ETR0313_007

Negative Voltage Regulators

■GENERAL DESCRIPTION

The XC62K series are highly precise, low power consumption, negative voltage regulators, manufactured using CMOS and laser trimming technologies. The series achieves high output currents with small input-output voltage differentials, and consists of a high precision voltage reference, an error correction circuit, and an output driver with current limitation. SOT-23, SOT-8, USP-6B packages are available.

■APPLICATIONS

- Multi-function power supplies.
- Smart phones / Mobile phones.
- Mobile devices / terminals.

■FEATURES

Dropout Voltage : 0.12V@50mA (Vout=-5.0V)

: 0.38V@100mA

Maximum Output Current : 100mA (within MAX. power

dissipation, Vout= -5.0V)

Output Voltage Range : -2.1V ~ -6.0V (0.1V increments)

-5.0, -4.0, -3.0V, -2.5V standard

(All other voltages are semi-custom)

Highly Accurate : Setting output voltage $\pm 2\%$

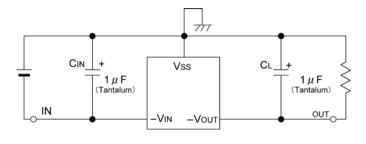
(±1% for semi-custom products)

Low Power Consumption : $3.0 \mu A @ VOUT = -5.0 V (TYP.)$

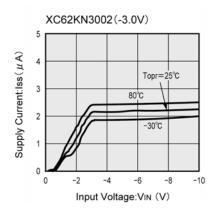
Output Voltage Temperature Characteristics

 ± 100 ppm/°C (TYP.)

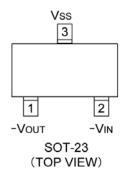
Line Regulation : 0.1%/V (TYP.)

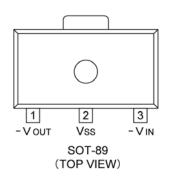

CMOS Low Power Consumption

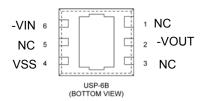
Packages : SOT-23


SOT-89 USP-6B

Environmentally Friendly: EU RoHS Compliant, Pb Free


■TYPICAL APPLICATION CIRCUIT




■ TYPICAL PERFORMANCE CHARACTERISTICS

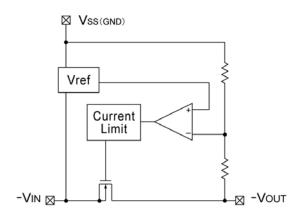
■PIN CONFIGURATION

*The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the VSS pin.

■PIN ASSIGNMENT

	PIN NUMBER		PIN NAME	FUNCTIONS	
SOT-23	SOT-89	USP-6B	FIN NAIVIE	FUNCTIONS	
2	3	6	-Vin	Power Supply Input	
3	2	4	Vss	Ground	
1	1	2	-Vout	Output	
-	-	1.3.5	NC	No Connection	

■PRODUCT CLASSIFICATION


Ordering Information

XC62K(1)2(3)4(5)6(7)-(8)(*1)

MARK	ITEM	SYMBOL	DESCRIPTION
1	Polarity of Output Voltage	N	Negative
23	Output Voltage	21 ~ 60 e.g. Vout $-2.1V \rightarrow 2=2$, $3=1$ Vout $-6.0V \rightarrow 2=6$, $3=0$	
4	Temperature Characteristics	0	<u>+</u> 100ppm (TYP.)
5	Output Voltage Accuracy	1	± 1% (Semi-custom)
3	Output Voltage Accuracy	2	<u>+</u> 2%
		MR	SOT-23
		MR-G	SOT-23
67-8	Packages	PR	SOT-89
00-0	(Order Unit)	PR-G	SOT-89
		DR	USP-6B
		DR-G	USP-6B

