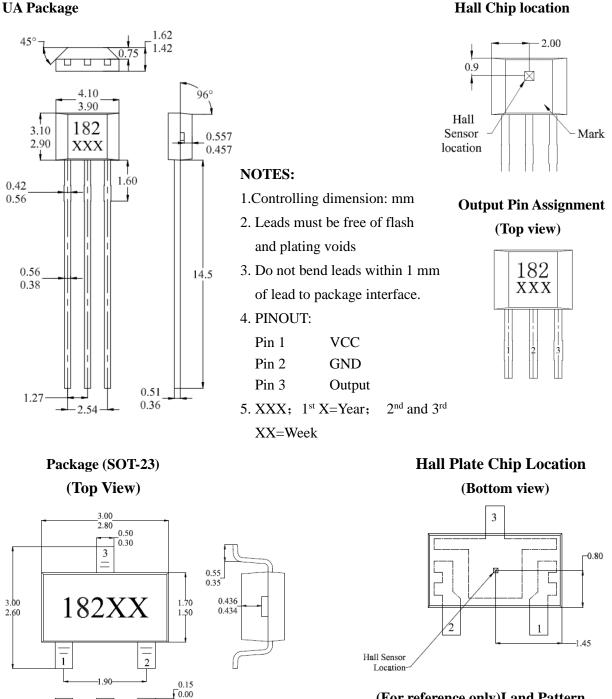
## Absolute Maximum Ratings At (Ta=25 °C)


| Characteristics                                         |                       |             | Values      | Unit |  |
|---------------------------------------------------------|-----------------------|-------------|-------------|------|--|
| Supply voltage,(V <sub>DD</sub> )                       |                       |             | 26          | V    |  |
| Output Voltage,(Vout)                                   |                       |             | 26          | V    |  |
| Reverse voltage, (V <sub>DD</sub> ) (V <sub>OUT</sub> ) |                       |             | -0.3        | V    |  |
| Output current, ( <i>I</i> <sub>OUT</sub> )             |                       |             | 50          | mA   |  |
|                                                         |                       | "E" version | -40 to +85  | °C   |  |
| Operating Temperature Range, (                          | <i>[1a]</i>           | "K" version | -40 to +125 | °C   |  |
| Storage temperature range, ( <i>Ts</i> )                |                       |             | -65 to +150 | °C   |  |
| Maximum Junction Temp,( <i>Tj</i> )                     |                       |             | 150         | °C   |  |
| Thermal Resistance                                      | (Hja                  | a) UA / SO  | 206 / 543   | °C/W |  |
|                                                         | $(\theta jc)$ UA / SO |             | 148 / 410   | °C/W |  |
| Package Power Dissipation, $(P_D)$ UA / SO              |                       |             | 606 / 230   | mW   |  |

*Note:* Do not apply reverse voltage to V<sub>DD</sub> and V<sub>OUT</sub> Pin, It may be caused for Miss function or damaged device.

## **Electrical Specifications**

| DC Operating Parameters: $T_A = +25 ^{\circ}C$ , $V_{DD} = 12V$ |                                                                |     |     |       |       |  |  |  |
|-----------------------------------------------------------------|----------------------------------------------------------------|-----|-----|-------|-------|--|--|--|
| Parameters                                                      | Test Conditions                                                | Min | Тур | Max   | Units |  |  |  |
| Supply Voltage,(V <sub>DD</sub> )                               | Operating                                                      | 3.0 |     | 24.0  | V     |  |  |  |
| Supply Current,( <i>I</i> <sub>DD</sub> )                       | B <bop< td=""><td></td><td></td><td>5.0</td><td>mA</td></bop<> |     |     | 5.0   | mA    |  |  |  |
| Output Saturation Voltage, (V <sub>sat</sub> )                  | IOUT = $10 \text{ mA}, \text{B} > \text{Bop}$                  |     |     | 400.0 | mV    |  |  |  |
| Output Leakage Current, (Ioff)                                  | IOFF B <brp, vout="&lt;math">12V</brp,>                        |     |     | 15.0  | uA    |  |  |  |
| Output Rise Time, ( <i>T</i> <sub>R</sub> )                     | RL=820 $\Omega$ , CL =20pF                                     |     |     | 0.45  | uS    |  |  |  |
| Output Fall Time, ( <i>T<sub>F</sub></i> )                      | RL=820 \Omega; CL =20pF                                        |     |     | 0.45  | uS    |  |  |  |
| Operate Point,( <i>Bop</i> )                                    |                                                                | 10  |     | 60    | Gauss |  |  |  |
| Release Point,( <i>BRP</i> )                                    |                                                                | -60 |     | -10   | Gauss |  |  |  |
| Hysteresis,(BHYS)                                               |                                                                |     | 80  |       | Gauss |  |  |  |


## Typical application circuit





# Sensor Location, Package Dimension and Marking

### **Hall Chip location**



### (For reference only)Land Pattern



#### **NOTES:**

- 1. PINOUT (See Top View at left :) Pin 1 :V<sub>DD;</sub> Pin 2: Output ; Pin 3 GND
- Controlling dimension: mm 2.
- 3. Lead thickness after solder plating will be 0.254mm maximum

1.25 0.90

4. XX: Date Code, Refer to DC table