器件参数表 DataSheet

ICW3115【开关电源控制器集成电路】

合肥艾创微电子科技有限公司

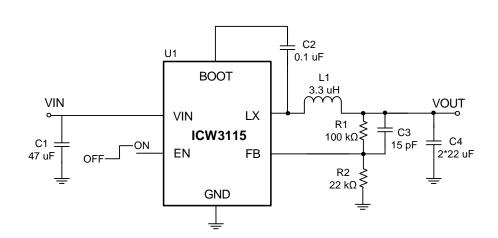
概述

ICW3115是一款高效率的同步整流降压DC-DC转换器芯片,输入电压最高可达18V,内部集成两颗低导通电阻的NMOSFET功率开关,低侧开关导通电阻70mΩ,高侧开关导通电阻140mΩ,可支持2A负载电流。当带轻载时芯片工作在PFM模式,当带重载时芯片工作在连续电流的准PWM模式,开关频率500 kHz。芯片采用自适应恒定导通时间控制架构,具有较快的负载瞬态响应。

芯片集成过温保护、输入欠压锁定、逐周期限流保护、输出短路保护等功能来提升芯片的可靠性。

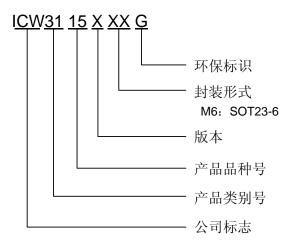
应用场合

- 机顶盒
- 液晶电视
- DSL 调制解调器
- 数字电视

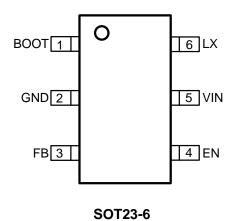

典型应用图

特点

- 输入电压范围: 4.4 V ~ 18 V
- 关断电流: 10 uA
- 静态电流: 120 uA
- 导通电阻:低侧 70 mΩ,高侧 140 mΩ
- 开关频率: 500 kHz
- 参考电压值: 0.6 V ± 2%
- 逐周期限流保护:峰值限流 5.5 A,谷值限流 3 A
- 输出短路保护方式:打嗝模式
- 过温保护: 160°C

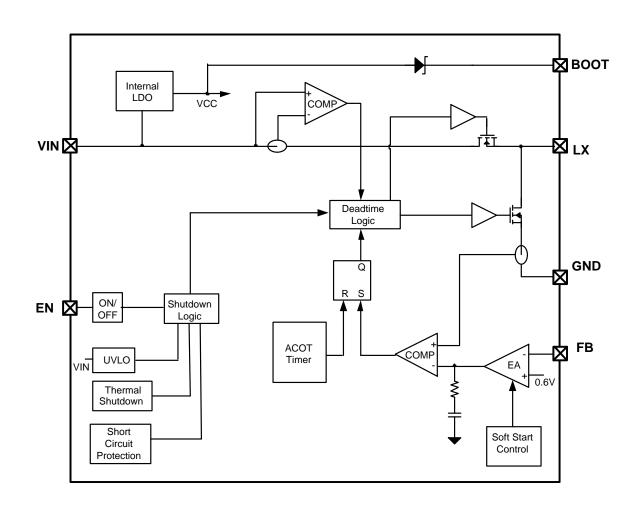

封装形式

• 6-pin SOT23-6



选型指南

产品型号	产品说明
ICW3115AM6G	SOT23-6


产品脚位图

脚位功能说明

管脚编号	管脚名	功能说明
1	BOOT	需要在BOOT和LX间接不小于0.1 uF陶瓷电容,为高侧开关的驱动供电
2	GND	地管脚
3	FB	反馈电压管脚,接误差放大器反向输入端
4	EN	使能输入管脚,输入逻辑高芯片工作
5	VIN	电源输入端,为控制器和转换器开关供电
6	LX	开关节点,接电感

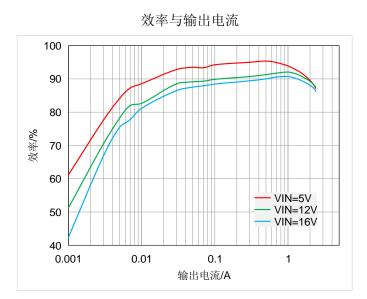
绝对最大额定值

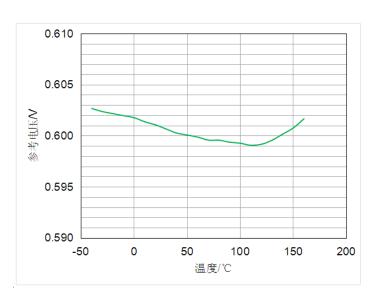
参数	符号	范围	单位
VIN 引脚电压范围	V _{IN}	-0.3 ~ 18	V
LX 引脚电压范围	V _{LX}	-0.3 ~ 18	V
BOOT 引脚相对 SW 引脚电压范围	V_{BOOT_SW}	-0.3 ~6	V
EN 引脚电压范围	V _{EN}	-0.3 ~ 18	V
FB 引脚电压范围	V_{FB}	-0.3 ~ 18	V
封装功耗	P _d	0.63	W
封装热阻 (结到空气)	θ_{JA}	200	°CMV
工作环境温度范围	T _A	-40 ~ +85	$^{\circ}$
储存温度范围	T _{STG}	-55 ~ + 150	${\mathbb C}$
结温范围	TJ	-40 ~ +150	$^{\circ}$ C

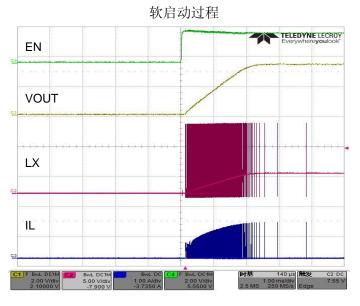
注意: 绝对最大额定值是本产品能够承受的最大物理伤害极限值,请在任何情况下勿超出该额定值。

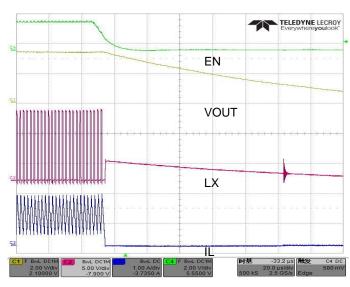
推荐工作条件

符号	描述	最小值	典型值	最大值	单位
V _{IN}	输入电压	4.4	12	18	V
V _{OUT}	输出电压	0.6	3.3	•	V
L	电感值	1.2	3.3	6	uH
C _{OUT}	输出电容	20	40	-	uF
T _A	工作环境温度	-40	-	85	°C

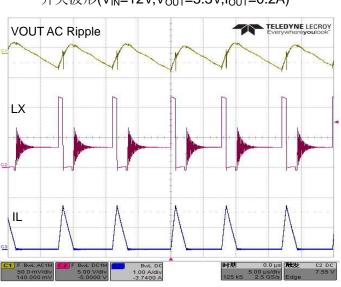

电气参数

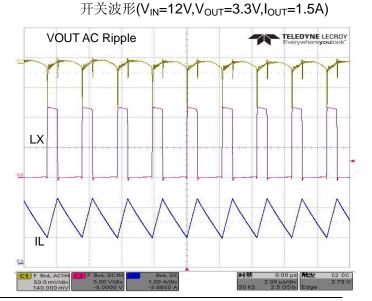

ICW3115 测试条件: V_{IN} = 12 V, V_{OUT} = 3.3 V, T_A = 25℃, 除非特殊情况。

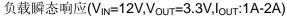

参数	符号	条件	最小值	典型值	最大值	单位
输入电压范围	V _{IN}		4.4	-	18	V
关断电流	I _{SD}	V _{IN} = 18 V,关断IC	-	10	15	uA
静态电流	IQ	V _{IN} = 18 V,使能IC,V _{FB} = 0.66 V	-	120	200	uA
反馈参考电压	V_{REF}		0.588	0.6	0.612	V
高侧开关导通电阻	R _{DSON_H}	V_{BOOT} - V_{LX} = 4.5 V	-	140	200	mΩ
低侧开关导通电阻	R _{DSON_L}		-	70	100	mΩ
峰值限流	I _{LIM_PEAK}		-	5.5	6.5	Α
谷值限流	I _{LIM_VALLEY}		-	3	4	Α
使能上升阈值	V _{ENH}	V _{EN} 上升	-	1.3	1.5	V
使能下降阈值	V _{ENL}		0.8	1	-	V
输入UVLO阈值	V_{IN_UVLO}	V _{IN} 上升	-	4.3	4.4	V
输入UVLO迟滞	V _{IN_HYS}		-	0.25	-	V
最小导通时间	T _{min_on}		-	100	150	ns
最小关断时间	T_{min_off}		-	180	250	ns
开关频率	F _{SW}		-	500	-	kHz
软启动时间	t _{ss}		-	2	-	ms
过温保护	T _{OTP}		-	160	-	°C
过温保护迟滞	T _{HYS}		-	30	-	°C

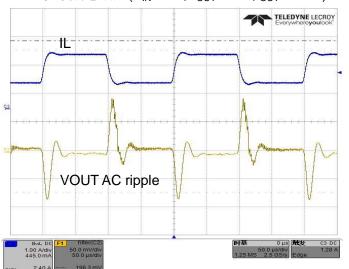


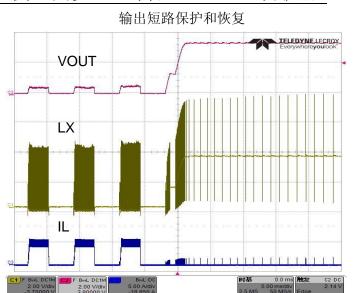
典型性能参数






开关波形(V_{IN}=12V,V_{OUT}=3.3V,I_{OUT}=0.2A)





ICW3115_CN_DS_Rev.2.0 Page 5/8

工作原理

ICW3115是一款高效率的同步整流BUCK转换器芯片,集成两颗低导通电阻NMOSFET功率开关,采用自举电容为高侧开关的驱动供电,输入电压最高18V,可带2A负载电流,采用恒定导通时间控制架构,具有较快的负载瞬态响应,在轻载时工作模式为PFM,重载时工作模式为PWM。

软启动

当EN从逻辑低变为逻辑高时,芯片内部控制电路的各模块开始依次工作,在0.6 V参考电压建立起来之后,内部一个电流对一个电容充电,电容上的电压作为软启动控制电压代替V_{REF}控制误差放大器,在2ms时间内软启动电压上升至0.6V,输出电压也跟随上升至设定的电压,这样可以避免启动时较大的突入电流和输出电压过冲。

轻载工作

当负载电流从重载逐渐减小到轻载时,电感电流也相应减小,当电感电流谷值下降到0 A时芯片开始工作在DCM,每个开关周期先对电感进行固定时间的充电,输出电压上升至一个较高的电位,充电结束后高侧开关关断,低侧开关打开,电感开始放电,然后检测电感放电至0 A后关断低侧开关,电路处于双截至状态,由于负载电流减小,需要更长时间输出电压才能下降至设定的电压,之后会重新触发新的开关周期,负载的减小会让开关频率跟随下降。

输出短路保护

当输出短路时,芯片会自动停止开关切换一段时间(约 3.5ms),之后芯片自动恢复工作,重新软启动,工作一段时间(3ms)之后,如果输出依然短路芯片会再次停止开关切换,芯片会一直重复停止工作和重新软启动直到解除输出短路状态,输出电压会软启动上升至设定值。

应用信息

ICW3115可以为高压到低压的电源转换应用提供解决方案,由于内部集成两个功率开关,因此系统外围仅需要输入电容、自举电容、输出电容、电感、反馈分压电阻等元件。

设定输出电压

通过选择R1、R2来设定输出电压,为了获得较好的功耗与噪声性能,建议R1、R2阻值在10 kΩ到1 MΩ之间,具体关系如下面公式。

$$R_1 = R_2 \times \left(\frac{V_{OUT}}{0.6V} - 1 \right)$$

电感选择

电感选择时需要保证满负载工作时电感电流处于限流点以下,电感电流峰值大小计算公式如下,需要保证输出电流最大时I_{PEAK}小于芯片峰值限流值5.5 A和电感的饱和电流,同时电感DCR要足够小来确保系统满足期望的效率要求。

$$I_{PEAK} = I_{OUT} + \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{2 \times V_{IN} \times L} \times T$$

自举电容

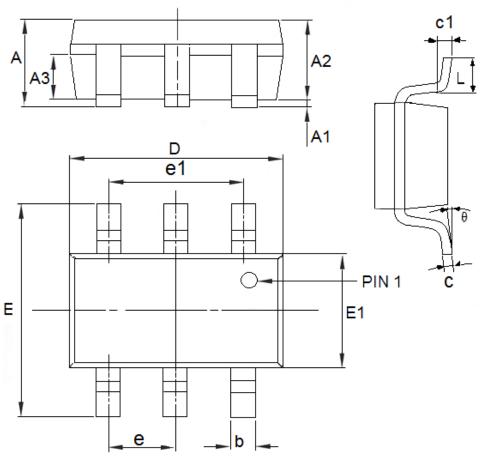
ICW3115采用自举电容来为高侧NMOSFET功率开关的驱动供电,建议自举电容采用不低于0.1 uF的陶瓷电容。

输入电容

BUCK芯片工作时,每次开关切换时VIN端和GND之间会存在较大的干扰,电容C_{IN}有助于减小干扰并提高系统工作的稳定性,并且考虑到电压达到额定电压时容值出现较大损耗,C_{IN}电容的额定电压要超过最高输入电压,建议采用 1206封装的47 uF陶瓷电容并且距离芯片尽可能近地摆放。

输出电容

ICW3115 构成的降压 DC-DC 转换器系统需要输出滤波电容,较小的电容会影响系统稳定性,并且短路保护解除瞬间 Vour 会出现较大过冲,这可能会损坏用电设备,选择 0805 封装的 2*30 uF 陶瓷电容可以获得较小的 Vour 纹波。


版图指导

- 1) 为了降低非理想干扰和提高系统效率,外部元件如电感、C_{IN}、C_{OUT}等尽可能靠近芯片。
- 2) 为了减小高频开关引起的 EMI, PCB 上连到 SW 管脚的走线尽可能短,最好在 PCB 背面覆盖接地层减小信号耦合。
- 3) 为了增加散热、提高效率,建议背面覆盖接地层,多打散热孔,采用较厚的 PCB 铜箔。

封装信息

● 封装类型: SOT23-6

参数	尺寸 (mm)		尺寸 (Inch)		
	最小值	最大值	最小值	最大值	
Α	1.05	1.45	0.0413	0.0571	
A1	0	0.15	0.0000	0.0059	
A2	0.9	1.3	0.0354	0.0512	
A3	0.55	0.75	0.0217	0.0295	
b	0.25	0.5	0.0098	0.0197	
С	0.1	0.25	0.0039	0.0098	
D	2.7	3.12	0.1063	0.1228	
e1	1.9(TYP)		0.0748(TYP)		
Е	2.6	3.1	0.1024	0.1220	
E1	1.4	1.8	0.0551	0.0709	
е	0.95(TYP)		0.0374	I(TYP)	
L	0.25	0.6	0.0098	0.0236	
θ	0	8°	0.0000	8°	
c1	0.2(TYP)		0.0079	O(TYP)	