LUCKI CM ELECTRONI	CS Co.,Ltd	
	PROVAL SHEE	
AF	FROVAL SHEE	_ 1
Customer :		
Part Number:	3215 Seam Se	ealing Crystal
LK Part No.:	L318SK32ML	\overline{O}
Holder :	SMD3215	
Frequency:	32.768kHZ ±2	0*10 ⁻⁶ / 12.5PF
Manufacturer:	Lucki Electror	lics
Date:	2023-04-12	
Prepared	Checked	Approved
Zhao Qian	Zhang Dongwei	Zhang Bin
(For Customer Use)		

Acceptable	

RoHS

COMPLIANT

INTRODUCTION

- The contents is subject to change without notice. Please exchange the specification sheets regarding the product's warranty.
- 2. This sheet is not intended to guarantee or provide an approval of implementation of industrial patents.
- 3. We have prepared this sheet as carefully as possible. If you find it incomplete or unsatisfactory in any respect, We would welcome your comments.

Contents

Item No.	Item	Page
[1]	Absolute maximum ratings	2
[2]	Operating range	2
[3]	Static characteristics	2
[4]	Environmental and Mechanical characteristics	3 to 4
[5]	Dimensions and Marking layout	5 to 6
[6]	Notes	7

[1] Absolute maximum ratings

Item	Symbol	Rating value	
Storage temperature	Tstg	-55°C to +125°C	
Maximum drive level	DL	1.0 µW	

[2] Operating range

	Symbol	Value		
Item		Min.	Тур.	Max.
Operating temperature range	Topr	-40°C		+85°C
Drive level	DL	0.01 µW	0.1 µW	0.5µW
Vibration mode			Fundamental	

[3] Static characteristics

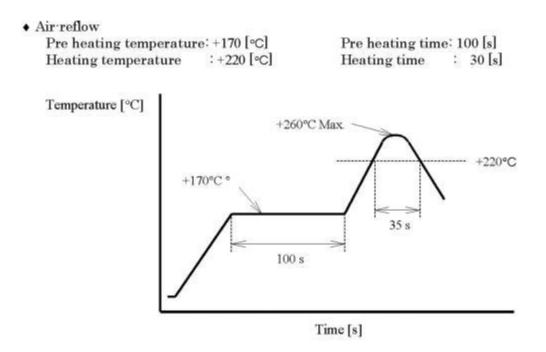
Item	Symbol	Value	Note	
Frequency	fi	32.768 kHz		
Frequency tolerance	Δ f/f	$\pm 20 \times 10^{-6}$	CL = 12.5 pF Ta = +25± 3°C, Drive level : 0.1 μW Not include aging	
Series resistance	Ri	70 kΩ Max.	CI meter : Saunders 140B Drive level : 0.5 μW	
Motional capacitance	Cı	Typ. 3.4 fF		
Shunt capacitance	C0	Тур. 1.2 рF		
Turnover temperature	θT	+25 ± 5 °C	Values are calculated by the frequencies a +10, +25, +40°C with C-MOS circuit.	
Temperature coefficient	а	$-4.0\times10^{-8}/{^{\rm o}{\rm C}^2}~{\rm Max}.$		
Isolation resistance	IR	500 MΩ Min.	DC 100V, 60 seconds Between terminal #1 and terminal #2	
Aging	fa	$\pm \ 3 \ \times 10^{\text{-6}}$ / year	Ta = +25 °C ± 3 °C Drive level : 0.1 μW	

