600V Half-Bridge Module

For Small Appliance Motor Drive Applications

LAS1M0261

Overview

LAS1M0261 is a half-bridge module designed for advanced appliance motor drive applications such as energy efficient fans and pumps. LASemi's technology offers an extremely compact, high performance half-bridge topology in an isolated package. The advanced IPM offers a combination of LASemi's low R_{DS(on)} MOSFET technology and the industry benchmark half-bridge high voltage, rugged driver in a small LasSOP-10 package. The dedicated open-source pin from low side MOSFET is provided for current sensing. The input works with

Schmitt-trigger and the logic voltage is compatible with 3.3V/5V/15V signal. The UVLO, deadtime and thermal shutdown are also provided.

Features

- Built-in high-performance 600V/3A FRMOSFET and >5us short circuit tolerance
- Integrated Bootstrap diode
- Robust at negative transient voltage; >2.5mm creep distance
- Gate drive supply range from 10 to 20V
- UVLO for both high side and low side
- Built-in dead time to avoid cross-conduction
- Thermal Shutdown (TSD) protection
- Over current detection
- FO/SD output for fault indication and shutdown function
- The low-profile, compact footprint SMT LasSOP-10 package offers extended creepage distances and allows heat sinking of both PowerFET through the PCB

Typical Application

• BLDC fan/pumps

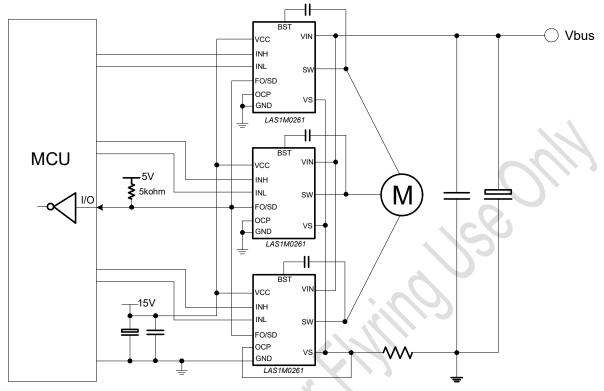
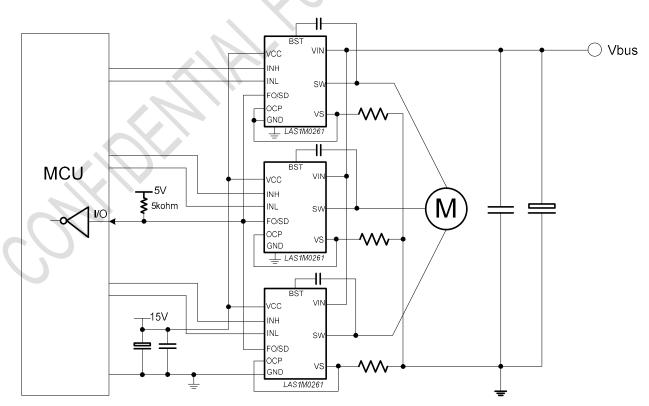
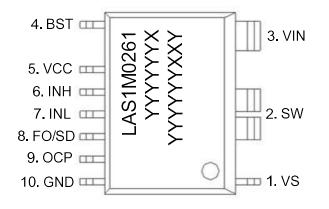



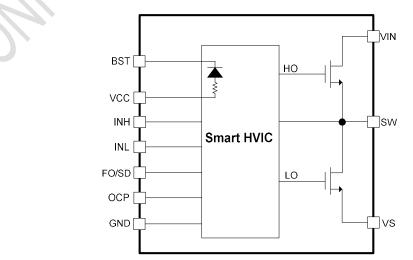
Figure 1 Single Shunt Resistor topology with over current protection function



Package Mark and Order Information

Device	Package	Temperature range	Packaging Type	Purchase Contact
LAS1M0261	LasSOP-10	-40 to 125°C	T/R 1500 pcs/roll	sales@latticeart.com

Pin Diagram



YYYYYY: IC Lot number X: version YYYYYY: MOS Code XX: week number Y: Year code

Pin Description

Pin No.	Symbol	Pin Description	
1	VS	Open source for low side MOSFET	
2	SW	SW phase output	
3	VIN	DC bus	
4	BST	High side floating supply	
5	VCC	Power supply for low side	
6	INH	High side gate driver input	
7	INL	Low side gate driver input	
8	FO/SD	Fault indicator and shutdown input	
9	OCP	Over current detection; If NOT use, short OCP to GND	
10	GND	Ground pin	

