General Description

The FP5207B is boost topology switching regulator for wide operating voltage applications. It provides built-in gate driver pin for driving external N-MOSFET. The non-inverting input of error amplifier connects to a 1.2 V precision reference voltage. It has programmable switching frequency set by external resistor, and programmable inductor peak current limit connects a resistor from CS to GND. Current mode control and external compensation network make is easy and flexible to stabilize the system.

The FP5207B is available in the small footprint DNF-10L(EP) package to fit in space-saving PCB layout for application fields.

Features

> Start-up Voltage: 2.8V
> Wide Supply Voltage Operating Range: 5 V to 24 V
> Precision Feedback Reference Voltage: 1.2V ($\pm 2 \%$)
> Shutdown Current: $<3 \mu \mathrm{~A}$
> Programmable Switching Frequency: $100 \mathrm{KHz} \sim 1000 \mathrm{KHz}$
> Programmable Soft Start Function (SS)
> Input Under Voltage Protection (UVP)
> Switching MOSFET Over Current Protection (OCP)
> Over Temperature Protection (OTP)
> Package: DFN-10L(EP)

Applications

> Chargers
> LCD Displays
> Handheld Devices
> Portable Products
> Power Bank

Typical Application Circuit

Function Block Diagram

Pin Descriptions

DFN-10L (EP)

Marking Information

DFN-10L(EP)

Halogen Free: Halogen free product indicator
Lot Number: Wafer lot number's code
Internal ID: Internal Identification Code
Per-Half Month: Production period indicator in half month time unit
For Example : A \rightarrow First Half Month of January
B \rightarrow Second Half Month of January
C \rightarrow First Half Month of February
D \rightarrow Second Half Month of February

[^0]
Ordering Information

Part Number	Operating Temperature	Package	MOQ	Description
FP5207BdR-G1	$-25^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$	DFN-10L	2500 EA	Tape \& Reel

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply Voltage	HVDD		-0.3		25	V
VDS,EXT Voltage			-0.3		16	V
Others Pin Voltage			-0.3		6	V
Thermal Resistance (Junction to Ambient)	$\theta_{\text {JA }}$	DFN-10L (EP)			+66	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance (Junction to Case)	$\theta_{\text {JC }}$	DFN-10L (EP)			+8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature	T_{J}				+150	${ }^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{TOP}_{\text {OP }}$		-25		+85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {ST }}$		-65		+150	${ }^{\circ} \mathrm{C}$
Lead Temperature		(soldering, 10 sec)			+260	${ }^{\circ} \mathrm{C}$

IR Re-flow Soldering Curve

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply Voltage	HVDD		5		24	V
Operating Temperature Range	T_{A}	Ambient Temperature	-25		+85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics ($\mathrm{HVDD}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
System Supply Input						
Start-up Voltage	$H V_{\text {DD }}$		2.8			V
Input Supply Range	HV ${ }_{\text {DD }}$		5		24	V
Under Voltage Lockout	Vuvio			2.6		V
UVLO Hysteresis				0.2		V
Average Current	Icc	$\mathrm{FB}=1.0 \mathrm{~V}$, Switching		2		mA
Quiescent Current	ICC	FB=1.3V, No Switching		800		$\mu \mathrm{A}$
Shutdown Current	Icc	$\mathrm{V}_{\text {EN }}=\mathrm{GND}$			3	$\mu \mathrm{A}$
Input Supply Voltage	V_{DS}	$\mathrm{HV}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=0 \mathrm{~A}$	7.5	8	8.5	V
Oscillator						
Operation Frequency	fosc	$\mathrm{RT}=\mathrm{NC}$	120	150	180	KH_{z}
		$\mathrm{RT}=51 \mathrm{~K} \Omega$	320	370	420	KH_{z}
Maximum Duty Ratio	\%	$\mathrm{FB}=1.0 \mathrm{~V}$		90		\%
Soft Start						
Soft-Start bias Current	Iss	$\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$		3.5		$\mu \mathrm{A}$
Reference Voltage						
Feedback Voltage	$V_{\text {FB }}$	$H V_{\text {DD }}=12 \mathrm{~V}$	1.176	1.2	1.224	V
Enable Control						
Enable Voltage	$V_{\text {EN }}$		1.42	1.50	1.58	V
Shutdown Voltage	$\mathrm{V}_{\text {EN }}$			1.3		V
UVEN Hysteresis				0.2		V
External Transistor Connection current						
EXT Pull-UP Resistance	$\mathrm{R}_{\text {EXTH }}$	$V_{\text {DS }}=8 \mathrm{~V}$	0.6	0.9	1.2	Ω
EXT Pull-Down Resistance	$\mathrm{R}_{\text {ExtL }}$	$\mathrm{V}_{\mathrm{DS}}=8 \mathrm{~V}$	0.6	0.9	1.2	Ω
Current Sense Voltage						
Sense Voltage	$\mathrm{V}_{\text {cs }}$		85	100	115	mV
Thermal Shutdown						
Thermal Shutdown Threshold	TTS			+150		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Threshold Hysteresis	TTSH			30		${ }^{\circ} \mathrm{C}$