^(*1) The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

■BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Ta=25°C

PARAMETER		SYMBOL	RATINGS	UNITS
Input Voltage		VIN	-12.0	V
Output Current		lout	200	mA
Output Voltage		Vout	-Vss-0.3~Vin+0.3	V
	SOT-23		150	
Power Dissipation	SOT-89	Pd	500	mW
	USP-6B		100	
Operating Ambient Temperature		Topr	-40 ~ +85	°C
Storage Temperature		Tstg	-40 ~ +125	$^{\circ}$ C

Note: Please ensure that I_{OUT} is less than Pd/(V $_{\text{OUT}}\text{-}V_{\text{IN}}).$

■ELECTRICAL CHARACTERISTICS

XC62KN Series Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	V _{OUT(E)} (*2)	I _{OUT} =20mA V _{IN} =V _{OUT(T)} ^(*1) -1.0V	E1-1 ^(*4)	$V_{\text{OUT(T)}}$	E1-2 ^(*4)	V	2
Maximum Output Current	IOUTmax	$V_{IN}=V_{OUT(T)}-1.0V$ $V_{OUT(E)} \ge V_{OUT(T)} \times 0.9$	E2 ^(*4)			mA	4
Load Regulation	ΔV _О υт	$V_{IN}=V_{OUT(T)}-1.0V$ $1mA \le I_{OUT} \le \{E3\}mA$	-	40	80	mV	4
Dropout Voltage	Vdif1 ^(*3)	I _{OUT} ={E4-1} ^(*4) mA	-	120	300	mV	3
Dropout Voltage	Vdif2 ^(*3)	I _{OUT} ={E4-2} ^(*4) mA	-	380	600	IIIV	3
Supply Current	I _{SS}	V _{IN} =V _{OUT(T)} -1.0V	-	E5-1(*4)	E5-2 ^(*4)	μΑ	1
Line Regulation	ΔV _{OUT} / (ΔV _{IN} •V _{OUT})	$I_{OUT}=20mA$ $V_{IN} \ge V_{OUT(T)}-1.0V$ $V_{IN} \le -10.0V$	-	0.1	0.3	%V	3
Input Voltage	Vin		-	-	-10.0	V	-
Output Voltage Temperature Characteristics	ΔV _{OUT} / (ΔV _{IN} •V _{OUT})	I _{OUT} =20mA -40°C≦Topr≦85°C	-	±100	-	ppm/ °C	-

^{*1:} V_{OUT(T)}=Specified output voltage
*2: V_{OUT(E)}=Effective output voltage
i.e. the output voltage when "V_{OUT(T)} -1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value).
*3: Vdif1,Vdif2 =Vdif={V_{IN1}⁽⁻⁵⁾ - V_{OUT1}⁽⁻⁴⁾}
V_{OUT1} =A voltage equal to 98% of the output voltage whenever an amply stabilized I_{OUT} {V_{OUT(T)} -1.0V} is input. V_{IN1} =The input voltage when a voltage equal to 98% of $V_{\text{OUT(E)}}$ appears.

^{*4:} Refer to the "Voltage chart".

■ ELECTRICAL CHARACTERISTICS (Continued)