Block Diagram

Absolute Maximum Ratings (note 1)

T _A =25 ⁰ C, unless otherwise specified.					
Symbol	Definition	Ratings	Unit		
VCC	Power supply voltage for low side	20	V		
BST-SW	Power supply voltage for high side	20	V		
VIN	DC bus	600	V		
ID	Each MOSFET current, continues, Tj<150°C	1.5	A		
Ідм	Each MOSFET pulse current<100us	3	A		
HIN, LIN	Input logic voltage 20 V				
FO/SD	Fault indicator and shutdown input 20 V				
VS	Open source voltage	10	V		
Тѕтс	Storage temperature	-55 to150	°C		
Tj	Junction temperature	-40 to +150	°C		
PD	Total power dissipation	8.3	W		

Note 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are not tested at manufacturing.

Recommended Operating Conditions

Symbol	Definition	Ratings	Unit
VCC	Power supply pin for low side	11 to 18	V
BST	High side floating supply voltage	SW+11 to SW+18	V
VIN	DC bus voltage	<500	V
HIN/LIN	Logic input voltage	VCC	V
Fpwm	PWM carrier frequency	<20	kHz

Electrical Characteristics

 $T_A=25^{0}C$, unless otherwise specified.

Gate driver part

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
IQVCC	Quiescent VCC supply VCC=15V,		120	150	170	uA
	current	HIN=LIN=0V,SW=0V				
I _{BST-SW}	Quiescent V _{BST-SW} supply	V _{BST-SW} =15V,	15	30	45	uA
	current	HIN=LIN=0V				
VCC _{ON}	VCC under-voltage rising		8.3	9.1	9.9	V
	threshold					
VBS _{ON}	V _{BST-SW} under voltage rising		8	8.5	9.4	V
	threshold			0.		
VCCOFF	VCC under-voltage falling		7.5	8.1	8.8	V
	threshold					
VBS_{OFF}	VBS under-voltage falling		7.5	7.8	8.5	V
	threshold	0.1	5			
VCC _{HYS}	UVLO hysteresis voltage			1		V
VBS _{HYS}	BST-SW UVLO hysteresis			0.7		V
I _{IN_LKG}	Logic "1" input bias current	HIN,LIN=5V		5		uA
I _{IN_SINK}	Logic "0" input bias current	HIN,LIN=0V			1	uA
VIL	OFF threshold voltage	Logic low level			0.8	V
VIH	ON threshold voltage	Logic high level	3			V
VOCP	Over current protection		0.38	0.43	0.48	V
	threshold					
V_{SD_OFF}	Shutdown threshold voltage				0.8	V
V_{SD_ON}	SD turn on threshold		3			V
	voltage					
V _{FO}	Fault output open drain	V _{OCP} =0.6V, I _{FO} =5mA		0.5		V
$V_{\text{FO}_{\text{Float}}}$	FO floating voltage			4.8		V
R _{FO_PU}	Internal FO pull up resistor		500	680	800	kohm
DT	Dead time			100		ns
T _{FLT_IN}	Input filter			100		ns
MT	High side and low side				60	ns
11	delay match time					
T _{OTP}	Over temperature protection			138		°C
	shutdown rising threshold					
T _{OTP_HYS}	OTP hysteresis			28		°C
R _{BSD}	Bootstrap diode resistance		70	100	130	ohm

Power MOS part

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source	VCC=0V, I _D =500uA	600			V
	Breakdown Voltage					
I _{DSS}	Zero Gate voltage	VCC=0V, V _{DS} =600V			1	uA
	Drain Current					
V _{SD}	Drain-source diode	VCC=V _{BS} =10V		0.9		V
	forward voltage	I _D =2.5A				
R _{DS(ON)}	Drain-source Turn-On	VCC=V _{BS} =15V		3.2		ohm
	Resistance	VIN=5V, I _D =1.5A				
Trr	Reverse recovery	VIN=400V, VCC=V _{BST-}		100	\sim	ns
	time	_{sw} =12V, I _D =2A;				
		Inductive Load, High-side and				
		Low-side Switching		5		