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Function Description

Operation

The FP5207B is current mode boost controller. It operates with pulse width modulation (PWM). The internal resistive divider provides 1.2 V reference for the error amplifier. It changes to PSM mode when the output is light load. In PSM mode, it can reduce switching lose to raise efficiency, but the output ripple is bigger.

Soft Start Function

Soft start time is programmable to connect capacitor between SS pin to ground. After the IC is enabled, the output of error amplifier is clamped by the internal soft-start function, which causes PWM pulse width increasing slowly and thus reducing input surge current during power on. The soft start bias current is $3.5 \mu \mathrm{~A}$. We can calculate the soft-start time as below formula.

$$
\mathrm{T}_{\mathrm{Ss}}(\mathrm{~s})=\frac{\mathrm{C}_{\mathrm{SS}}(\mu \mathrm{~F}) \times 1.95 \mathrm{~V}}{3.5 \mu \mathrm{~A}}
$$

Oscillator

The oscillator frequency can be set from 100 KHz to 1000 KHz by external resistance. Acceptable resistance values range from $220 \mathrm{~K} \Omega$ to $17 \mathrm{~K} \Omega$. The frequency is 150 KHz when the resistance is unconnected. The relationship between the timing resistance RT and frequency is shown in Figure1. The oscillator frequency can be calculated using formula below.

Figure 1. Frequency vs. RT Resistance

Enable Mode / Shutdown Mode

Input voltage connects to EN pin through a resistive divider to set UVLO threshold. FP5207B is enabled when EN voltage greater than 1.5 V . The EN voltage is lower than 1.3 V to shutdown it. In shutdown mode, to turn off circuitry includes EXT signal, VDS voltage, and supply current of HVDD reduces less than $3 \mu \mathrm{~A}$. The EN hysteresis voltage is 0.2 V . HVDD voltage may be lower than 5 V , it can't use a resistive divider to set UVLO threshold. For instance, input voltage is from 3 V to 4.2 V , HVDD pin connects to output 12V, when UVLO is triggered to shut down FP5207B, HVDD and output are approximately input voltage. If the applications don't need to set UVLO, the EN connects to input voltage through resistance $200 \mathrm{~K} \Omega$, and EN internal clamping circuit limit V_{EN} is under 5.5 V .

Current Sense Control

External switching MOSFET is turned on inductor current flows across the current sense resistor to generate V_{CS}. V_{CS} provides part of current mode control loop. Internal leading-edge blanking is provided to prevent premature turn off the switching MOSFET in each switching cycle.