Voltage Chart

E1-2 SYMBOL E1-1 E1-2 E2 E5-2 E1-1 E5-1 PARAMETER **MAXIMUM** OUTPUT OUTPUT **SUPPLY OUTPUT SETTING** VOLTAGE (V) VOLTAGE (V) **CURRENT1** OUTPUT **CURRENT** (2% products) (1% products) (μA) VOLTAGE(V) (mA) $V_{\text{OUT}(E)}$ I_{SS} I_{OUTmax} $V_{\text{OUT}(T)}$ MIN MAX MIN MAX MIN **TYP** MAX 2.1 2.058 2.142 40 2.5 6.0 2.2 2.156 2.244 1 1 1 2.3 2.254 2.346 -1 1 1 2.4 2.352 2.448 **↑ ↑** 2.5 2.450 2.550 2.475 2.525 1 1 1 2.6 2.548 2.652 2.574 2.626 1 1 \uparrow 2.7 2.646 2.754 2.673 2.727 2.8 2.744 2.856 2.772 2.828 1 1 1 2.9 2.842 2.958 2.929 2.871 1 1 \uparrow 3.0 2.940 3.060 2.970 3.030 60 1 3.038 3.162 3.069 3.131 3.1 1 1 **↑** 3.2 3.136 3.264 3.168 3.232 **↑** 1 \uparrow 3.234 3.366 3.267 3.333 3.3 3.4 3.332 3.468 3.366 3.434 1 1 1 3.5 3.430 3.570 3.465 3.535 **↑** 1 \uparrow 3.6 3.528 3.672 3.564 3.636 **↑ ↑ ↑** 3.7 3.626 3.774 3.663 3.737 1 1 **↑** 3.8 3.724 3.876 3.762 3.838 1 **↑** \uparrow 3.9 3.822 3.978 3.861 3.939 4.0 3.920 4.080 3.960 4.040 80 3.0 6.5 4.018 4.059 4.1 4.182 4.141 1 1 1 4.2 4.116 4.284 4.158 4.242 **↑ ↑ ↑** 4.257 4.3 4.214 4.386 4.343 **↑** 1 1 4.312 4.488 4.356 4.444 44 1 4.5 4.410 4.590 4.455 4.545 **↑** 1 1 4.508 4.692 4.554 4.6 4.646 1 1 \uparrow 4.7 4.606 4.794 4.653 4.747 4.8 4.704 4.896 4.752 4.848 **↑** 1 1 4.9 4.802 4.998 4.851 4.949 1 1 1 4.900 5.100 4.950 5.050 100 7.0 5.0 5.1 4.998 5.202 5.049 5.151 **↑** 1 **↑** 5.2 5.096 5.304 5.148 5.252 **↑ ↑ ↑** 5.3 5.194 5.406 5.247 5.353 1 1 1 5.4 5.292 5.508 5.346 5.454 1 1 **↑** 5.5 5.390 5.610 5.445 5.555 1 1 **↑** 5.6 5.488 5.712 5.544 5.656 1 1 1 5.7 5.586 5.814 5.643 5.757 1 1 **↑** 5.684 5.916 5.742 5.8 5.858 1 **↑** 5.9 5.782 6.018 5.841 5.959 1 1 1

Conditions Chart

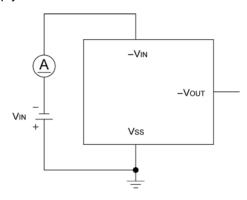
E3	E4-1	E4-2
LOAD REGULATION (mV)	DROPOUT	
I _{OUT}	Vdif1	Vdif2
CONDITIONS	CONDITIONS	CONDITIONS
30	30	60
1	↑	↑
↑	↑	↑
1	1	1
1	1	1
1	↑	1
1	↑	1
1	↑	1
<u> </u>	1	1
40	40	80
<u> </u>	↑	1
1	↑	↑
1	<u> </u>	<u> </u>
1	<u> </u>	1
1	1	<u> </u>
<u> </u>	<u> </u>	1
45	45	90
<u> </u>	<u> </u>	<u> </u>
1	<u> </u>	<u> </u>
<u> </u>	<u> </u>	<u> </u>
<u> </u>	<u> </u>	<u> </u>
1	<u> </u>	<u> </u>
<u> </u>	<u> </u>	<u> </u>
<u> </u>	<u> </u>	<u> </u>
<u> </u>	<u> </u>	<u> </u>
50	50	100
		100
<u> </u>	<u> </u>	<u> </u>
<u> </u>	<u> </u>	<u> </u>
<u> </u>	<u> </u>	<u> </u>
<u> </u>	<u> </u>	<u> </u>
<u> </u>	<u> </u>	<u> </u>
<u> </u>	<u> </u>	<u> </u>
<u></u>	<u> </u>	<u> </u>
<u> </u>	<u> </u>	<u> </u>
<u> </u>	<u> </u>	<u> </u>
	'	<u>'</u>

Note) The symbol is as same as that in the chart of electrical characteristics.