Function Descriptions

1. Input and output True Table

HIN	LIN	OUTPUT	Description
0	0	Hi-Z	High side and low side OFF
0	1	0	Low side ON, High side OFF
1	0	VIN	High side ON, Low side OFF
1	1	Hi-Z	Forbidden input, High side and low side OFF
Open	Open	Hi-Z	Input internal pull-down resistor 1M ohm

2. Dynamic switching diagram

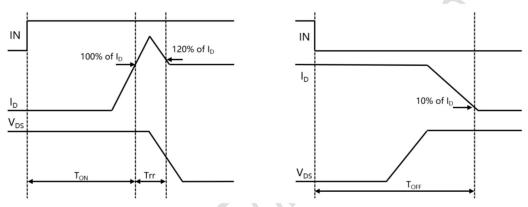


Figure 1 Dynamic switching diagram

3. Delay Match Time

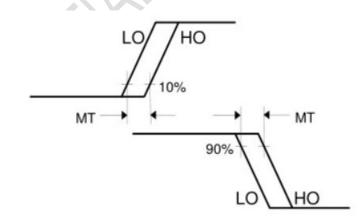


Figure 2 Delay match time

4. Thermal Shutdown (TSD)

The LAS1M0261 incorporates a thermal shutdown (TSD) circuit. Figure 3 shows TSD operational waveforms. In case of overheating (e.g., increased power dissipation due to overload, a rise in ambient temperature at the device, etc.), the IC shuts down both high-side and low-side output transistors.

The TSD circuit in HVIC can monitor the power MOSFET with a relative accuracy since the compact module package makes the power device and HVIC closely placed.

When the temperature of HVIC exceeds the TSD operating temperature (T_{TSD} ,138°C), the TSD circuit is activated. When the temperature of the HVIC decreases to the TSD releasing Temperature(110°C) or less, the shutdown condition is released. The output transistors then resume operating according to input signals.

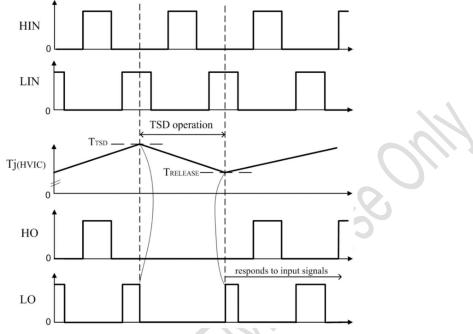


Figure 3 Thermal Shutdown Protection

5. Undervoltage Lockout for Low-side Power Supply (UVLO_VCC)

Figure 4 shows operational waveforms of undervoltage lockout for low-side power supply (i.e., UVLO_VCC).

When the VCC pin voltage decreases to the logic operation stop voltage(8.0V) or less, the UVLO_VCC circuit in the corresponding phase gets activated and sets both of HO and LO signals to logic low. When the VCC pin voltage increases to the logic operation start voltage (9.0V) or more, the IC releases the UVLO_VCC operation. Then, the IC resumes the following transmissions: an LO signal according to the LIN pin input command; an HO signal according to the rising edge of the first HIN pin input command after the UVLO_VCC release.

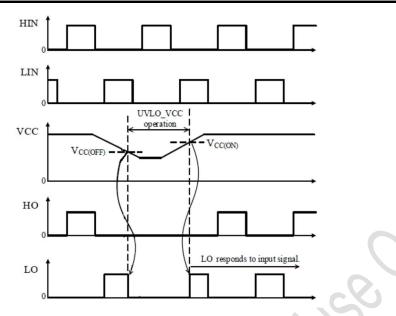


Figure 4 UVLO_VCC Operational Waveform

6. Undervoltage Lockout for High-side Power Supply (UVLO_BST)

Figure 5 shows operational waveforms of undervoltage lockout for high-side power supply (i.e., UVLO_BST).