Current Limit Setting Resistor (\mathbf{R}_{cs})

$R_{C S}$ is connected between CS pin and ground, its calculation formula is as below. Where 0.085 V is minimum threshold voltage of current sense, ILp is peak inductor current, and the factor 1.3 provides a 30% margin for tolerances.

$$
R_{c s}(\Omega)=\frac{0.085 \mathrm{~V}}{\operatorname{Lp}(\mathrm{~A}) \times 1.3}
$$

According to following equations calculate the peak inductor current ILp. Where ILavg is the average inductor current, ILpp is the peak-to-peak inductor current, Vout is the output voltage, lout(max) is the output maximum current, Eff is the efficiency, Fs is the switching frequency, and the L is inductance.

$$
\begin{aligned}
\mathrm{ILp} & =\operatorname{ILavg}+\frac{\mathrm{ILpp}}{2} \\
\text { ILavg } & =\frac{\text { Vout } \times \operatorname{lout}(\max)}{\operatorname{Vin} \times \mathrm{Eff}}
\end{aligned}
$$

$$
\operatorname{ILpp}=\left\langle\frac{\text { Vin }}{\text { Vout }}\right\rangle^{2} \times\left\langle\frac{\text { Vout }-\operatorname{Vin}}{\text { Fs } \times \operatorname{lout}(\max)}\right\rangle \times\left\langle\frac{\text { Eff }}{\mathrm{L}}\right\rangle \times \operatorname{ILavg}
$$

Thermal Shutdown Protection

The IC will shut down automatically when the internal junction temperature exceeds $+150^{\circ} \mathrm{C}$. The device can restart until the junction temperature drops below $+120^{\circ} \mathrm{C}$ approximately.

Application Information

Inductor Selection

The Inductance value is decided based on different condition. $3.3 \mu \mathrm{H}$ to 47 uH inductance value is recommended for general application circuit. There are three important inductor specifications, DC resistance, saturation current and core loss. Low DC resistance has better power efficiency. The inductance is calculated using formula. Where Vout is output voltage, Fs is switching frequency, lout is output maximum current, Eff is boost efficiency and r is the ratio of the inductor peak-to-peak ripple current to the average DC inductor current at full load current. r is recommended between 0.3 and 0.5 .

$$
L=\left\langle\frac{\text { Vin }}{\text { Vout }}\right\rangle^{2} \times\left\langle\frac{\text { Vout }- \text { Vin }}{\text { Fs } \times \operatorname{lout}(\max)}\right\rangle \times\left\langle\frac{\mathrm{Eff}}{\mathrm{r}}\right\rangle
$$

Capacitor Selection

Output capacitor is required to maintain the DC voltage during switching. Low ESR capacitors are preferred to reduce the output voltage ripple. Ceramic capacitor of X5R and X7R are recommended, which have low equivalent series resistance (ESR) and wider operation temperature range.

Diode Selection

Schottky diodes with fast recovery times and low forward voltages are recommended. Ensure the diode average and peak current rating exceed the average output current and peak inductor current. In addition, the diode's reverse breakdown voltage must exceed the output voltage.

Output Voltage Programming

The output voltage is set by a resistive voltage divider from the output voltage to FB. The output voltage is:

$$
\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V} \times\left\langle 1+\frac{\mathrm{R} 11}{\mathrm{R} 12}\right\rangle
$$

Layout Considerations

1. The power traces, consisting of the GND trace, the MOS drain trace and the $\mathrm{V}_{\mathbb{I N}}$ trace should be kept short, direct and wide.
2. Layout switching node MOS drain, inductor and schottky diode connection traces wide and short to reduce EMI.
3. Place C6 nearby HVDD pin as closely as possible to maintain input voltage steady and filter noise.
4. Resistive divider R11 and R12 must be connected to FB and GND pin directly and as closely as possible.
5. FB is a sensitive node. Please keep it away from switching node, MOS drain.
6. The GND of the C1, C2, C7 and C8 should be connected close and together directly to a ground plane.
7. $\quad R_{C S}$ must be connected to CS and GND pin directly and as closely as possible.
8. The output capacitor C7 and C8 should be connected close and together directly to the ground of R_{CS}.

Suggested Layout

Application Information

Note:

1. The X5R and X7R of ceramic capacitors are recommended to choose.
2. R9 and C9 are added for reducing EMI (Electromagnetic Interference).

Package Outline

DFN-10L

Unit: mm

Symbols	Min. (mm)	Max. (mm)
A	0.700	0.800
A1	0.000	0.050
A3	0.20REF	
b	0.180	0.300
D	3.00	
E	3.00	
D2	2.200	2.700
E2	1.400	1.750
e	0.500	
L	0.300	0.500
K	0.200	

[^0]: Year: Production year's last digit