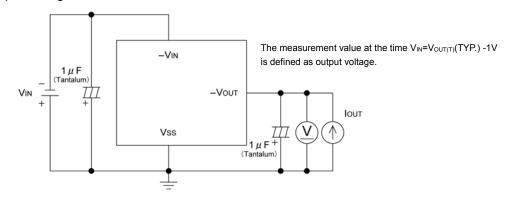
5.940

6.060

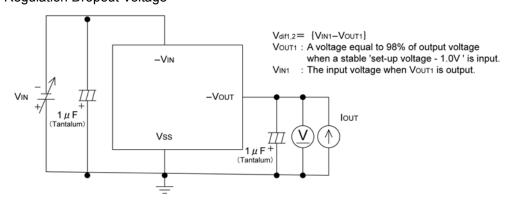
1

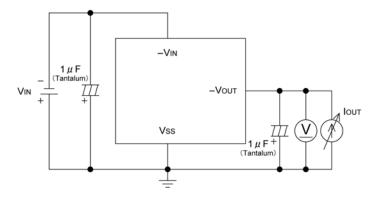

1

6.120


5.880

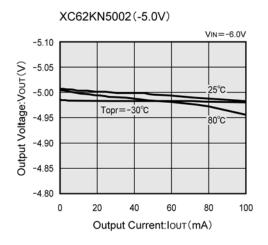
TEST CIRCUITS

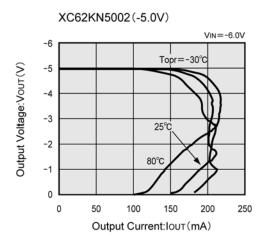

Circuit 1. Supply Current

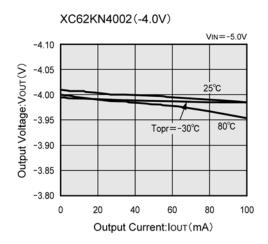

Circuit 2. Output Voltage

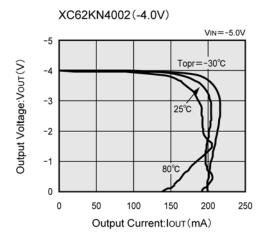
Circuit 3. Line Regulation Dropout Voltage

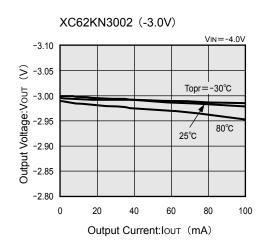
Circuit 4. Load Regulation, Maximum Output Current

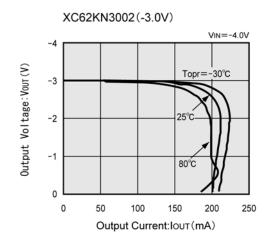


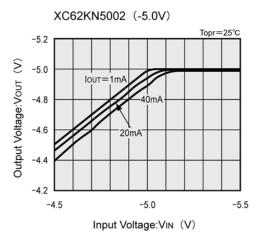

■NOTES ON USE

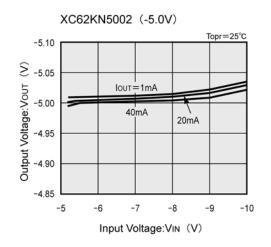

- 1) For the phenomenon of temporal and transitional voltage decrease or voltage increase, the IC may be damaged or deteriorated if IC is used beyond the absolute MAX. specifications.
- 2) Please ensure that values for input capacitance, C_{IN} and out capacitance, C_{L} , are more than 1 μ F (Tantalum).
- 3) Torex places an importance on improving our products and their reliability.
 We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