-

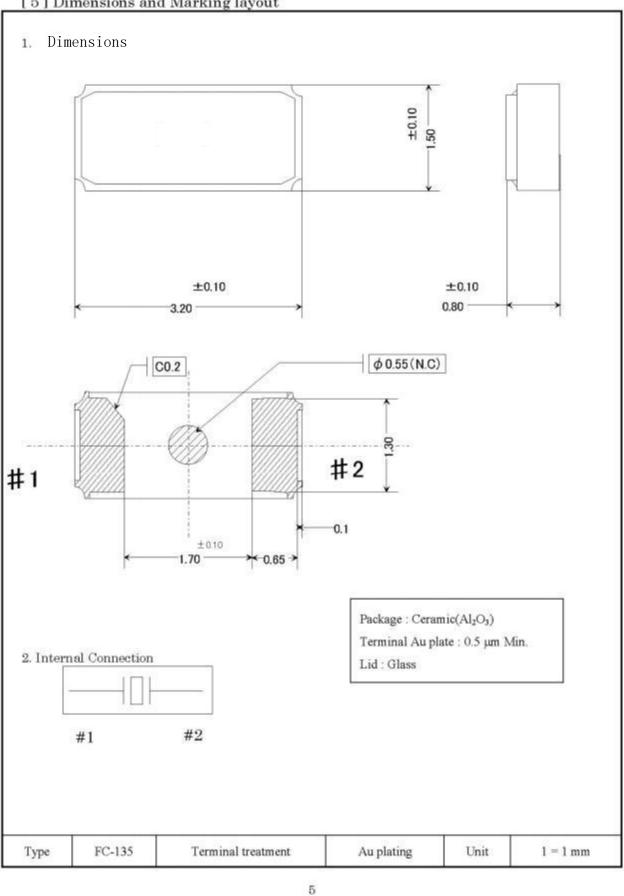
No.	Items	Value	Conditions		
1	Shock resistance	*3∆ f/f : ± 8 ×10 ⁻⁶	100g dummy(SEIKO EPSON Standard), Natural dr 500 mm height on to the concrete. 3 directions × 10 times	op from *2	
2	Vibration resistance	*3 Δ f/f : ± 3 ×10 ⁻⁶	10 Hz to 55 Hz amplitude 0.75 mm 55 Hz to 500 Hz acceleration 98 m/s ² 10 Hz \rightarrow 500 Hz \rightarrow 10 Hz 15 min./cycle 6 h (2 hours , 3 directions)	*2	
3	Soldering heat resistance	$\Delta~f/f:\pm 5~{\times}10^{-6}$	For convention reflow soldering furnace (2 tin	nes)	
4	High temperature storage	*3\Delta f/f : ± 10 ×10 ⁻⁶	+125 °C × 1000 h	*1	
		*3 Δ f/f : ± 7 ×10 ⁻⁶	+85°C× 1000 h	*1	
5	Low temperature storage	*3 Δ f/f : ± 10 ×10 ⁻⁶	-55 °C× 1000 h	*1	
6	High temperature and humidity	*3 Δ f/f : ± 10 ×10 ⁻⁶	+85°C × 85%RH × 1000 h	*1	
7	Temperature cycle	*3 Δ f/f : ± 10 ×10 ⁻⁶	-55 °C↔ +125°C 30 minutes at each temperature × 100 cycles	*1	
8	Sealing	*3 1 × 10 ⁻⁸ hPa•1 / s Max.	For He leak detector		
9	Shear	No peeling-off at a soldered part	20 N press for 10 ± 1 s. Ref. IEC 60068-2-21		
10	Pull - off	No peeling-off at a soldered part	20 N press for 10 ± 1 s. Ref. IEC 60068-2-21		
11	Substrate bending	No peeling-off at a soldered part	Bend width reaches 3 mm and hold for $5 \text{ s} \pm 1 \text{ s} \times 1$ time Ref. IEC 60068-2-21		
12	Solvent resistance	The marking shall be legible	Ref. JIS C 0052 or IEC 60068-2-45		