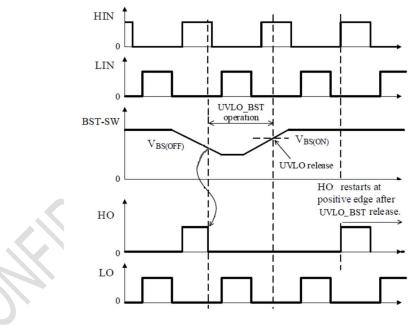
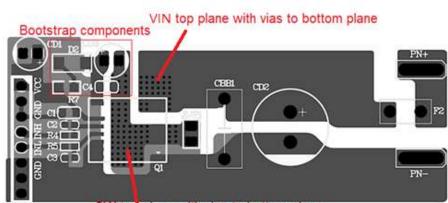


Figure 5 UVLO_BST Operational Waveform

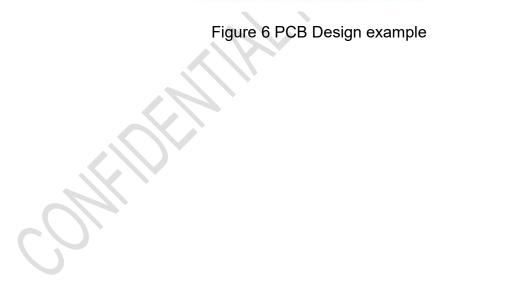
When the voltage between the BST and SW pins decreases to the logic operation stop voltage(7.8V) or less, the UVLO_BST circuit in corresponding phase gets activated and sets an HO signal to logic low. When the voltage between BST and SW pins increases to the logic operation start voltage(8.4V) or more, the IC releases the UVLO_VB operation. Then, the HO signal becomes logic high at the rising edge of the first input command after the UVLO_VB release.

7. Over Current protection function

OCP pin detects current sensing resistor's voltage. When OCP pin's voltage exceeds

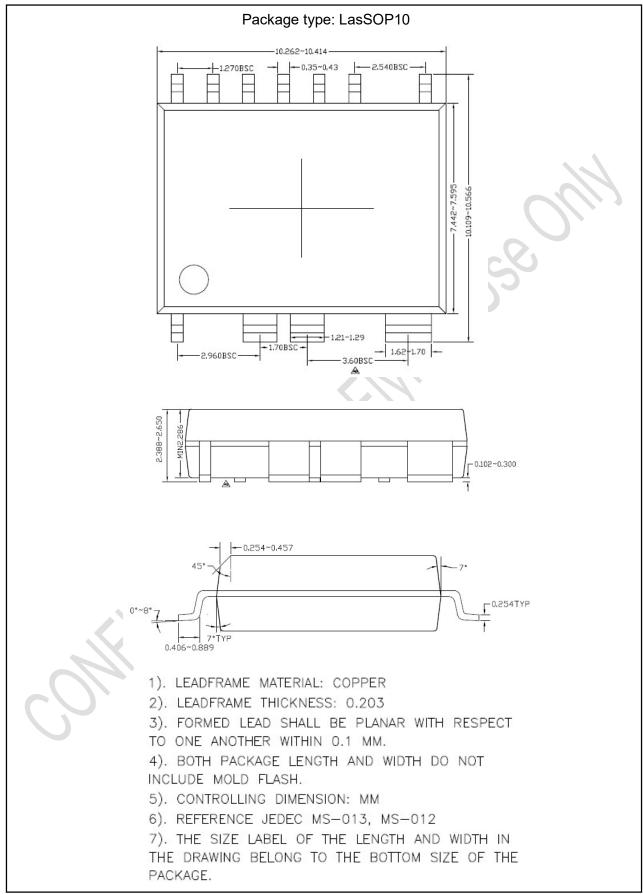

0.43V, LAS1M0261 will pull down FO/SD for 65us. As long as FO/SD stays low, HO and LO will not output driver signal no matter what HIN and LIN inputs are. If OCP function is not used, it is recommended that short OCP pin to GND.

8. FO/SD function


FO/SD is multiple function pin. This pin will indicate low voltage when LAS1M0261 enters a fault condition such as VCC UVLO, thermal shutdown, over current protection. Meanwhile FO/SD shutdown LAS1M0261's output when the pin is low.

9. PCB Design Guidelines

The LAS1M0261's VIN and SW wide-lead pin layout is configured to provided sufficient copper area for heat sinking. Figure 6 gives an example of the PCB layout.



SW top plane with vias to bottom plane

Detail Package Outline Drawing