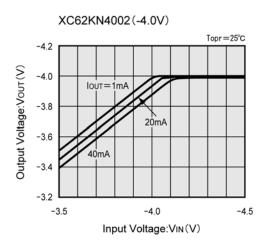

■TYPICAL PERFORMANCE CHARACTERISTICS

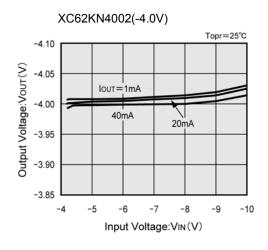

(1) Output Voltage vs. Output Current

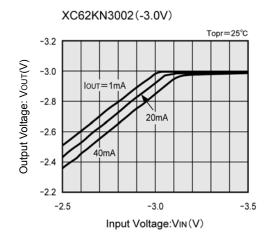


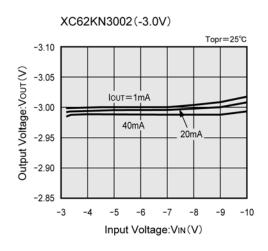


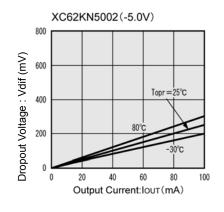


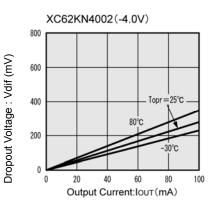


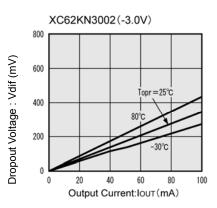


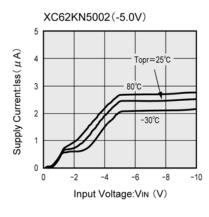

(2) Output Voltage vs. Input Voltage

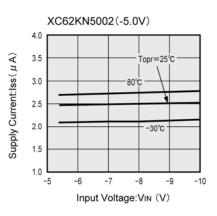


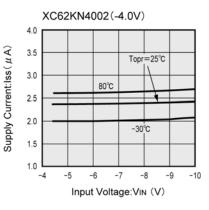




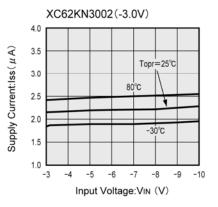


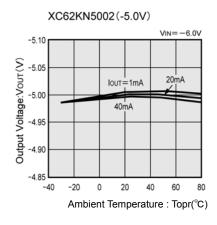

(3) Dropout Voltage vs. Output Current

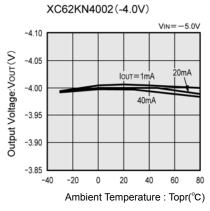


