

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

FEATURES

- Specified Break-Before-Make Switching
- Low ON-State Resistance
- High Bandwidth
- Control Inputs Are 5.5-V Tolerant
- Low Charge Injection
- Excellent ON-State Resistance Matching
- Low Total Harmonic Distortion (THD)
- 1.65-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

APPLICATIONS

- Cell Phones
- PDAs
- Portable Instrumentation

SC-70 (DCU) PACKAGE (TOP VIEW)

FUNCTION TABLE

IN1	IN2	COM TO NO0	COM TO NO0 COM TO NO1	
L	L	OFF	OFF	OFF
Н	L	ON	OFF	OFF
L	н	OFF	ON	OFF
н	н	OFF	OFF	ON

DESCRIPTION/ORDERING INFORMATION

The TS5A3357 is a high-performance, single-pole triple throw (SP3T) analog switch that is designed to operate from 1.65 V to 5.5 V. The device offers a low ON-state resistance and low input/output capacitance and, thus, causes a very low signal distortion. The break-before-make feature allows transferring of a signal from one port to another, with a minimal signal distortion. This device also offers a low charge injection which makes this device suitable for high-performance audio and data acquisition systems.

Summary of Characteristics⁽¹⁾

Configuration	Triple 3:1 Multiplexer/ Demultiplexer (1 × SP3T)
Number of channels	1
ON-state resistance (r _{on})	5 Ω
ON-state resistance match (Δr_{on})	0.1 Ω
ON-state resistance flatness (ron(flat))	6.5 Ω
Turn-on/turn-off time (t _{ON} /t _{OFF})	6.5 ns/3.7 ns
Break-before-make time (t _{BBM})	0.5 ns
Charge injection (Q _C)	3.4 pC
Bandwidth (BW)	334 MHz
OFF isolation (O _{ISO})	–82 dB at 10 MHz
Crosstalk (X _{TALK})	–62 dB at 10 MHz
Total harmonic distortion (THD)	0.05%
Leakage current (I _{COM(OFF)})	±1 μA
Package option	8-pin DCU (US8)

(1) $V_+ = 5 V, T_A = 25^{\circ}C$

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽³⁾
$-40^{\circ}C$ to $85^{\circ}C$	SOT (SC-70) – DCU	Tape and reel	TS5A3357DCUR	JA9_

Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

(3) DCU: The actual top-side marking has one additional character that designates the assembly/test site.

ABSOLUTE MINIMUM AND MAXIMUM RATINGS⁽¹⁾⁽²⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V+	Supply voltage range ⁽³⁾		-0.5	6.5	V
V _{NO} V _{COM}	Analog voltage range ⁽³⁾⁽⁴⁾⁽⁵⁾				V
Ι _Κ	Analog port diode current	V_{NO} , V_{COM} < 0 or V_{NO} , V_{COM} > V_{+}	-50	50	mA
I _{NO} I _{COM}	On-state switch current	V_{NO} , $V_{COM} = 0$ to V_{+}	-100	100	mA
VI	Digital input voltage range ⁽³⁾⁽⁴⁾		-0.5	6.5	V
I _{IK}	Digital input clamp current	V ₁ < 0	-50		mA
I+	Continuous current through V ₊			100	mA
I _{GND}	Continuous current through GND		-100	100	mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

(3) All voltages are with respect to ground, unless otherwise specified.

(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(5) This value is limited to 5.5 V maximum.

PACKAGE THERMAL IMPEDANCE

		MAX	UNIT
θ_{JA}	Package thermal impedance ⁽¹⁾	165	°C/W

(1) The package thermal impedance is calculated in accordance with JESD 51-7.