[4] Environmental and Mechanical characteristics

< Notes >

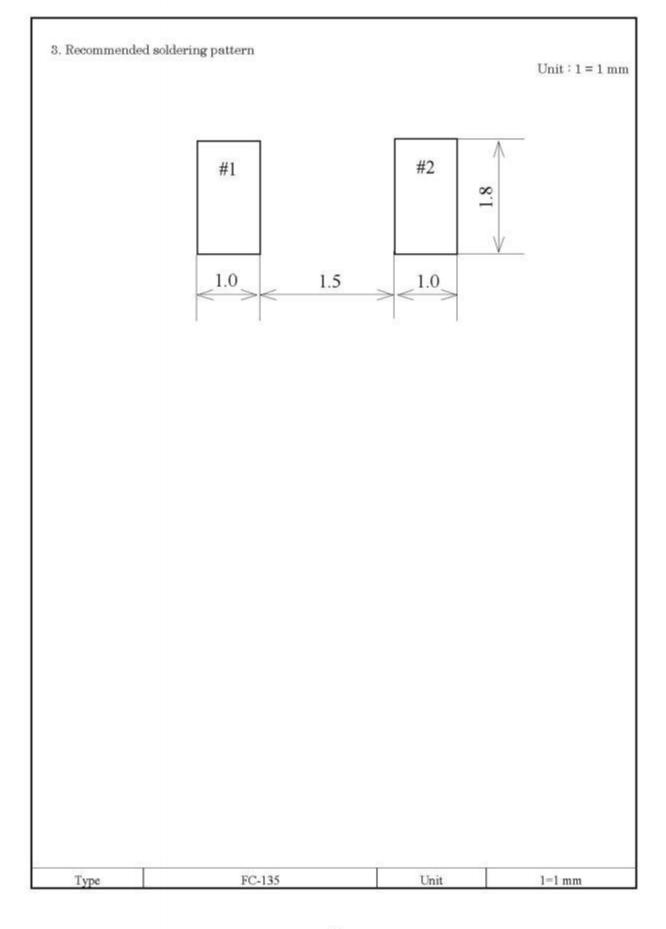

1. *1 Each test done independently.

2. *2 Measuring 2 h to 24 h later leaving in room temperature after each test. Drive level : 0.5 µW


 *3 Pre conditionings(Treat the Reflow 2 times with the following profile) Initial value shall be after 24 h at room temperature.

Shift of series resistance at before and after the test should be less than ± 20 % or less than $\pm 15 k\Omega$.

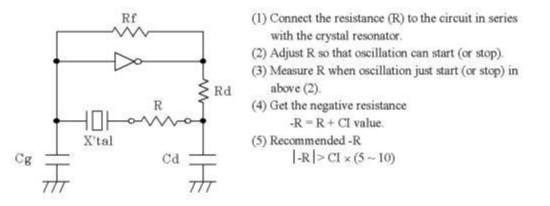
In case high temperature storage(+125°C × 1 000 h), Soldering heat resistance, shift of series resistance at before and after the test should be less than ± 30 % or ± 20 k Ω .



4

[5] Dimensions and Marking layout

Professional manufacturer of quartz crystal Http://www.lucki.com.cn



Professional manufacturer of quartz crystal

[6] Notes

- Max two (2) times reflow is allowed. Once miss soldering is happened, hand work soldering by soldering iron is recommended. (+350°C × within 5 s)
- 2. Patterning should be followed by our recommended one.
- 3. Applying excessive excitation force to the crystal resonator may cause deterioration damage.
- Unless adequate negative resistance is allocated in the oscillation circuit, start up time of oscillation may be increased, or no oscillation may occur.

How to check the negative resistance.

- The shortest patterning line on board is recommendable. Too long line on board may cause of abnormal oscillation.
- To avoid mull function, no pattern under or near the crystal is allowed. Solder paste should be more than 150 µm thickness.
- 7. This device must be stored at the normal temperature and humidity conditions before mounting on a board.
- Too much exciting shock or vibration may cause deterioration on damage. Depending on the condition such as a shock in assembly machinery, the products may be damaged. Please check your condition in advance to maintain shock level to be smallest.
- 9. Depending on the conditions, ultrasonic cleaning may cause resonant damage of the internal crystal resonator. Since we are unable to determine the conditions (type of cleaning unit, power, time, conditions inside the bath, etc.) to be used in your company, we cannot guarantee the safety of this unit when it is cleaned in an ultrasonic cleaner.
- 10. Ink marking may be damaged by some kind of solvent, please take precautions when choosing solvent by your selves.
- 11. Please refer to packing specification regarding how to storage the products in the pack.

7

Professional manufacturer of quartz crystal