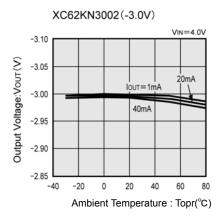


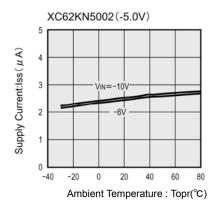
(4) Supply Current vs. Input Voltage

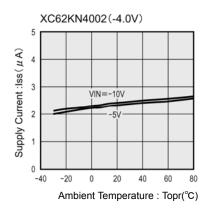


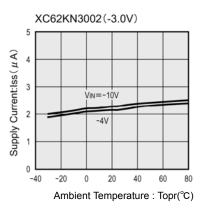




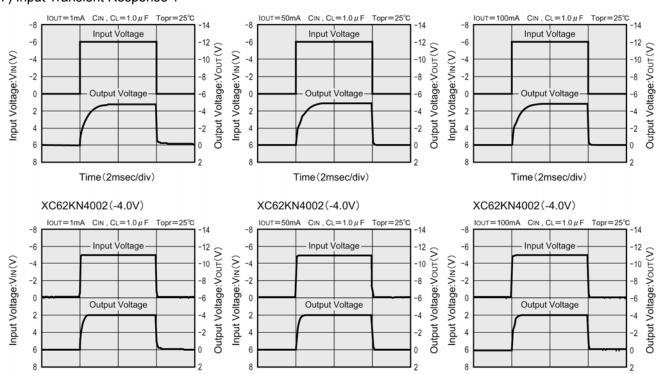



(5) Output Voltage vs. Ambient Temperature

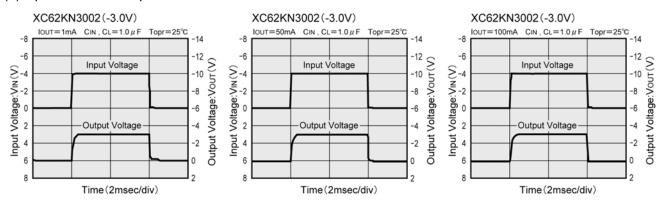


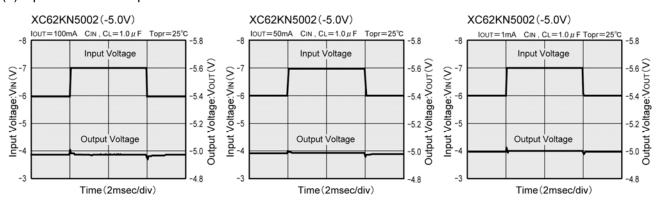


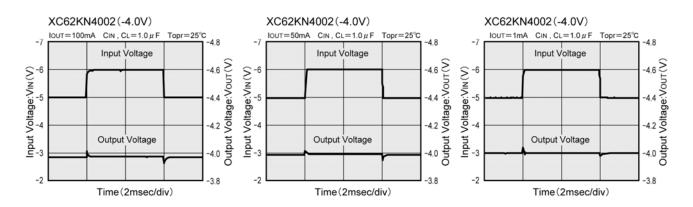
(6) Supply Current vs. Ambient Temperature

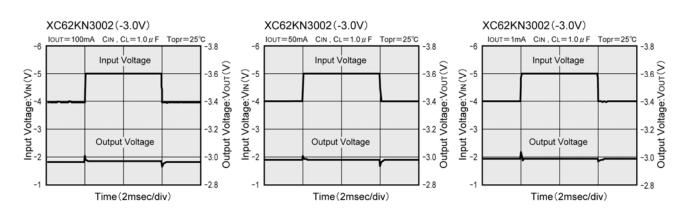


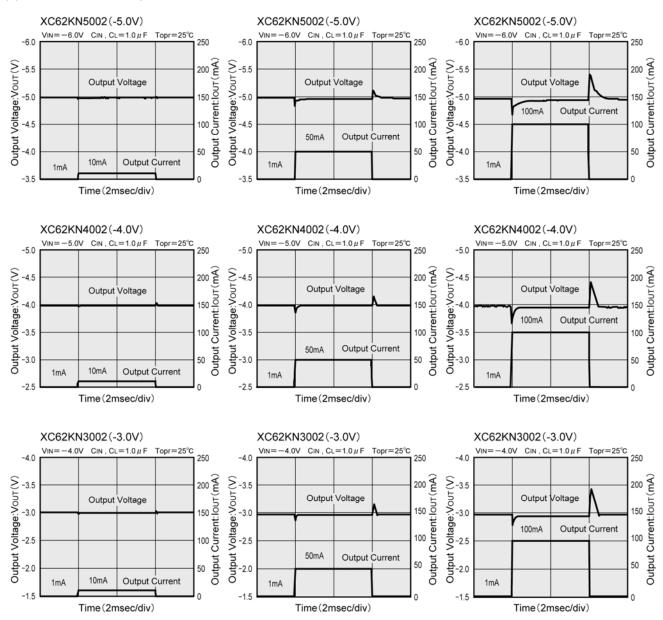
(7) Input Transient Response 1

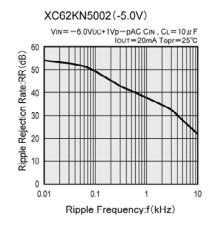

Time (2msec/div)


Time (2msec/div)

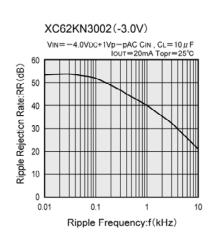

Time (2msec/div)