2

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

ELECTRICAL CHARACTERISTICS FOR 5-V SUPPLY⁽¹⁾

 $V_{+} = 4.5 \text{ V}$ to 5.5 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CO	NDITIONS	TA	۷.	MIN	TYP	MAX	UNIT
Analog Switch		1							
Analog signal range	V_{COM}, V_{NO}					0		V ₊	V
Peak ON resistance	r _{peak}	$0 \le V_{NO} \le V_+,$ $I_{COM} = -30 \text{ mA},$	Switch ON, See Figure 13	Full	4.5 V			15	Ω
		$V_{NO} = 0,$		25°C			5	7	
		$I_{COM} = 30 \text{ mA}$		Full				7	
ON-state resistance	r	$V_{NO} = 2.4 V,$	Switch ON,	25°C	45 V		6	12	Ω
	on	$I_{COM} = -30 \text{ mA}$	See Figure 13	Full	4.5 V			12	
		$V_{NO} = 4.5 V,$		25°C			7	15	
		$I_{COM} = -30 \text{ mA}$		Full				15	
ON-state resistance match between channels	∆r _{on}	$V_{NO} = 3.15 V,$ $I_{COM} = -30 mA,$	Switch ON, See Figure 13	25°C	4.5 V		0.1		Ω
ON-state resistance flatness	r _{on(flat)}	$\begin{array}{l} 0 \leq V_{\rm NO} \leq V_{+}, \\ I_{\rm COM} = -30 \ {\rm mA}, \end{array}$	Switch ON, See Figure 13	25°C	5 V		6.5		Ω
NO		$V_{NO} = 0$ to V_{+} ,	Switch OFF,	25°C	E E V	-0.1		0.1	μA
OFF leakage current	INO(OFF)	$V_{COM} = V_{+}$ to 0	See Figure 14	Full	5.5 V	-1		1	
СОМ	1	$V_{COM} = 0$ to V_+ ,	Switch OFF,	25°C	0	-0.1		0.1	۸
OFF leakage current	COM(OFF)	$V_{NO} = V_+$ to 0,	See Figure 14	Full	0	-1		1	μΑ
NO	1	$V_{NO} = 0$ to V_{+} ,	Switch ON,	25°C	E E V	-0.1		0.1	۸
ON leakage current	NO(ON)	V _{COM} = Open,	See Figure 14	Full	5.5 V	-1		1	μΑ
СОМ	1	V _{NO} = Open,	Switch ON,	25°C	5 5 V	-0.1		0.1	۸
ON leakage current	COM(ON)	$V_{COM} = 0$ to V_+ ,	See Figure 14	Full	5.5 V	-1		1	μΑ
Digital Control Input	s (IN1, IN2) ⁽	2)							
Input logic high	V _{IH}			Full		$V_{+} imes 0.7$		5.5	V
Input logic low	V _{IL}			Full		0		$V_{+} \times 0.3$	V
Input leakage	las la	$V_{\rm c} = 5.5 V_{\rm or} 0$	25°C	55.			0.1	ıιΔ	
current	ıH, ıL	vj = 3.5 v 0i 0		Full	5.5 V			1	μΛ

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

(2) All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

ELECTRICAL CHARACTERISTICS FOR 5-V SUPPLY (continued)

 V_{+} = 4.5 V to 5.5 V, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CO	NDITIONS	T _A	V.	MIN	TYP	MAX	UNIT
Dynamic									
Turne an time a		$V_{NO} = V_{+}$ or GND,	$C_{1} = 50 \text{ pF},$	25°C	5 V	1.5		6.5	
rum-on time	LON	$R_L = 500 \Omega$,	See Figure 16	Full	4.5 V to 5.5 V	1.5		7	ns
Turne off times		$V_{NO} = V_{+}$ or GND,	$C_{1} = 50 \text{ pF},$	25°C	5 V	0.8		3.7	
Turn-off time	^I OFF	$R_L = 500 \Omega$,	See Figure 16	Full	4.5 V to 5.5 V	0.8		7	ns
Break-before-		$V_{NO} = V_+,$	$C_{L} = 50 \text{ pF},$	25°C	5 V	0.5			20
make time	LBBM	$R_L = 50 \Omega$,	See Figure 17	Full	4.5 V to 5.5 V	0.5			ns
Charge injection	Q _C	V _{GEN} = 0, C _L = 0.1 nF,	See Figure 21	25°C	5 V		3.4		рС
NO OFF capacitance	C _{NO(OFF)}	$V_{NO} = V_{+} \text{ or GND},$ Switch OFF,	See Figure 15	25°C	5 V		4.5		pF
COM OFF capacitance	C _{COM(OFF)}	$V_{NO} = V_+ \text{ or GND},$ Switch OFF,	See Figure 15	25°C	5 V		10.5		pF
NO ON capacitance	C _{NO(ON)}	$V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 15	25°C	5 V		17		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 15	25°C	5 V		17		pF
Digital input capacitance	Cl	$V_I = V_+ \text{ or } GND,$	See Figure 15	25°C	5 V		3		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	4.5 V to 5.5 V		334		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 10 MHz,	Switch OFF, See Figure 19	25°C	4.5 V to 5.5 V		-82		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega,$ f = 10 MHz,	Switch ON, See Figure 20	25°C	4.5 V to 5.5 V		-62		dB
Supply									
Positive supply	1	Swit	Switch ON or	25°C	5.5.V			1	۸
current	¹ +	$v_{\parallel} = v_{+} \cup U \cup U \cup U$	OFF	Full	5.5 V			10	μА

4

Copyright © 2004–2007, Texas Instruments Incorporated

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

ELECTRICAL CHARACTERISTICS FOR 3.3-V SUPPLY⁽¹⁾

 V_{\star} = 3 V to 3.6 V, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST C	ONDITIONS	T _A	۷.	MIN	TYP MAX	UNIT		
Analog Switch		1								
Analog signal range	V_{COM}, V_{NO}					0	V ₊	V		
Peak ON resistance	r _{peak}	$0 \le V_{NO} \le V_+,$ $I_{COM} = -24 \text{ mA},$	Switch ON, See <mark>Figure 13</mark>	Full	3 V		25	Ω		
		$V_{NO} = 0 V,$		25°C			6.5 9			
ON-state resistance	r	$I_{COM} = 24 \text{ mA}$	Switch ON,	Full	3 \/		9	0		
	on	$V_{NO} = 3 V,$	See Figure 13	25°C	5 v		9 20	12		
		$I_{COM} = -24 \text{ mA}$		Full			20			
ON-state resistance match between channels	∆r _{on}	V _{NO} = 2.1 V, I _{COM} = -24 mA,	Switch ON, See Figure 13	25°C	3 V		0.1	Ω		
ON-state resistance flatness	r _{on(flat)}	$0 \le V_{NO} \le V_+,$ $I_{COM} = -24 \text{ mA},$	Switch ON, See Figure 13	25°C	3.3 V		13.5	Ω		
NO		I	hieross	$V_{NO} = 0$ to V_{+} ,	Switch OFF,	25°C	361/	-0.1	0.1	
OFF leakage current	NO(OFF)	$V_{COM} = V_+$ to 0 See Figure 14	See Figure 14	Full	3.0 V	-1	1	μ.,		
СОМ	1	$V_{COM} = 0$ to V_+ ,	Switch OFF,	25°C	261/	-0.1	0.1			
OFF leakage current	COM(OFF)	$V_{NO} = V_+$ to 0,	See Figure 14	Full	3.0 V	-1	1	μА		
NO		$V_{NO} = 0$ to V_{+} ,	Switch ON,	25°C	261/	-0.1	0.1			
ON leakage current	NO(ON)	$V_{COM} = V_{+}$ to 0,	See Figure 14	Full	3.0 V	-1	1	μА		
СОМ		V _{NO} = Open,	Switch ON,	25°C	261/	-0.1	0.1			
ON leakage current	COM(ON)	$V_{COM} = 0$ to V_+ ,	See Figure 14	Full	3.0 V	-1	1	μΑ		
Digital Control Input	s (IN1, IN2)	(2)								
Input logic high	V _{IH}			Full		$V_{+} \times 0.7$	5.5	V		
Input logic low	VIL			Full		0	$V_{+} \times 0.3$	V		
Input leakage			25°C		-1	0.1	μA			
current	ι _Η , ι _Γ	vi = 5.5 v 0i 0		Full	3.0 V		1	μΑ		