(7) Input Transient Response 1

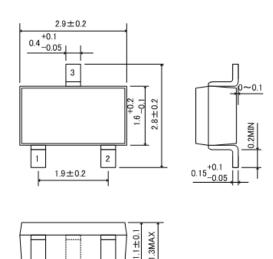

(8) Input Transient Response 2





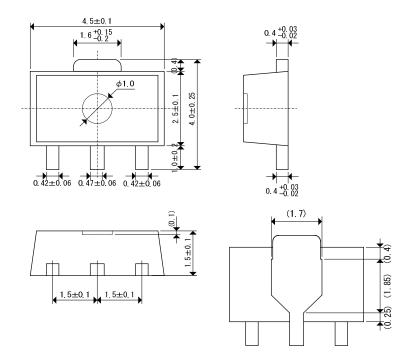

(9) Load Transient Response

(10) Ripple Rejection Rate

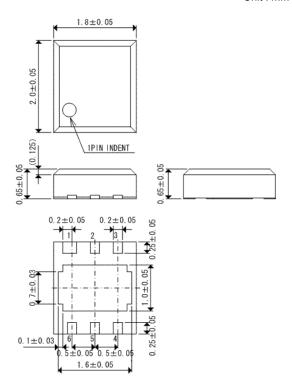


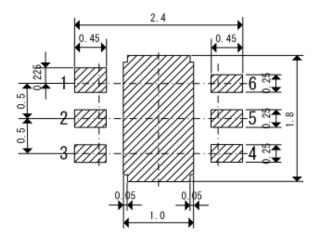
XC62K Series

■ PACKAGING INFORMATION

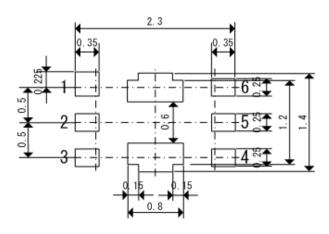

●SOT-23

●SOT-89

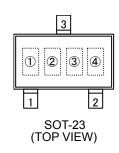

Unit: mm

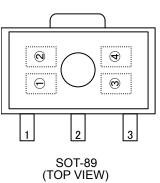

■ PACKAGING INFORMATION (Continued)

●USP-6B


Unit: mm

●USP-6B Reference Pattern Layout




●USP-6B Reference Metal Mask Design

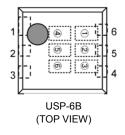
■ MARKING RULE

●SOT-23, SOT-89

1 represents integral number of output voltage

MARK	VOLTAGE (V)	MARK	VOLTAGE (V)
2	2.X	5	5.X
3	3.X	6	6.X
4	4.X		

2 represents decimal number of output voltage


MARK	VOLTAGE (V)	MARK	VOLTAGE (V)
Α	x.0	F	x.5
В	x.1	Н	x.6
С	x.2	K	x7
D	x.3	L	x.8
Е	x.4	M	x.9

3 represents polarity of output voltage

MARK	POLARITY
5	Negative

④ represents production lot number 0 to 9, A to Z repeated, reverse character 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

●USP-6B

① represents production series

MARK	PRODUCT SERIES
K	XC62KNxx0xDx

2 represents polarity of output voltage

MARK	POLARITY	PRODUCT SERIES
N	—(Negative)	XC62KNxx0xDx

34 represents output voltage (ex.)

MARK		VOLTAGE (V)	PRODUCT SERIES	
3	4	VOLIAGE (V)	PRODUCT SERIES	
3	3	3.3	XC62KN330xDx	
5	0	5.0	XC62KN500xDx	

5 represents temperature characteristics

MARK	TEMPERATURE CHARACTERISTICS	PRODUCT SERIES
0	<u>+</u> 100 ppm (TYP.)	XC62KNxx0xDx

⑥ represents production lot number 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded) Note: No character inversion used.

- 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
- Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
- 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
- 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
- 6. Our products are not designed to be Radiation-resistant.
- 7. Please use the product listed in this datasheet within the specified ranges.
- 8. We assume no responsibility for damage or loss due to abnormal use.
- 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

TOREX SEMICONDUCTOR LTD.