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

 (2) All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

ELECTRICAL CHARACTERISTICS FOR 3.3-V SUPPLY (continued)

 V_{\star} = 3 V to 3.6 V, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CO	ONDITIONS	T _A	V.	MIN	TYP	MAX	UNIT
Dynamic		·							
		$V_{NO} = V_{+} \text{ or}$	$C_{\rm L} = 50 \rm pF$	25°C	3.3 V	2		9.5	
Turn-on time	t _{ON}	GND, R _L = 500 Ω,	See Figure 16	Full	3 V to 3.6 V	2		11	ns
	_	$V_{NO} = V_{+}$ or	$C_{L} = 50 \text{ pF}.$	25°C	3.3 V	1.3		5.1	
I urn-off time	tOFF	GND, R _L = 500 Ω,	See Figure 16	Full	3 V to 3.6 V	1.5		5.5	ns
Break-before-	t	$V_{NO} = V_+,$	C _L = 50 pF,	25°C	3.3 V	0.5			nc
make time	⁴ BBM	$R_L = 50 \Omega$,	See Figure 17	Full	3 V to 3.6 V	0.5			115
Charge injection	Q _C	V _{GEN} = 0, C _L = 0.1 nF,	See Figure 21	25°C	3.3 V		1.75		рС
NO OFF capacitance	C _{NO(OFF)}	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 15	25°C	3.3 V		4.5		pF
COM OFF capacitance	C _{COM(OFF)}	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 15	25°C	3.3 V		10.5		pF
NO ON capacitance	C _{NO(ON)}	V _{NO} = V ₊ or GND, Switch ON,	See Figure 15	25°C	3.3 V		17		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 15	25°C	3.3 V		17		pF
Digital input capacitance	CI	$V_I = V_+ \text{ or GND},$	See Figure 15	25°C	3.3 V		3		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	3 V to 3.6 V		327		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 10 MHz,	Switch OFF, See Figure 19	25°C	3 V to 3.6 V		-82		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, See Figure 20	25°C	3 V to 3.6 V		-62		dB
Supply									
Positive supply	Positive supply		Switch ON or OFF	25°C	361/			1	
current	'+	$v_1 = v_+ \text{ or GND},$	Switch ON OFF	Full	5.0 v			10	μл

6

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

ELECTRICAL CHARACTERISTICS FOR 2.5-V SUPPLY⁽¹⁾

 V_{\star} = 2.3 V to 2.7 V, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CO	ONDITIONS	T _A	۷,	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	V_{COM}, V_{NO}					0		V ₊	V
Peak ON resistance	r _{peak}	$\begin{array}{l} 0 \leq V_{\rm NO} \leq V_+, \\ I_{\rm COM} = -8 \ {\rm mA}, \end{array}$	Switch ON, See Figure 13	Full	2.3 V			50	Ω
		$V_{NO} = 0 V,$		25°C			8	12	
ON-state	r	I _{COM} = 8 mA	Switch ON,	Full	221/			12	0
resistance	Ion	$V_{NO} = 2.3 V,$ $I_{COM} = -8 mA$	See Figure 13	25°C	2.3 V		11	30	12
				Full				30	
ON-state resistance match between channels	∆r _{on}	V _{NO} = 1.8 V, I _{COM} = -8 mA,	Switch ON, See Figure 13	25°C	2.3 V		0.3		Ω
ON-state resistance flatness	r _{on(flat)}	$\begin{array}{l} 0 \leq V_{\rm NO} \leq V_{+}, \\ I_{\rm COM} = -8 \ {\rm mA}, \end{array}$	Switch ON, See Figure 13	25°C	2.5 V		39		Ω
NO		$V_{\rm No} = 0$ to V	Switch OFF	25°C		-0.1		0.1	μA
OFF leakage current	I _{NO(OFF)}	$V_{\text{COM}} = V_+ \text{ to } 0$	See Figure 14	Full	2.7 V	-1		1	
COM		$V_{COM} = 0$ to V_{+} .	Switch OFF.	25°C	0714	-0.1		0.1	
OFF leakage current	ICOM(OFF)	$V_{\rm NO} = V_+$ to 0,	See Figure 14	Full	2.7 V	-1		1	μΑ
NO		$V_{NO} = 0$ to V_{+} .	Switch ON.	25°C	071	-0.1		0.1	
ON leakage current	I _{NO(ON)}	$V_{COM} = V_+$ to 0,	See Figure 14	Full	2.7 V	-1		1	μΑ
COM		V _{NO} = Open.	Switch ON.	25°C	\ /	-0.1		0.1	
ON leakage current	I _{COM(ON)}	$V_{COM} = 0$ to V_+ ,	See Figure 14	Full	2.7 V	-1		1	μA
Digital Control Inp	uts (IN1, IN2) ⁽²⁾							
Input logic high	VIH			Full		$V_{+} imes 0.75$		5.5	V
Input logic low	V _{IL}			Full		0		$V_{\text{+}} \times 0.25$	V
Input leakage	I_{IH}, I_{IL} $V_{I} = 5.5 V \text{ or } 0$		25°C	2.7 V			0.1	μA	
current		$V_1 = 5.5 V \text{ or } 0$		Full	2.1 V			1	· ·

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

 (2) All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

ELECTRICAL CHARACTERISTICS FOR 2.5-V SUPPLY (continued)

 V_{+} = 2.3 V to 2.7 V, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CO	NDITIONS	TA	V.	MIN	TYP	MAX	UNIT
Dynamic									
		$V_{NO} = V_{+} \text{ or}$	$C_{\rm L} = 50 \rm pF$	25°C	2.5 V	3		15	
Turn-on time	t _{ON}	GND, R _L = 500 Ω,	See Figure 16	Full	2.3 V to 2.7 V	3		16.5	ns
		$V_{NO} = V_{+}$ or	$C_{L} = 50 \text{ pF}.$	25°C	2.5 V	2		7.2	
Turn-off time	t _{OFF}	GND, R _L = 500 Ω,	See Figure 16	Full	2.3 V to 2.7 V	2		7.8	ns
Break-before-	4	$V_{NO} = V_+,$	C _L = 50 pF,	25°C	2.5 V	0.5			20
make time	^I BBM	$R_L = 50 \Omega$,	See Figure 17	Full	2.3 V to 2.7 V	0.5			115
Charge injection	Q _C	V _{GEN} = 0, C _L = 0.1 nF,	See Figure 21	25°C	2.5 V		1.15		рС
NO OFF capacitance	$C_{NO(OFF)}$	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 15	25°C	2.5 V		4.5		pF
COM OFF capacitance	C _{COM(OFF)}	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 15	25°C	2.5 V		10.5		pF
NO ON capacitance	C _{NO(ON)}	$V_{NO} = V_+ \text{ or}$ GND, Switch ON,	See Figure 15	25°C	2.5 V		17		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 15	25°C	2.5 V		17		pF
Digital input capacitance	CI	$V_1 = V_+ \text{ or GND},$	See Figure 15	25°C	2.5 V		3		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	2.3 V to 2.7 V		320		MHz
OFF isolation	O _{ISO}	$\begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 10 \ MHz, \end{array}$	Switch OFF, See Figure 19	25°C	2.3 V to 2.7 V		-81		dB
Crosstalk	X _{TALK}	$\begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 10 \ MHz, \end{array}$	Switch ON, See Figure 20	25°C	2.3 V to 2.7 V		-61		dB
Supply									
Positive supply			Switch ON or	25°C	271			1	
current	'+	$v_1 = v_+ \text{ or GND},$	OFF	Full	2.1 V			10	μΛ

8

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

ELECTRICAL CHARACTERISTICS FOR 1.8-V SUPPLY⁽¹⁾

 $V_{+} = 1.65$ V to 1.95 V, $T_{A} = -40^{\circ}$ C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CO	ONDITIONS	TA	٧,	MIN	TYP	MAX	UNIT
Analog Switch		·				·			
Analog signal range	V _{COM} , V _{NO}					0		V ₊	V
Peak ON resistance	r _{peak}	$0 \le V_{NO} \le V_+,$ $I_{COM} = -4 \text{ mA},$	Switch ON, See Figure 13	Full	1.65 V			150	Ω
		$V_{NO} = 0 V,$		25°C			10	20	
ON-state	r	$I_{COM} = 4 \text{ mA}$	Switch ON,	Full	1.65.\/			20	0
resistance	on	$V_{NO} = 1.8 V,$	See Figure 13	25°C	1.05 V		17	50	12
		$I_{COM} = -4 \text{ mA}$		Full				50	
ON-state resistance match between channels	Δr _{on}	V _{NO} = 1.15 V, I _{COM} = -4 mA,	Switch ON, See Figure 13	25°C	1.65 V		0.3		Ω
ON-state resistance flatness	r _{on(flat)}	$\begin{array}{l} 0 \leq V_{\rm NO} \leq V_{+}, \\ I_{\rm COM} = -4 \ {\rm mA}, \end{array}$	Switch ON, See Figure 13	25°C	1.8 V		140		Ω
NO	_	$V_{NO} = 0$ to V_{L}	Switch OFF.	25°C		-0.1		0.1	
OFF leakage current	I _{NO(OFF)}	$V_{COM} = V_+$ to 0	See Figure 14	Full	1.95 V	-1		1	μA
COM		$V_{COM} = 0$ to V_{+} .	Switch OFF.	25°C	4.05.14	-0.1		0.1	
OFF leakage current	ICOM(OFF)	$V_{NO} = V_+$ to 0,	See Figure 14	Full	1.95 V	-1		1	μA
NO		$V_{NO} = 0$ to V_{L}	Switch ON.	25°C		-0.1		0.1	
ON leakage current	I _{NO(ON)}	$V_{COM} = V_+$ to 0,	See Figure 14	Full	1.95 V	-1		1	μA
COM		V _{NO} = Open.	Switch ON.	25°C		-0.1		0.1	
ON leakage current	I _{COM(ON)}	$V_{COM} = 0$ to V_+ ,	See Figure 14	Full	1.95 V	-1		1	μA
Digital Control Inp	uts (IN1, IN2) ⁽²⁾							
Input logic high	VIH			Full		$V_{+} imes 0.75$		5.5	V
Input logic low	V _{IL}			Full		0		$V_{\text{+}} \times 0.25$	V
Input leakage	iput leakage $l_{\rm H}$ $l_{\rm H}$ $V_{\rm r}$ = 5.5 V or 0	:	25°C	1 95 V			0.1	ıιΔ	
current	surrent			Full	1.35 V			1	μΛ

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

 (2) All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

ELECTRICAL CHARACTERISTICS FOR 1.8-V SUPPLY (continued)

 V_{+} = 1.65 V to 1.95 V, T_{A} = $-40^{\circ}C$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	T _A	۷.	MIN	TYP	MAX	UNIT	
Dynamic		1							
Turn-on time		$V_{NO} = V_{+} \text{ or GND},$ $R_{L} = 500 \Omega,$	C _L = 50 pF, See Figure 16	25°C	1.8 V	5		32	
	t _{ON}			Full	1.65 V to 1.95 V	5		34	ns
		$V_{NO} = V_{+} \text{ or GND},$ $R_{L} = 500 \Omega,$	C _L = 50 pF, See Figure 16	25°C	1.8 V	3		14	
Turn-off time	t _{OFF}			Full	1.65 V to 1.95 V	3		14.5	ns
Dreek hefere			0 50 -5	25°C	1.8 V	0.5			
Break-before- make time	$v_{\rm NO} = v_+,$ $R_{\rm L} = 50 \ \Omega,$	C _L = 50 pF, See Figure 17	Full	1.65 V to 1.95 V	0.5			ns	
Charge injection	Q _C	$V_{GEN} = 0,$ $C_L = 0.1 \text{ nF},$	See Figure 21	25°C	1.8 V		0.3		рС
NO OFF capacitance	C _{NO(OFF)}	$V_{NO} = V_{+} \text{ or GND},$ Switch OFF,	See Figure 15	25°C	1.8 V		4.5		pF
COM OFF capacitance	C _{COM(OFF)}	$V_{NO} = V_{+} \text{ or GND},$ Switch OFF,	See Figure 15	25°C	1.8 V		10.5		pF
NO ON capacitance	C _{NO(ON)}	$V_{NO} = V_{+} \text{ or GND},$ Switch ON,	See Figure 15	25°C	1.8 V		17		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 15	25°C	1.8 V		17		pF
Digital input capacitance	CI	$V_I = V_+ \text{ or } GND,$	See Figure 15	25°C	1.8 V		3		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	1.65 V to 1.95 V		341		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 10 MHz,	Switch OFF, See Figure 19	25°C	1.65 V to 1.95 V		81		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega,$ f = 10 MHz,	Switch ON, See Figure 20	25°C	1.65 V to 1.95 V		-61		dB
Supply	<u>u</u>			•					
Positive supply	1	$V_I = V_+$ or GND,	Switch ON or OFF	25°C	1.05.1/			1	
current	I ₊			Full	1.95 V			10	μА

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

TYPICAL PERFORMANCE

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

TYPICAL PERFORMANCE (continued)

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

PIN DESCRIPTION

PIN NO.	NAME	DESCRIPTION
1	NO0	Normally open
2	NO1	Normally open
3	NO2	Normally open
4	GND	Digital ground
5	IN2	Digital control to connect COM to NO
6	IN1	Digital control to connect COM to NO
7	COM	Common
8	V ₊	Power supply

PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION						
V _{COM}	Voltage at COM						
V _{NO}	Voltage at NO						
r _{on}	Resistance between COM and NC or COM and NO ports when the channel is ON						
r _{peak}	Peak on-state resistance over a specified voltage range						
∆r _{on}	Difference of r _{on} between channels in a specific device						
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions						
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state						
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open						
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the ON state and the output (NC or NO) open						
I _{COM(OFF)}	Leakage current measured at the COM port during the power-down condition, $V_{+} = 0$						
V _{IH}	Minimum input voltage for logic high for the control input (IN)						
VIL	Maximum input voltage for logic low for the control input (IN)						
VI	Voltage at the control input (IN)						
I _{IH} , I _{IL}	Leakage current measured at the control input (IN)						
t _{ON}	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON.						
t _{OFF}	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF.						
t _{BBM}	Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state.						
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance and ΔV_{COM} is the change in analog output voltage.						
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF						
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON						
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NO) is ON						
C _{COM(OFF)}	Capacitance at the COM port when the corresponding channel (COM to NO) is OFF						
Cl	Capacitance of control input (IN)						
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state.						
X _{TALK}	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB.						
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.						
I+	Static power-supply current with the control (IN) pin at V ₊ or GND						

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

Figure 13. ON-State Resistance (ron)

Figure 14. ON- and OFF-State Leakage Current (I_{COM(ON)}, I_{COM(OFF)}, I_{NO(ON)}, I_{NO(OFF)})

RUMENTS

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

PARAMETER MEASUREMENT INFORMATION (continued)

- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- B. C_L includes probe and jig capacitance.

- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- B. C_L includes probe and jig capacitance.

Figure 17. Break-Before-Make Time (t_{BBM})

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 18. Bandwidth (BW)

Figure 19. OFF Isolation (O_{ISO})

Figure 20. Crosstalk (X_{TALK})

SCDS177A-OCTOBER 2004-REVISED DECEMBER 2007

PARAMETER MEASUREMENT INFORMATION (continued)

A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.

B. C_L includes probe and jig capacitance.

Figure 21. Charge Injection (Q_c)

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A3357DCUR	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
TS5A3357DCURG4	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Nov-2017

*All dimensions are nominal

Device Package Type		Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TS5A3357DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0	
TS5A3357DCURG4	VSSOP	DCU	8	3000	202.0	201.0	28.0	

DCU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

D. Falls within JEDEC MO-187 variation CA.

- NOTES: A. All linear dimensions are in millimeters. В. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated