

MSP430FR2311, MSP430FR2310

SLASE58C - FEBRUARY 2016-REVISED SEPTEMBER 2017

MSP430FR231x Mixed-Signal Microcontrollers

Device Overview

1.1 **Features**

- **Embedded Microcontroller**
 - 16-Bit RISC Architecture up to 16 MHz
 - Wide Supply Voltage Range From 1.8 V to 3.6 V (1)
- Optimized Low-Power Modes (at 3 V)
 - Active Mode: 126 μA/MHz
 - Standby: Real-Time Clock (RTC) Counter (LPM3.5 With 32768-Hz Crystal): 0.71 µA
 - Shutdown (LPM4.5): 32 nA Without SVS
- · High-Performance Analog
 - Transimpedance Amplifier (TIA) (2)
 - Current-to-Voltage Conversion
 - Half-Rail Input
 - Low-Leakage Negative Input Down to 5 pA, Enabled on TSSOP16 Package Only
 - Rail-to-Rail Output
 - Multiple Input Selections
 - Configurable High-Power and Low-Power
 - 8-Channel 10-Bit Analog-to-Digital Converter (ADC)
 - Internal 1.5-V Reference
 - Sample-and-Hold 200 ksps
 - Enhanced Comparator (eCOMP)
 - Integrated 6-Bit Digital-to-Analog Converter (DAC) as Reference Voltage
 - Programmable Hysteresis
 - Configurable High-Power and Low-Power Modes
 - Smart Analog Combo (SAC-L1)
 - Supports General-Purpose Op Amp
 - Rail-to-Rail Input and Output
 - Multiple Input Selections
 - Configurable High-Power and Low-Power Modes
- Low-Power Ferroelectric RAM (FRAM)
 - Up to 3.75KB of Nonvolatile Memory
 - Built-In Error Correction Code (ECC)
 - Configurable Write Protection
 - Unified Memory of Program, Constants, and Storage
- (1) Operation voltage is restricted by SVS levels (see V_{SVSH} and
- V_{SVSH+} in Power Supply Sequencing). The transimpedance amplifier was originally given an abbreviation of TRI in descriptive text, pin names, and register names. The abbreviation has changed to TIA in all descriptive text, but pin names and register names still use TRI.

- 10¹⁵ Write Cycle Endurance
- Radiation Resistant and Nonmagnetic
- Intelligent Digital Peripherals
 - IR Modulation Logic
 - Two 16-Bit Timers With Three Capture/Compare Registers Each (Timer_B3)
 - One 16-Bit Counter-Only RTC Counter
 - 16-Bit Cyclic Redundancy Checker (CRC)
- **Enhanced Serial Communications**
 - Enhanced USCI A (eUSCI_A) Supports UART, IrDA, and SPI
 - Enhanced USCI B (eUSCI_B) Supports SPI and I²C With Support for New Remap Feature (See Signal Descriptions)
- Clock System (CS)
 - On-Chip 32-kHz RC Oscillator (REFO)
 - On-Chip 16-MHz Digitally Controlled Oscillator (DCO) With Frequency Locked Loop (FLL)
 - ±1% Accuracy With On-Chip Reference at Room Temperature
 - On-Chip Very Low-Frequency 10-kHz Oscillator (VLO)
 - On-Chip High-Frequency Modulation Oscillator (MODOSC)
 - External 32-kHz Crystal Oscillator (LFXT)
 - External High-Frequency Crystal Oscillator up to 16 MHz (HFXT)
 - Programmable MCLK Prescalar of 1 to 128
 - SMCLK Derived From MCLK With Programmable Prescalar of 1, 2, 4, or 8
- General Input/Output and Pin Functionality
 - 16 I/Os on 20-Pin Package
 - 12 Interrupt Pins (8 Pins of P1 and 4 Pins of P2) Can Wake MCU From LPMs
 - All I/Os are Capacitive Touch I/Os
- Development Tools and Software
 - LaunchPad™ Development Kit (MSP-EXP430FR2311)
 - Target Development Board (MSP-TS430PW20)
- Family Members (Also See Device Comparison)
 - MSP430FR2311: 3.75KB of Program FRAM + 1KB of RAM
 - MSP430FR2310: 2KB of Program FRAM + 1KB of RAM

Package Options

20-Pin: TSSOP (PW20)16-Pin: TSSOP (PW16)16-Pin: VQFN (RGY16)

 For Complete Module Descriptions, See the MSP430FR4xx and MSP430FR2xx Family User's Guide

1.2 Applications

- Smoke Detectors
- Power Banks
- · Portable Health and Fitness

- Power Monitoring
- Personal Electronics

1.3 Description

The MSP430FR231x FRAM microcontrollers (MCUs) are part of the MSP430™ MCU value line sensing family. The devices integrate a configurable low-leakage transimpedance amplifier (TIA) and a general purpose operational amplifier. The MCUs feature a powerful 16-bit RISC CPU, 16-bit registers, and a constant generator that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) also allows the device to wake up from low-power modes to active mode typically in less than 10 µs. The feature set of these MCUs are well suited for applications ranging from smoke detectors to portable health and fitness accessories.

The ultra-low-power MSP430FR231x MCU family consists of several devices that feature embedded nonvolatile FRAM and different sets of peripherals targeted for various sensing and measurement applications. The architecture, FRAM, and peripherals, combined with extensive low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a nonvolatile memory technology that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash at lower total power consumption.

The MSP430FR231x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include the MSP-EXP430FR2311 LaunchPad[™] development kit and the MSP-TS430PW20 20-pin target development board. TI provides free MSP430Ware[™] software, which is available as a component of Code Composer Studio[™] IDE desktop and cloud versions within TI Resource Explorer. The MSP430 MCUs are also supported by extensive online collateral, training, and online support through the E2E[™] Community Forum.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE ⁽²⁾	
MSP430FR2311IPW20	TSSOB (20)	6.5 mm × 4.4 mm	
MSP430FR2310IPW20	TSSOP (20)	6.5 mm × 4.4 mm	
MSP430FR2311IPW16	TCCOD (46)	E mm 4.4 mm	
MSP430FR2310IPW16	TSSOP (16)	5 mm × 4.4 mm	
MSP430FR2311IRGY	VOEN (40)	4 25	
MSP430FR2310IRGY	VQFN (16)	4 mm × 3.5 mm	

⁽¹⁾ For the most current part, package, and ordering information, see the *Package Option Addendum* in Section 9, or see the TI website at www.ti.com.

⁽²⁾ The sizes shown here are approximations. For the package dimensions with tolerances, see the *Mechanical Data* in Section 9.

CAUTION

System-level ESD protection must be applied in compliance with the device-level ESD specification to prevent electrical overstress or disturbing of data or code memory. See $MSP430^{TM}$ System-Level ESD Considerations for more information.

1.4 Functional Block Diagram

Figure 1-1 shows the functional block diagram.

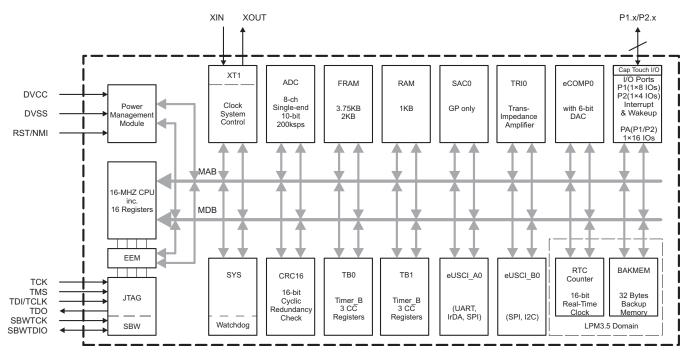


Figure 1-1. MSP430FR231x Block Diagram

- The MCU has one main power pair of DVCC and DVSS that supplies digital and analog modules. Recommended bypass and decoupling capacitors are 4.7 μF to 10 μF and 0.1 μF, respectively, with ±5% accuracy.
- All 8 pins of P1 and 4 pins of P2 feature the pin-interrupt function and can wake the MCU from all LPMs, including LPM4, LPM3.5, and LPM4.5.
- Each Timer_B3 has three capture/compare registers. Only CCR1 and CCR2 are externally connected. CCR0 registers can be used only for internal period timing and interrupt generation.
- In LPM3.5, the RTC counter and Backup memory can be functional while the rest of peripherals are
 off
- All general-purpose I/Os can be configured as capacitive touch I/Os.

Table of Contents

1	Devi	ce Overview	. <u>1</u>	6	Deta	illed Description	4:
	1.1	Features	. 1		6.1	Overview	4
	1.2	Applications	. 2		6.2	CPU	4
	1.3	Description	. 2		6.3	Operating Modes	4:
	1.4	Functional Block Diagram	. 3		6.4	Interrupt Vector Addresses	4
2	Revi	sion History	5		6.5	Memory Organization	4
3		ce Comparison	_		6.6	Bootloader (BSL)	
	3.1	Related Products	_		6.7	JTAG Standard Interface	
4	Tern	ninal Configuration and Functions	7		6.8	Spy-Bi-Wire Interface (SBW)	4
	4.1	Pin Diagrams	_		6.9	FRAM	
	4.2	Pin Attributes	10		6.10	Memory Protection	4
	4.3	Signal Descriptions	12		6.11	Peripherals	
	4.4	Pin Multiplexing	14		6.12	Input/Output Diagrams	6
	4.5	Buffer Type	_		6.13	Device Descriptors (TLV)	
	4.6	Connection of Unused Pins	14		6.14	Identification	7
5	Spec	cifications	15	7	App	lications, Implementation, and Layout	7:
	5.1	Absolute Maximum Ratings	15		7.1	Device Connection and Layout Fundamentals	
	5.2	ESD Ratings	15		7.2	Peripheral- and Interface-Specific Design	
	5.3	Recommended Operating Conditions	<u></u> 15			Information	7
	5.4	Active Mode Supply Current Into V _{CC} Excluding	_		7.3	Typical Applications	7
		External Current	<u>16</u>	8	Devi	ice and Documentation Support	7
	5.5	Active Mode Supply Current Per MHz	<u>16</u>		8.1	Getting Started and Next Steps	7
	5.6	Low-Power Mode LPM0 Supply Currents Into V_{CC}			8.2	Device Nomenclature	7
		Excluding External Current	<u>16</u>		8.3	Tools and Software	7
	5.7	Low-Power Mode LPM3 and LPM4 Supply Currents (Into V _{CC}) Excluding External Current			8.4	Documentation Support	8
	5.8	Production Distribution of LPM3 Supply Currents			8.5	Related Links	8
	5.9	Low-Power Mode LPMx.5 Supply Currents (Into	17		8.6	Community Resources	82
	0.0	V _{CC}) Excluding External Current	18		8.7	Trademarks	8
	5.10	Production Distribution of LPMx.5 Supply Currents	18		8.8	Electrostatic Discharge Caution	8
	5.11	Typical Characteristics – Current Consumption Per			8.9	Glossary	8
		Module	<u>18</u>	9		hanical, Packaging, and Orderable	
	5.12	Thermal Resistance Characteristics	<u>19</u>		Info	rmation	8
	5.13	Timing and Switching Characteristics	20				

2 Revision History

Chang	es from June 1, 2016 to September 11, 2017	age
•	Corrected the current in the "Shutdown (LPM4.5)" Features list item	. 1
•	Low-leakage improved from 50pA to 5pA based on test data	. 1
•	Added Section 3.1, Related Products	_
•	Removed ADCDIV from the formula for the TYP value in the second row of the t _{CONVERT} parameter in Table 5-	_
	21, ADC, 10-Bit Timing Parameters (removed because ADCCLK is after division)	35
•	Changed the entries for eUSCI_A0 and eUSCI_B0 in the LPM3 column from Off to Optional in Table 6-1,	
	Operating Modes	<u>44</u>
•	Added the sentence that begins "This device supports blank device detection" in Section 6.6, Bootloader (BSL)	46
•	Added the note "Controlled by the RTCCLK bit in the SYSCFG2 register" on Table 6-8, Clock Distribution	49
•	Added Figure 6-1, Clock Distribution Block Diagram	49
•	Added Figure 6-1, Clock Distribution Block Diagram	53
•	Removed SYSBERRIV register (not supported) in Table 6-26, SYS Registers	62
•	Changed from "If the RST/NMI pin is unusedwith a 2.2-nF pulldown capacitor" to "If the RST/NMI pin is	
	unusedwith a 10-nF pulldown capacitor"	74

3 Device Comparison

Table 3-1 summarizes the features of the available family members.

Table 3-1. Device Comparison⁽¹⁾ (2)

DEVICE	PROGRAM FRAM (KB)	SRAM (Bytes)	TB0, TB1	eUSCI_A	eUSCI_B	10-BIT ADC CHANNELS	SAC0 (OA)	TIA0	eCOMP0	1/0	PACKAGE
MSP430FR2311IPW20	3.75	1024	3 CCR (3)	1	1	8	1	1	1	16	20 PW (TSSOP)
MSP430FR2310IPW20	2	1024	3 CCR ⁽³⁾	1	1	8	1	1	1	16	20 PW (TSSOP)
MSP430FR2311IPW16	3.75	1024	3 CCR ⁽³⁾⁽⁴⁾	1	1	8	1	1	1	11	16 PW (TSSOP)
MSP430FR2310IPW16	2	1024	3 CCR ⁽³⁾⁽⁴⁾	1	1	8	1	1	1	11	16 PW (TSSOP)
MSP430FR2311IRGY	3.75	1024	3 CCR ⁽³⁾	1	1	8	1	1	1	12	16 RGY (VQFN)
MSP430FR2310IRGY	2	1024	3 CCR ⁽³⁾	1	1	8	1	1	1	12	16 RGY (VQFN)

⁽¹⁾ For the most current device, package, and ordering information, see the *Package Option Addendum* in Section 9, or see the TI website at www.ti.com.

3.1 Related Products

For information about other devices in this family of products or related products, see the following links.

Microcontroller (MCU) Product Selection TI's low-power and high-performance MCUs, with wired and wireless connectivity options, are optimized for a broad range of applications.

Products for MSP430 Ultra-Low-Power MCUs One platform. One ecosystem. Endless possibilities. Enabling the connected world with innovations in ultra-low-power microcontrollers with advanced peripherals for precise sensing and measurement

Products for MSP430FRxx FRAM Microcontrollers 16-bit microcontrollers for ultra-low-power sensing and system management in building automation, smart grid, and industrial designs.

Companion Products for MSP430FR2311 Review products that are frequently purchased or used with this product.

Reference Designs for MSP430FR2311 The TI Designs Reference Design Library is a robust reference design library that spans analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at ti.com/tidesigns.

⁽²⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.

⁽³⁾ A CCR register is a configurable register that provides internal and external capture or compare inputs, or internal and external PWM outputs.

⁽⁴⁾ TB1 provides only one external connection (TB1.1) on this package type.

4 Terminal Configuration and Functions

4.1 Pin Diagrams

Figure 4-1 shows the pinout of the 20-pin PW package.

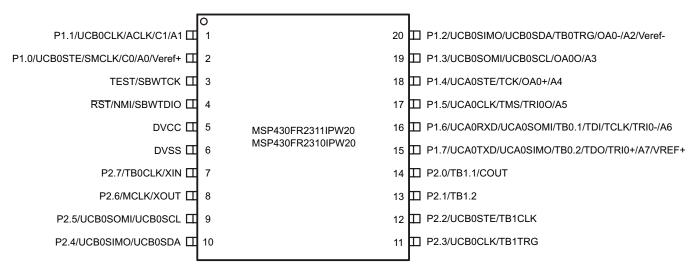


Figure 4-1. 20-Pin PW (TSSOP) (Top View)

Figure 4-2 shows the pinout of the 16-pin RGY package.

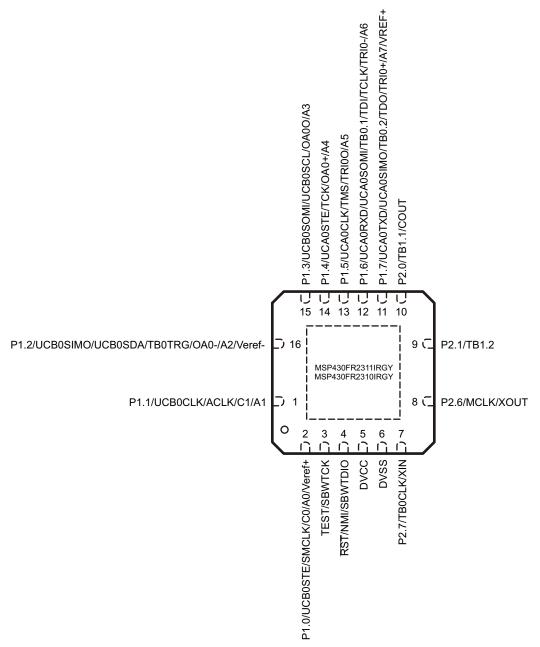


Figure 4-2. 16-Pin RGY (VQFN) (Top View)

Figure 4-3 shows the pinout of the 16-pin PW package.

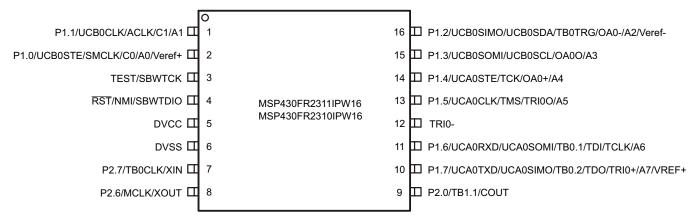


Figure 4-3. 16-Pin PW (TSSOP) (Top View)

4.2 **Pin Attributes**

Table 4-1 lists the attributes of all pins.

Table 4-1. Pin Attributes

PIN NUMBER		(1) (2)	SIGNAL	(0)		RESET STATE						
PW20	RGY	PW16	SIGNAL NAME ⁽¹⁾ (2)	TYPE ⁽³⁾	BUFFER TYPE ⁽⁴⁾	POWER SOURCE	AFTER BOR ⁽⁵⁾					
			P1.1 (RD)	I/O	LVCMOS	DVCC	OFF					
			UCB0CLK	I/O	LVCMOS	DVCC	N/A					
1	1	1	ACLK	0	LVCMOS	DVCC	N/A					
			C1	1	Analog	DVCC	N/A					
			A1	1	Analog	DVCC	N/A					
			P1.0 (RD)	I/O	LVCMOS	DVCC	OFF					
			UCB0STE	I/O	LVCMOS	DVCC	N/A					
	•		SMCLK	0	LVCMOS	DVCC	N/A					
2	2	2	C0	I	Analog	DVCC	N/A					
			A0	I	Analog	DVCC	N/A					
		Veref+	I	Power	DVCC	N/A						
			TEST (RD)	I	LVCMOS	DVCC	OFF					
3	3	3	SBWTCK	I	LVCMOS	DVCC	N/A					
			RST (RD)	I/O	LVCMOS	DVCC	OFF					
4	4 4	4	4	4	4	4 4	4	NMI	I	LVCMOS	DVCC	N/A
			SBWTDIO	I/O	LVCMOS	DVCC	N/A					
5	5	5	DVCC	Р	Power	DVCC	N/A					
6	6	6	DVSS	Р	Power	DVCC	N/A					
			P2.7 (RD)	I/O	LVCMOS	DVCC	OFF					
7	7	7	TB0CLK	I	LVCMOS	DVCC	N/A					
			XIN	I	LVCMOS	DVCC	N/A					
			P2.6 (RD)	I/O	LVCMOS	DVCC	OFF					
8	8	8	MCLK	0	LVCMOS	DVCC	N/A					
			XOUT	0	LVCMOS	DVCC	N/A					
			P2.5 (RD)	I/O	LVCMOS	DVCC	OFF					
9	_	_	UCB0SOMI	I/O	LVCMOS	DVCC	N/A					
			UCB0SCL	I/O	LVCMOS	DVCC	N/A					
			P2.4 (RD)	I/O	LVCMOS	DVCC	OFF					
10	_	_	UCB0SIMO	I/O	LVCMOS	DVCC	N/A					
			UCB0SDA	I/O	LVCMOS	DVCC	N/A					
			P2.3 (RD)	I/O	LVCMOS	DVCC	OFF					
11	_	_	UCB0CLK	I/O	LVCMOS	DVCC	N/A					
			TB1TRG	1	LVCMOS	DVCC	N/A					
			P2.2 (RD)	I/O	LVCMOS	DVCC	OFF					
12	-	-	UCB0STE	I/O	LVCMOS	DVCC	N/A					
			TB1CLK	I	LVCMOS	DVCC	N/A					
40			P2.1(RD)	I/O	LVCMOS	DVCC	OFF					
13	9	9	9	9	_	TB1.2	I/O	LVCMOS	DVCC	N/A		

Signals names with (RD) denote the reset default pin name.

To determine the pin mux encodings for each pin, see Section 6.12, Input/Output Diagrams. Signal Types: I = Input, O = Output, I/O = Input or Output.

Buffer Types: LVCMOS, Analog, or Power

Reset States:

OFF = High-impedance input with pullup or pulldown disabled (if available) N/A = Not applicable

Table 4-1. Pin Attributes (continued)

Р	PIN NUMBER		(1) (2)	SIGNAL			RESET STATE				
PW20	RGY	PW16	SIGNAL NAME ⁽¹⁾ (2)	TYPE ⁽³⁾	BUFFER TYPE ⁽⁴⁾	POWER SOURCE	AFTER BOR ⁽⁵⁾				
			P2.0 (RD)	I/O	LVCMOS	DVCC	OFF				
14	10	9	TB1.1	I/O	LVCMOS	DVCC	N/A				
			COUT	0	LVCMOS	DVCC	N/A				
			P1.7 (RD)	I/O	LVCMOS	DVCC	OFF				
			UCA0TXD	0	LVCMOS	DVCC	N/A				
			UCA0SIMO	I/O	LVCMOS	DVCC	N/A				
4.5	44	40	TB0.2	I/O	LVCMOS	DVCC	N/A				
15	11	10	TDO	0	LVCMOS	DVCC	N/A				
			TRI0+	I	Analog	DVCC	N/A				
			A7	I	Analog	DVCC	N/A				
			VREF+	0	Power	DVCC	N/A				
			P1.6 (RD)	I/O	LVCMOS	DVCC	OFF				
			UCA0RXD	I	LVCMOS	DVCC	N/A				
			UCA0SOMI	I/O	LVCMOS	DVCC	N/A				
4.0	40		TB0.1	I/O	LVCMOS	DVCC	N/A				
16	12	12	12	12	12	11	TDI	I	LVCMOS	DVCC	N/A
							TCLK	I	LVCMOS	DVCC	N/A
			TRI0- ⁽⁶⁾	I	Analog	DVCC	N/A				
			A6	I	Analog	DVCC	N/A				
-	-	12	TRI0-	I	Analog	DVCC	N/A				
			P1.5 (RD)	I/O	LVCMOS	DVCC	OFF				
			UCA0CLK	I/O	LVCMOS	DVCC	N/A				
17	13	13	TMS	I	LVCMOS	DVCC	N/A				
			TRI0O	0	Analog	DVCC	N/A				
				A5	I	Analog	DVCC	N/A			
			P1.4 (RD)	I/O	LVCMOS	DVCC	OFF				
			UCA0STE	I/O	LVCMOS	DVCC	N/A				
18	14	14	TCK	I	LVCMOS	DVCC	N/A				
			OA0+	I	Analog	DVCC	N/A				
			A4	I	Analog	DVCC	N/A				
			P1.3 (RD)	I/O	LVCMOS	DVCC	OFF				
			UCB0SOMI	I/O	LVCMOS	DVCC	N/A				
19	15	15	UCB0SCL	I/O	LVCMOS	DVCC	N/A				
			OA0O	0	Analog	DVCC	N/A				
			A3	I	Analog	DVCC	N/A				
			P1.2 (RD)	I/O	LVCMOS	DVCC	OFF				
			UCB0SIMO	I/O	LVCMOS	DVCC	N/A				
			UCB0SDA	I/O	LVCMOS	DVCC	N/A				
20	16	16	TB0TRG	I	LVCMOS	DVCC	N/A				
			OA0-	I	Analog	DVCC	N/A				
			A2	I	Analog	DVCC	N/A				
			Veref-	I	Power	DVCC	N/A				

⁽⁶⁾ Not available on TSSOP-16 package

4.3 Signal Descriptions

Table 4-2 describes the signals for all device variants and package options.

Table 4-2. Signal Descriptions

FUNCTION	CICNIAL NAME	PIN	NUMB	ER	DIN TYPE	DESCRIPTION
FUNCTION	SIGNAL NAME	PW20	RGY	PW16	PIN TYPE	DESCRIPTION
	A0	2	2	2	I	Analog input A0
	A1	1	1	1	I	Analog input A1
	A2	20	16	16	I	Analog input A2
	A3	19	15	15	I	Analog input A3
ADC	A4	18	14	14	I	Analog input A4
ADC	A5	17	13	13	I	Analog input A5
	A6	16	12	11	I	Analog input A6
	A7	15	11	10	I	Analog input A7
	Veref+	2	2	2	I	ADC positive reference
	Veref-	20	16	16	I	ADC negative reference
	C0	2	2	2	I	Comparator input channel C0
eCOMP0	C1	1	1	1	I	Comparator input channel C1
	COUT	14	10	9	0	Comparator output channel COUT
	TRI0+	15	11	10	I	TIA0 positive input
TIA0	TRI0-	16	12	12	I	TIA0 negative input
	TRI0O	17	13	13	0	TIA0 output
	OA0+	18	14	14	I	SAC0, OA positive input
SAC0	OA0-	20	16	16	I	SAC0, OA negative input
	OA0O	19	15	15	0	SAC0, OA output
	ACLK	1	1	1	0	ACLK output
	MCLK	8	8	8	0	MCLK output
Clock	SMCLK	2	2	2	0	SMCLK output
	XIN	7	7	7	I	Input terminal for crystal oscillator
	XOUT	8	8	8	0	Output terminal for crystal oscillator
	SBWTCK	3	3	3	I	Spy-Bi-Wire input clock
	SBWTDIO	4	4	4	I/O	Spy-Bi-Wire data input/output
	TCK	18	14	14	I	Test clock
	TCLK	16	12	11	I	Test clock input
Debug	TDI	16	12	11	I	Test data input
	TDO	15	11	10	0	Test data output
	TMS	17	13	13	I	Test mode select
	TEST	3	3	3	I	Test Mode pin – selected digital I/O on JTAG pins
0	NMI	4	4	4	I	Nonmaskable interrupt input
System	RST	4	4	4	I/O	Reset input, active-low
	DVCC	5	5	5	Р	Power supply
Power	DVSS	6	6	6	Р	Power ground
	VREF+	15	11	10	Р	Output of positive reference voltage with ground as reference

Table 4-2. Signal Descriptions (continued)

		DII	N NUMB	FR	-		
FUNCTION	SIGNAL NAME	PW20	RGY	PW16	PIN TYPE	DESCRIPTION	
	P1.1	1	1	1	I/O	General-purpose I/O	
	P1.2	20	16	16	I/O	General-purpose I/O	
	P1.3	19	12	15	I/O	General-purpose I/O	
	P1.4	18	14	14	I/O	General-purpose I/O (1)	
	P1.5	17	13	13	I/O	General-purpose I/O (1)	
	P1.6	16	12	11	I/O	General-purpose I/O ⁽¹⁾	
	P1.7	15	11	10	I/O	General-purpose I/O ⁽¹⁾	
GPIO	P2.0	14	10	9	I/O	General-purpose I/O	
	P2.1	13	9	_	I/O	General-purpose I/O	
	P2.2	12	ı	_	I/O	General-purpose I/O	
	P2.3	11	-	_	I/O	General-purpose I/O	
	P2.4	10	-	_	I/O	General-purpose I/O	
	P2.5	9	ı	_	I/O	General-purpose I/O	
	P2.6	8	8	8	I/O	General-purpose I/O	
	P2.7	7	7	7	I/O	General-purpose I/O	
	UCB0SCL	19	15	15	I/O	eUSCI_B0 I ² C clock	
	UCB0SDA	20	16	16	I/O	eUSCI_B0 I ² C data	
I2C	UCB0SCL ⁽²⁾	9	-	_	I/O	eUSCI_B0 I ² C clock	
	UCB0SDA ⁽²⁾	10	-	_	I/O	eUSCI_B0 I ² C data	
	UCA0STE	18	14	14	I/O	eUSCI_A0 SPI slave transmit enable	
_	UCA0CLK	17	13	13	I/O	eUSCI_A0 SPI clock input/output	
	UCA0SOMI	16	12	11	I/O	eUSCI_A0 SPI slave out/master in	
	UCA0SIMO	15	11	10	I/O	eUSCI_A0 SPI slave in/master out	
	UCB0STE	2	2	2	I/O	eUSCI_B0 slave transmit enable	
SPI	UCB0CLK	1	1	1	I/O	eUSCI_B0 clock input/output	
SFI	UCB0SIMO	20	16	16	I/O	eUSCI_B0 SPI slave in/master out	
	UCB0SOMI	19	15	15	I/O	eUSCI_B0 SPI slave out/master in	
	UCB0STE ⁽²⁾	12	_	_	I/O	eUSCI_B0 slave transmit enable	
	UCB0CLK ⁽²⁾	11	-	_	I/O	eUSCI_B0 clock input/output	
	UCB0SIMO ⁽²⁾	10	-	_	I/O	eUSCI_B0 SPI slave in/master out	
	UCB0SOMI ⁽²⁾	9	-	_	I/O	eUSCI_B0 SPI slave out/master in	
UART	UCA0RXD	16	12	11	I	eUSCI_A0 UART receive data	
OAKT	UCA0TXD	15	11	10	0	eUSCI_A0 UART transmit data	
	TB0.1	16	12	11	I/O	Timer TB0 CCR1 capture: CCl1A input, compare: Out1 outputs	
	TB0.2	15	11	10	I/O	Timer TB0 CCR2 capture: CCl2A input, compare: Out2 outputs	
	TB0CLK	7	7	7	I	Timer clock input TBCLK for TB0	
Times D	TB0TRG	20	16	16	I	TB0 external trigger input for TB0OUTH	
Timer_B	TB1.1	14	10	9	I/O	Timer TB1 CCR1 capture: CCI1A input, compare: Out1 outputs	
	TB1.2	13	9	-	I/O	Timer TB1 CCR2 capture: CCI2A input, compare: Out2 outputs	
	TB1CLK	12	-	_	I	Timer clock input TBCLK for TB1	
	TB1TRG	11	-	-	I	TB1 external trigger input for TB1OUTH	

⁽¹⁾ Because this pin is multiplexed with the JTAG function, TI recommends disabling the pin interrupt function while in JTAG debug to prevent collisions.

prevent collisions.

(2) This is the remapped functionality controlled by the USCIBRMP bit of the SYSCFG2 register. Only one selected port is valid at any time.

Table 4-2. Signal Descriptions (continued)

FUNCTION	SIGNAL NAME	PII	NUMB	ER	PIN TYPE	DESCRIPTION
FUNCTION	SIGNAL NAME	PW20	RGY	PW16	PINITE	DESCRIPTION
VQFN Pad	VQFN Thermal pad	-	Pad	-		VQFN package exposed thermal pad. TI recommends connection to V_{SS} .

NOTE

Functions shared with the four JTAG pins cannot be debugged if 4-wire JTAG is used for debug.

4.4 Pin Multiplexing

Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the device is in test mode). For details of the settings for each pin and schematics of the multiplexed ports, see Section 6.12.

4.5 Buffer Type

Table 4-3 defines the pin buffer types that are listed in Table 4-1.

Table 4-3. Buffer Type

BUFFER TYPE (STANDARD)	NOMINAL VOLTAGE	HYSTERESIS	PU OR PD	NOMINAL PU OR PD STRENGTH (μA)	OUTPUT DRIVE STRENGTH (mA)	OTHER CHARACTERISTICS
LVCMOS	3.0 V	Y ⁽¹⁾	Programmable	See Section 5.13.4	See Section 5.13.4.1	
Analog	3.0 V	N	N	N/A	N/A	See analog modules in Section 5 for details.
Power (DVCC)	3.0 V	N	N	N/A	N/A	SVS enables hysteresis on DVCC.
Power (AVCC)	3.0 V	N	N	N/A	N/A	

⁽¹⁾ Only for input pins.

4.6 Connection of Unused Pins

Table 4-4 shows the correct termination of unused pins.

Table 4-4. Connection of Unused Pins⁽¹⁾

PIN	POTENTIAL	COMMENT
Px.0 to Px.7	Open	Set to port function, output direction (PxDIR.n = 1)
RST/NMI	DVCC	47-kΩ pullup or internal pullup selected with 10-nF (or 1.1-nF ⁽²⁾) pulldown
TEST	Open	This pin always has an internal pulldown enabled.
TRI0-	Open	This pin is a high-impedance output.

⁽¹⁾ Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection guidelines.

⁽²⁾ The pulldown capacitor should not exceed 1.1 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode with TI tools like FET interfaces or GANG programmers. TI recommends a 1-nF capacitor to enable high-speed SBW communication.

5 Specifications

5.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Voltage applied at DVCC pin to V _{SS}	-0.3	4.1	V
Voltage applied to any pin (2)	-0.3	V _{CC} + 0.3 (4.1 V Max)	V
Diode current at any device pin		±2	mA
Maximum junction temperature, T _J		85	°C
Storage temperature, T _{stg} ⁽³⁾	-40	125	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages referenced to V_{SS}.

5.2 ESD Ratings

			VALUE	UNIT
V	Flootroototic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±1000	\/
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±250	V

¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±1000 V may actually have higher performance.

5.3 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage applied at DVCC pin (1)(2)(3)		1.8		3.6	V
V_{SS}	Supply voltage applied at DVSS pin			0		V
T _A	Operating free-air temperature		-40		85	°C
TJ	Operating junction temperature		-40		85	°C
C _{DVCC}	Recommended capacitor at DVCC ⁽⁴⁾		4.7	10		μF
	Dunnan (3) (5)	No FRAM wait states (NWAITSx = 0)	0		8	MHz
f _{SYSTEM}	Processor frequency (maximum MCLK frequency) (3) (5)	With FRAM wait states (NWAITSx = 1) ⁽⁶⁾	0		16 ⁽⁷⁾	IVITZ
f _{ACLK}	Maximum ACLK frequency				40	kHz
f _{SMCLK}	Maximum SMCLK frequency				16 ⁽⁷⁾	MHz

- (1) Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset even within the recommended supply voltage range.
- (2) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.
- (3) The minimum supply voltage is defined by the SVS levels. See the SVS threshold parameters in Table 5-1.
- (4) Requires a capacitor tolerance of ±20% or better.
- (5) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
- (6) Wait states only occur on actual FRAM accesses (that is, on FRAM cache misses). RAM and peripheral accesses are always executed without wait states.
- (7) If clock sources such as HF crystals or the DCO with frequencies >16 MHz are used, the clock must be divided in the clock system to comply with this operating condition.

⁽³⁾ Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±250 V may actually have higher performance.

Active Mode Supply Current Into V_{CC} Excluding External Current⁽¹⁾

			FREQUENCY (f _{MCLK} = f _{SMCLK})							
PARAMETER	EXECUTION MEMORY	TEST CONDITIONS	1 MHz 0 WAIT STATES (NWAITSx = 0)		8 MHz 0 WAIT STATES (NWAITSx = 0)		16 MHz 1 WAIT STATE (NWAITSx = 1)		UNIT	
				TYP	MAX	TYP	MAX	TYP	MAX	
1 (00/)	FRAM	3.0 V, 25°C	474		2639		3156			
I _{AM, FRAM} (0%)	0% cache hit ratio	3.0 V, 85°C	516		2919		3205		μΑ	
(4000()	FRAM	3.0 V, 25°C	196		585		958			
I _{AM, FRAM} (100%)	100% cache hit ratio	3.0 V, 85°C	205		598		974		μA	
I _{AM, RAM} (2)	RAM	3.0 V, 25°C	219		750		1250		μΑ	

⁽¹⁾ All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current. Characterized with program executing typical data processing.

f_{ACLK} = 32768 Hz, f_{MCLK} = f_{SMCLK} = f_{DCO} at specified frequency
Program and data entirely reside in FRAM. All execution is from FRAM.

(2) Program and data reside entirely in RAM. All execution is from RAM. No access to FRAM.

Active Mode Supply Current Per MHz

 $V_{CC} = 3.0 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	TYP	UNIT
dl _{AM,FRAM} /df		[(I _{AM} 75% cache hit rate at 8 MHz) – (I _{AM} 75% cache hit rate at 1 MHz)] / 7 MHz	126	μΑ/MHz

⁽¹⁾ All peripherals are turned on in default settings.

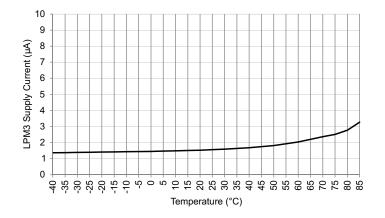
Low-Power Mode LPM0 Supply Currents Into V_{CC} Excluding External Current

 $V_{CC} = 3.0 \text{ V}, T_A = 25^{\circ}\text{C} \text{ (unless otherwise noted)}^{(1)}$

	V _{cc}	FREQUENCY (f _{SMCLK})						
PARAMETER		1 MHz		8 MHz		16 MHz		UNIT
		TYP	MAX	TYP	MAX	TYP	MAX	
	2.0 V	158		307		415		
LPM0	3.0 V	169		318		427		μA

 ⁽¹⁾ All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
 (2) Current for watchdog timer clocked by SMCLK included.

 f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} at specified frequency.


5.7 Low-Power Mode LPM3 and LPM4 Supply Currents (Into V_{CC}) Excluding External Current

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 5-1)

	DADAMETED	.,	-40	°C	25°	С	85°C		
	PARAMETER	V _{CC}	TYP	MAX	TYP	MAX	TYP	MAX	UNIT
	Low-power mode 3, includes SVS ⁽²⁾ (3) (4)	3.0 V	1.01		1.16		2.53	5.25	
ILPM3,XT1	Low-power mode 3, includes 5v3 (-7 (-7 (-7)	2.0 V	0.99		1.13		2.49		μA
l	Low power mode 2 VI O evaludes SVS (5)	3.0 V	0.88		1.02		2.39	5.06	
I _{LPM3,VLO}	Low-power mode 3, VLO, excludes SVS ⁽⁵⁾	2.0 V	0.86		1.00		2.35	μΑ	μA
I _{LPM3, RTC}	Low-power mode 3, RTC, excludes SVS ⁽⁶⁾	3.0 V	0.96		1.11		2.49		
		2.0 V	0.94		1.09		2.45		μA
	1	3.0 V	0.50		0.60		1.93		μA
I _{LPM4} , SVS	Low-power mode 4, includes SVS ⁽⁷⁾	2.0 V	0.48		0.59		1.91		
	Law account and A analysis CVC(7)	3.0 V	0.34		0.45		1.77		
I _{LPM4}	Low-power mode 4, excludes SVS ⁽⁷⁾	2.0 V	0.34		0.44		1.75		μA
	Low-power mode 4, RTC is sourced from VLO,	3.0 V	0.48		0.59		1.91		
I _{LPM4} , RTC, VLO	excludes SVS ⁽⁸⁾	2.0 V	0.48		0.58		1.89		μA
	Low-power mode 4, RTC is sourced from XT1,	3.0 V	0.89		1.04		2.41		μА
I _{LPM4} , RTC, XT1	excludes SVS ⁽⁶⁾⁽⁹⁾	2.0 V	0.88		1.02		2.38		

- All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current. Not applicable for devices with HF crystal oscillator only.
- (2)
- Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load.
- Low-power mode 3, includes SVS test conditions: Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),
- $f_{XT1} = 32768$ Hz, $f_{ACLK} = f_{XT1}$, $f_{MCLK} = f_{SMCLK} = 0$ MHz Low-power mode 3, VLO, excludes SVS test conditions: Current for watchdog timer clocked by VLO included. RTC disabled. Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), $f_{XT1} = 32768 \text{ Hz}, f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$
- RTC is sourced from external 32768-Hz crystal.
- CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), CPU and all clocks are disabled, WDT and RTC disabled
- Low-power mode 4, VLO, excludes SVS test conditions: Current for RTC clocked by VLO included. Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),
- ${\sf f}_{\sf XT1}=0$ Hz, ${\sf f}_{\sf MCLK}={\sf f}_{\sf SMCLK}=0$ MHz Low-power mode 4, XT1, excludes SVS test conditions: Current for RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), $f_{XT1} = 32768 \text{ Hz}, f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$

Production Distribution of LPM3 Supply Currents 5.8

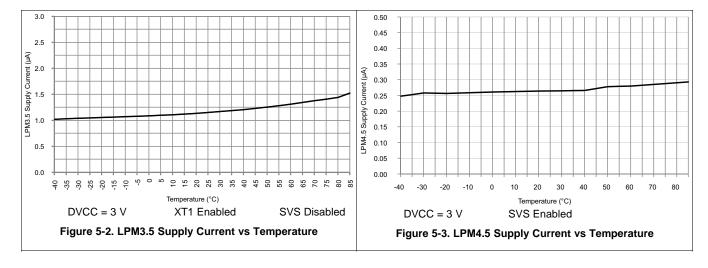
DVCC = 3 VRTC Enabled SVS Disabled

5.9 Low-Power Mode LPMx.5 Supply Currents (Into V_{cc}) Excluding External Current

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		−40°C		25°C		85°C		UNIT
	PARAMETER	V _{CC}	TYP	MAX	TYP	MAX	TYP	MAX	UNIT
I _{LPM3.5, XT1}	Low-power mode 3.5, includes SVS ⁽¹⁾ (2) (3) (also see Figure 5-2)	3.0 V	0.64		0.71		0.86	1.23	
		2.0 V	0.61		0.69		0.83		μΑ
	Low-power mode 4.5, includes SVS ⁽⁴⁾ (also see Figure 5-3)	3.0 V	0.23		0.25		0.30	0.45	
ILPM4.5, SVS		2.0 V	0.21		0.24		0.29		μΑ
	Low-power mode 4.5, excludes SVS ⁽⁵⁾	3.0 V	0.020		0.032		0.071	0.120	
ILPM4.5		2.0 V	0.022		0.034		0.068		μΑ

- (1) Not applicable for devices with HF crystal oscillator only.
- (2) Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load.
- (3) Low-power mode 3.5, includes SVS test conditions: Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), f_{XT1} = 32768 Hz, f_{ACLK} = f_{XT1}, f_{MCLK} = f_{SMCLK} = 0 MHz
- (4) Low-power mode 4.5, includes SVS test conditions:
 Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.
 PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),
- f_{XT1} = 0 Hz, f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0 MHz


 (5) Low-power mode 4.5, excludes SVS test conditions:

 Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.

 PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),

 f_{XT1} = 0 Hz, f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0 MHz

5.10 Production Distribution of LPMx.5 Supply Currents

5.11 Typical Characteristics – Current Consumption Per Module

MODULE	TEST CONDITIONS	REFERENCE CLOCK	MIN	TYP	MAX	UNIT
Timer_B	SMCLK = 8 MHz, MC = 10b	Module input clock		5		µA/MHz
eUSCI_A	UART mode	Module input clock		7		μΑ/MHz
eUSCI_A	SPI mode	Module input clock		5		μΑ/MHz
eUSCI_B	SPI mode	Module input clock		5		μΑ/MHz
eUSCI_B	I ² C mode, 100 kbaud	Module input clock		5		µA/MHz
RTC		32 kHz		85		nA
CRC	From start to end of operation	MCLK		8.5		µA/MHz

5.12 Thermal Resistance Characteristics

			VALUE	UNIT
		VQFN 16 pin (RGY)	41.8	
θ_{JA}	Junction-to-ambient thermal resistance, still air ⁽¹⁾	TSSOP 20 pin (PW20)	92.6	°C/W
		TSSOP 16 pin (PW16)	104.1	
		VQFN 16 pin (RGY)	49.1	
θ_{JC}	Junction-to-case (top) thermal resistance (2)	TSSOP 20 pin (PW20)	26.1	°C/W
		TSSOP 16 pin (PW16)	38.5	
		VQFN 16 pin (RGY)	18.5	
θ_{JB}	Junction-to-board thermal resistance (3)	TSSOP 20 pin (PW20)	45.0	°C/W
		TSSOP 16 pin (PW16)	49.1	

⁽¹⁾ The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-

standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB

temperature, as described in JESD51-8.

5.13 Timing and Switching Characteristics

5.13.1 Power Supply Sequencing

Table 5-1 lists the characteristics of the SVS and BOR.

Table 5-1. PMM, SVS and BOR

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-4)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{BOR, safe}	Safe BOR power-down level ⁽¹⁾		0.1			V
t _{BOR, safe}	Safe BOR reset delay ⁽²⁾		10			ms
I _{SVSH,AM}	SVS _H current consumption, active mode	V _{CC} = 3.6 V			1.5	μΑ
I _{SVSH,LPM}	SVS _H current consumption, low-power modes	$V_{CC} = 3.6 \text{ V}$		240		nA
V _{SVSH} -	SVS _H power-down level		1.71	1.80	1.87	V
V _{SVSH+}	SVS _H power-up level		1.76	1.88	1.99	V
V _{SVSH_hys}	SVS _H hysteresis			80		mV
t _{PD,SVSH, AM}	SVS _H propagation delay, active mode				10	μs
t _{PD,SVSH, LPM}	SVS _H propagation delay, low-power modes				100	μs

- (1) A safe BOR is correctly generated only if DVCC drops below this voltage before it rises.
- (2) When an BOR occurs, a safe BOR is correctly generated only if DVCC is kept low longer than this period before it reaches V_{SVSH+}.

Figure 5-4 shows the reset conditions.

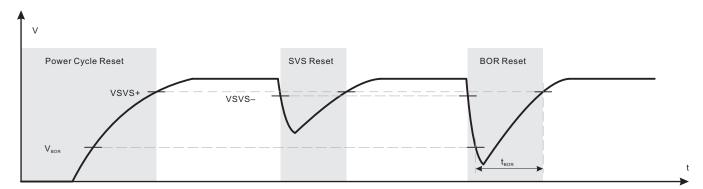


Figure 5-4. Power Cycle, SVS, and BOR Reset Conditions

5.13.2 Reset Timing

Table 5-2 lists the wake-up times from low-power modes and reset.

Table 5-2. Wake-up Times From Low-Power Modes and Reset

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP	MAX	UNIT
t _{WAKE-UP} FRAM	(Additional) wake-up time to activate the FRAM in AM if previously disabled through the FRAM controller or from a LPM if immediate activation is selected for wakeup (1)		3 V	10		μs
t _{WAKE-UP} LPM0	Wake-up time from LPM0 to active mode ⁽¹⁾		3 V		200 + 2.5 / f _{DCO}	ns
t _{WAKE-UP} LPM3	Wake-up time from LPM3 to active mode (1)		3 V	10		μs
t _{WAKE-UP LPM4}	Wake-up time from LPM4 to active mode (2)		3 V	10		μs
t _{WAKE-UP LPM3.5}	Wake-up time from LPM3.5 to active mode (2)		3 V	350		μs
	Wake-up time from LPM4.5 to active mode (2)	SVSHE = 1	3 V	350		μs
twake-up lpm4.5	wake-up time from LFW4.5 to active mode V	SVSHE = 0	3 V	1		ms
t _{WAKE-UP-RESET}	Wake-up time from $\overline{\mbox{RST}}$ or BOR event to active mode $^{(2)}$		3 V	1		ms
t _{RESET}	Pulse duration required at RST/NMI pin to accept a reset			2		μs

⁽¹⁾ The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first externally observable MCLK clock edge.

⁽²⁾ The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first instruction of the user program is executed.

5.13.3 Clock Specifications

Table 5-3 lists the characteristics of the XT1 crystal oscillator (low frequency).

Table 5-3. XT1 Crystal Oscillator (Low Frequency)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{XT1, LF}	XT1 oscillator crystal, low frequency	LFXTBYPASS = 0			32768		Hz
DC _{XT1, LF}	XT1 oscillator LF duty cycle	Measured at MCLK, f _{LFXT} = 32768 Hz		30%		70%	
f _{XT1,SW}	XT1 oscillator logic-level square- wave input frequency	LFXTBYPASS = 1 (2) (3)			32768		Hz
DC _{XT1, SW}	LFXT oscillator logic-level square- wave input duty cycle	LFXTBYPASS = 1		40%		60%	
OA _{LFXT}	Oscillation allowance for LF crystals ⁽⁴⁾	LFXTBYPASS = 0, LFXTDRIVE = $\{3\}$, $f_{LFXT} = 32768 \text{ Hz}$, $C_{L,eff} = 12.5 \text{ pF}$			200		kΩ
$C_{L,eff}$	Integrated effective load capacitance (5)				⁽⁶⁾ 1		pF
t _{START,LFXT}	Start-up time ⁽⁷⁾	$ \begin{cases} f_{OSC} = 32768 \text{ Hz} \\ \text{LFXTBYPASS} = 0, \text{LFXTDRIVE} = \{3\}, \\ T_A = 25^{\circ}\text{C}, \text{C}_{\text{L,eff}} = 12.5 \text{ pF} \end{cases} $			1000		ms
f _{Fault,LFXT}	Oscillator fault frequency (8)	$XTS = 0^{(9)}$		0		3500	Hz

- To improve EMI on the LFXT oscillator, observe the following guidelines.
 - Keep the trace between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces under or adjacent to the XIN and XOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
- When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW.
- Maximum frequency of operation of the entire device cannot be exceeded.
- Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application:

 - For LFXTDRIVE = $\{0\}$, $C_{L,eff} = 3.7 pF$. For LFXTDRIVE = $\{1\}$, $6 pF \le C_{L,eff} \le 9 pF$.
 - For LFXTDRIVE = {2}, 6 pF \leq C_{L,eff} \leq 10 pF. For LFXTDRIVE = {3}, 6 pF \leq C_{L,eff} \leq 12 pF.
- Includes parasitic bond and package capacitance (approximately 2 pF per pin).
- Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- Includes start-up counter of 1024 clock cycles.
- Frequencies above the MAX specification do not set the fault flag. Frequencies in between the MIN and MAX specification may set the flag. A static condition or stuck at fault condition sets the flag.
- Measured with logic-level input frequency but also applies to operation with crystals.

Table 5-4 lists the characteristics of the XT1 crystal oscillator (high frequency).

Table 5-4. XT1 Crystal Oscillator (High Frequency)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		XT1BYPASS = 0, XTS = 1, XT1HFFREQ = 00		1		4	
f _{HFXT}	HFXT oscillator crystal frequency, crystal mode	XT1BYPASS = 0, XTS = 1, XT1HFFREQ = 01		4.01		6	MHz
	noquonoy, oryotal modo	XT1BYPASS = 0, XTS = 1, XT1HFFREQ = 10		6.01		16	
f _{HFXT,SW}	HFXT oscillator logic-level square-wave input frequency, bypass mode	XT1BYPASS = 1, XTS = 1 (2) (3)		1		16	MHz
DC _{HFXT}	HFXT oscillator duty cycle	Measured at ACLK, f _{HFXT,HF} = 4 MHz ⁽⁴⁾		40%		60%	
DC _{HFXT} ,	HFXT oscillator logic-level square-wave input duty cycle	XT1BYPASS = 1		40%		60%	
OA _{HFXT}	Oscillation allowance for HFXT crystals ⁽⁵⁾	$XT1BYPASS = 0$, $XT1HFSEL = 1$, $f_{HFXT,HF} = 16$ MHz, $C_{L,eff} = 18$ pF			2.4		kΩ
	{ART,НFXT} Start-up time ⁽⁶⁾	$f{OSC} = 4 \text{ MHz}, \text{ XTS} = 1^{(4)}, \\ \text{XT1BYPASS} = 0, \text{ XT1HFFREQ} = 00, \\ \text{XT1DRIVE} = 3, T_A = 25^{\circ}\text{C}, C_{L,eff} = 18 \text{ pF}$			1.6		
t _{START,HFXT}		$f_{OSC} = 16 \text{ MHz}, \text{ XTS} = 1^{(4)}, \\ \text{XT1BYPASS} = 0, \text{ XT1HFFREQ} = 00, \\ \text{XT1DRIVE} = 3, T_A = 25^{\circ}\text{C}, C_{L,\text{eff}} = 18 \text{ pF}$			1.1		ms
C _{L,eff} Integrated effective load capacitance (7) (8)					1		pF
f _{Fault,HFXT}	Oscillator fault frequency (9) (10)			0		800	kHz

- (1) To improve EMI on the HFXT oscillator, the following guidelines should be observed.
 - Keep the trace between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces under or adjacent to the XIN and XOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
- (2) When XT1BYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet. Duty cycle requirements are defined by DC_{HEXT, SW}.
- Maximum frequency of operation of the entire device cannot be exceeded.
- 4-MHz crystal used for lab characterization: Abracon HC49/U AB-4.000MHZ-B2
 - 16-MHz crystal used for lab characterization: Abracon HC49/U AB-16.000MHZ-B2
- Oscillation allowance is based on a safety factor of 5 for recommended crystals.
- Includes start-up counter of 4096 clock cycles.
- Includes parasitic bond and package capacitance (approximately 2 pF per pin).
 - Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the oscillator frequency through MCLK or SMCLK. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF.
 Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX might set the flag. A static
- condition or stuck at fault condition sets the flag.
- (10) Measured with logic-level input frequency but also applies to operation with crystals.

Table 5-5 lists the characteristics of the DCO FLL.

Table 5-5. DCO FLL

over recommended operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	UNIT
	FLL lock frequency, 16 MHz, 25°C	Measured at MCLK, internal	3.0 V	-1.0%		1.0%	
f _{DCO, FLL}	FLL lock frequency, 16 MHz, -40°C to 85°C	trimmed REFO as reference	3.0 V	-2.0%		2.0%	
·DCO, FLL	FLL lock frequency, 16 MHz, -40°C to 85°C	Measured at MCLK, XT1 crystal as reference	3.0 V	-0.5%		0.5%	
f_{DUTY}	Duty cycle			40%	50%	60%	
Jitter _{cc}	Cycle-to-cycle jitter, 16 MHz	Measured at MCLK, XT1 crystal	3.0 V		0.25%		
Jitter _{long}	Long term Jitter, 16 MHz	as reference	3.0 V		0.022%		
t _{FLL, lock}	FLL lock time, 16 MHz				200		ms

Table 5-6 lists the characteristics of the DCO frequency.

Table 5-6. DCO Frequency

over recommended operating free-air temperature (unless otherwise noted) (see Figure 5-5)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		DCORSEL = 101b, DISMOD = 1b, DCOFTRIM = 000b, DCO = 0		7.8		
	DCO frequency, 16 MHz	DCORSEL = 101b, DISMOD = 1b, DCOFTRIM = 000b, DCO = 511		12.5		NAL I-
f _{DCO, 16} MHz		DCORSEL = 101b, DISMOD = 1b, DCOFTRIM = 111b, DCO = 0		18		MHz
		DCORSEL = 101b, DISMOD = 1b, DCOFTRIM = 111b, DCO = 511		30		
		DCORSEL = 100b, DISMOD = 1b, DCOFTRIM = 000b, DCO = 0		6		
•	DCO frequency, 12 MHz	DCORSEL = 100b, DISMOD = 1b, DCOFTRIM = 000b, DCO = 511		9.5		MHz
f _{DCO, 12 MHz}	MHz BCO frequency, 12 Minz	DCORSEL = 100b, DISMOD = 1b, DCOFTRIM = 111b, DCO = 0		13.5		IVITZ
		DCORSEL = 100b, DISMOD = 1b, DCOFTRIM = 111b, DCO = 511		22		
	DCO frequency, 8 MHz	DCORSEL = 011b, DISMOD = 1b, DCOFTRIM = 000b, DCO = 0		3.8		l
		DCORSEL = 011b, DISMOD = 1b, DCOFTRIM = 000b, DCO = 511		6.5		MHz
f _{DCO, 8} MHz		DCORSEL = 011b, DISMOD = 1b, DCOFTRIM = 111b, DCO = 0		9.5		IVITZ
		DCORSEL = 011b, DISMOD = 1b, DCOFTRIM = 111b, DCO = 511		16		
		DCORSEL = 010b,, DISMOD = 1b, DCOFTRIM = 000b, DCO = 0		2		
,	4 MHz DCO frequency, 4 MHz	DCORSEL = 010b, DISMOD = 1b, DCOFTRIM = 000b, DCO = 511		3.2		N 41 1:
f _{DCO, 4} MHz		DCORSEL = 010b, DISMOD = 1b, DCOFTRIM = 111b, DCO = 0		4.8		MHz
		DCORSEL = 010b, DISMOD = 1b, DCOFTRIM = 111b, DCO = 511		8		

Table 5-6. DCO Frequency (continued)

over recommended operating free-air temperature (unless otherwise noted) (see Figure 5-5)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		DCORSEL = 001b, DISMOD = 1b, DCOFTRIM = 000b, DCO = 0		1		
f	D00 (0.00)	DCORSEL = 001b, DISMOD = 1b, DCOFTRIM = 000b, DCO = 511		1.7		MHz
f _{DCO, 2 MHz} DCO frequency, 2 MHz	DCORSEL = 001b, DISMOD = 1b, DCOFTRIM = 111b, DCO = 0		2.5		IVITIZ	
		DCORSEL = 001b, DISMOD = 1b, DCOFTRIM = 111b, DCO = 511		4.2		
		DCORSEL = 000b, DISMOD = 1b, DCOFTRIM = 000b, DCO = 0		0.5		
f	DCO frequency, 1 MHz	DCORSEL = 000b, DISMOD = 1b, DCOFTRIM = 000b, DCO = 511		0.85		MHz
[†] DCO, 1 MHz	CO, 1 MHz	DCORSEL = 000b, DISMOD = 1b, DCOFTRIM = 111b, DCO = 0		1.2		IVII IZ
		DCORSEL = 000b, DISMOD = 1b, DCOFTRIM = 111b, DCO = 511		2.1		

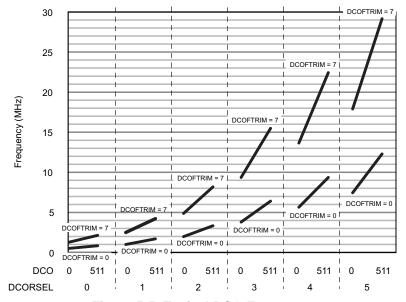


Figure 5-5. Typical DCO Frequency

Table 5-7 lists the characteristics of the REFO.

Table 5-7. REFO

over recommended operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
I _{REFO}	REFO oscillator current consumption	T _A = 25°C	3.0 V		15		μA
4	REFO calibrated frequency	Measured at MCLK	3.0 V		32768		Hz
f _{REFO}	REFO absolute calibrated tolerance	-40°C to 85°C	1.8 V to 3.6 V	-3.5%		+3.5%	
df_{REFO}/d_{T}	REFO frequency temperature drift	Measured at MCLK ⁽¹⁾	3.0 V		0.01		%/°C
df _{REFO} / d _{VCC}	REFO frequency supply voltage drift	Measured at MCLK at 25°C (2)	1.8 V to 3.6 V		1		%/V
f_{DC}	REFO duty cycle	Measured at MCLK	1.8 V to 3.6 V	40%	50%	60%	
t _{START}	REFO start-up time	40% to 60% duty cycle			50		μs

Calculated using the box method: (MAX(-40° C to 85° C) - MIN(-40° C to 85° C)) / MIN(-40° C to 85° C) / (85° C - (-40° C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) - MIN(1.8 V to 3.6 V) / MIN(1.8 V to 3.6 V) / (3.6 V - 1.8 V)

Table 5-8 lists the characteristics of the internal very-low-power low-frequency oscillator (VLO).

Table 5-8. Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP MA	XX UNIT
f_{VLO}	VLO frequency	Measured at MCLK	3.0 V	10	kHz
df_{VLO}/d_{T}	VLO frequency temperature drift	Measured at MCLK ⁽¹⁾	3.0 V	0.5	%/°C
df_{VLO}/dV_{CC}	VLO frequency supply voltage drift	Measured at MCLK ⁽²⁾	1.8 V to 3.6 V	4	%/V
$f_{VLO,DC}$	Duty cycle	Measured at MCLK	3.0 V	50%	

- (1) Calculated using the box method: (MAX(-40°C to 85°C) MIN(-40°C to 85°C)) / MIN(-40°C to 85°C) / (85°C (-40°C))
- (2) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)

NOTE

The VLO clock frequency is reduced by 15% (typical) when the device switches from active mode or LPM0 to LPM3 or LPM4, because the reference changes. This lower frequency is not a violation of the VLO specifications (see Table 5-8).

Table 5-9 lists the characteristics of the module oscillator (MODOSC).

Table 5-9. Module Oscillator (MODOSC)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{MODOSC}	MODOSC frequency		3.0 V	3.8	4.8	5.8	MHz
f _{MODOSC} /dT	MODOSC frequency temperature drift		3.0 V		0.102		%/°C
f_{MODOSC}/dV_{CC}	MODOSC frequency supply voltage drift		1.8 V to 3.6 V		1.02		%/V
f _{MODOSC,DC}	Duty cycle		3.0 V	40%	50%	60%	

5.13.4 Digital I/Os

Table 5-10 lists the characteristics of the digital inputs.

Table 5-10. Digital Inputs

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

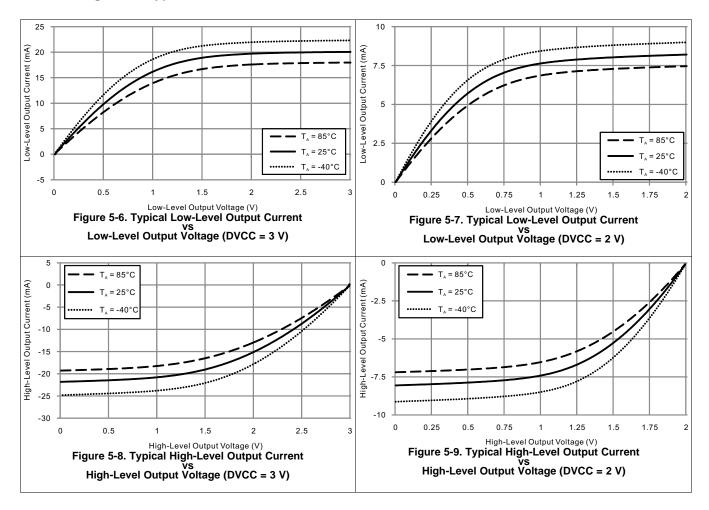
	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V	Desitive going input threshold valtage		2 V	0.90		1.50	V
V _{IT+}	Positive-going input threshold voltage		3 V	1.35		2.25	V
V	Negative-going input threshold voltage		2 V	0.50		1.10	V
V _{IT}	Negative-going input threshold voltage		3 V	0.75		1.65	V
.,	Input voltage hysteresis (V _{IT+} – V _{IT-})		2 V	0.3		0.8	V
V_{hys}			3 V	0.4		1.2	V
R _{Pull}	Pullup or pulldown resistor	For pullup: V _{IN} = V _{SS} For pulldown: V _{IN} = V _{CC}		20	35	50	kΩ
$C_{I,dig}$	Input capacitance, digital only port pins	$V_{IN} = V_{SS}$ or V_{CC}			3		pF
C _{I,ana}	Input capacitance, port pins with shared analog functions	$V_{IN} = V_{SS}$ or V_{CC}			5		pF
I _{lkg(Px.y)}	High-impedance leakage current ⁽¹⁾⁽²⁾		2 V, 3 V	-20		+20	nA
t _(int)	External interrupt timing (external trigger pulse duration to set interrupt flag) (3)	Ports with interrupt capability (see Section 1.4 and Section 4.3)	2 V, 3 V	50			ns

Table 5-11 lists the characteristics of the digital outputs. Also see Figure 5-6 through Figure 5-9.

Table 5-11. Digital Outputs

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
V	High level output voltage	$I_{(OHmax)} = -3 \text{ mA}^{(1)}$	2.0 V	1.4		2.0	\	
V _{OH}	High-level output voltage	$I_{(OHmax)} = -5 \text{ mA}^{(1)}$	3.0 V	2.4		3.0	V	
V	Low lovel output voltage	$I_{(OLmax)} = 3 \text{ mA}^{(1)}$	2.0 V	0.0		0.60	V	
V _{OL}		$I_{(OLmax)} = 5 \text{ mA}^{(1)}$	3.0 V	0.0		0.60	V	
	Clash autaut fra miana	C _L = 20 pF ⁽²⁾	2.0 V	16			MHz	
f _{Port_CLK}	Clock output frequency	$G_L = 20 \text{ pr}^{-1}$	3.0 V	16			IVICIZ	
	Dort output vice time digital only part pine	0 00 5	2.0 V		10		5	
t _{rise,dig}	Port output rise time, digital only port pins	$C_L = 20 pF$	3.0 V		7		ns	
	Port output fall time, digital only port pins $C_L = 20 \text{ pF}$	C = 20 pE	2.0 V		10		20	
t _{fall,dig}	Fort output fair time, digital only port pins	O _L = 20 μΓ	3.0 V		5		ns	


The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified.

The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pins, unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is

An external signal sets the interrupt flag every time the minimum interrupt pulse duration $t_{(int)}$ is met. The interrupt flag may be set by trigger signals shorter than t_(int).

The port can output frequencies at least up to the specified limit and might support higher frequencies.

5.13.4.1 Digital I/O Typical Characteristics

5.13.5 VREF+ Built-in Reference

Table 5-12 lists the characteristics of the VREF+.

Table 5-12, VREF+

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V _{REF+}	Positive built-in reference voltage	EXTREFEN = 1 with 1-mA load current to ground	2.0 V, 3.0 V	1.15	1.19	1.23	V
TC _{REF+}	Temperature coefficient of built-in reference voltage	EXTREFEN = 1 with 1-mA load current			30		μV/°C

5.13.6 Timer_B

Table 5-13 lists the characteristics of the Timer_B clock frequency.

Table 5-13. Timer_B Clock Frequency

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

ĺ	PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP MAX UNIT
	f _{TB} Timer_B input clock frequency	Internal: SMCLK, ACLK External: TBCLK Duty cycle = 50% ±10%	2.0 V, 3.0 V	16 MHz

5.13.7 eUSCI

Table 5-14 lists the clock frequency of the eUSCI in UART mode.

Table 5-14. eUSCI (UART Mode) Clock Frequency

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{eUSCI}	eUSCI input clock frequency	Internal: SMCLK, MODCLK External: UCLK Duty cycle = 50% ±10%	2.0 V, 3.0 V			16	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in Mbaud)		2.0 V, 3.0 V			5	MHz

Table 5-15 lists the switching characteristics of the eUSCI in UART mode.

Table 5-15. eUSCI (UART Mode) Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
		UCGLITx = 0			12			
	LIADT receive deglitch time (1)	UCGLITx = 1	2.0 V,		40		20	
L _t	UART receive deglitch time (1)	UCGLITx = 2	3.0 V		68		ns	
		UCGLITx = 3			110			

⁽¹⁾ Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To make sure that pulses are correctly recognized, their duration must exceed the maximum specification of the deglitch time.

Table 5-16 lists the clock frequency of the eUSCI in SPI master mode.

Table 5-16. eUSCI (SPI Master Mode) Clock Frequency

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{eUSCI} eUSCI input clock frequency	Internal: SMCLK, MODCLK Duty cycle = 50% ±10%				8	MHz

Table 5-17 lists the switching characteristics of the eUSCI in SPI master mode.

Table 5-17. eUSCI (SPI Master Mode) Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
t _{STE,LEAD}	STE lead time, STE active to clock	UCSTEM = 1, UCMODEx = 01 or 10		1		UCxCLK cycles
t _{STE,LAG}	STE lag time, last clock to STE inactive	UCSTEM = 1, UCMODEx = 01 or 10		1		UCxCLK cycles
	COMI input data actus time		2.0 V	47		ns
t _{SU,MI}	SOMI input data setup time		3.0 V	35		
	COMI in the data hald time		2.0 V	0		20
t _{HD,MI}	SOMI input data hold time		3.0 V	0		ns
	SIMO output data valid time ⁽²⁾	UCLK edge to SIMO valid,	2.0 V		20	
t _{VALID,MO}	Simo output data valid time —	C _L = 20 pF	3.0 V		20	ns
	SIMO output data hold time ⁽³⁾	C _L = 20 pF	2.0 V	0		20
t _{HD,MO}			3.0 V	0		ns

 ⁽¹⁾ f_{UCxCLK} = 1/2t_{LO/HI} with t_{LO/HI} = max(t_{VALID,MO(eUSCI)} + t_{SU,SI(Slave)}, t_{SU,MI(eUSCI)} + t_{VALID,SO(Slave)}).
 For the slave's parameters t_{SU,SI(Slave)} and t_{VALID,SO(Slave)} see the SPI parameters of the attached slave.
 (2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams

in Figure 5-10 and Figure 5-11.

Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-10 and Figure 5-11.

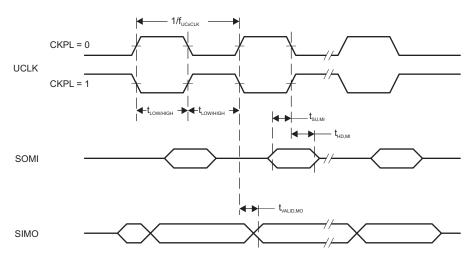


Figure 5-10. SPI Master Mode, CKPH = 0

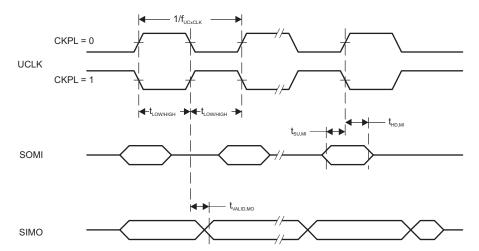


Figure 5-11. SPI Master Mode, CKPH = 1

Table 5-18 lists the switching characteristics of the eUSCI in SPI slave mode.

Table 5-18. eUSCI (SPI Slave Mode) Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
	CTT load time. CTT pative to alcale		2.0 V	55		
t _{STE,LEAD}	STE lead time, STE active to clock		3.0 V	45		ns
	CTT log time lost clock to CTT inactive		2.0 V	20		
t _{STE,LAG}	STE lag time, last clock to STE inactive		3.0 V	20		ns
	STE access time, STE active to SOMI data out		2.0 V		65	
t _{STE,ACC}			3.0 V		40	ns
	STE disable time, STE inactive to SOMI high		2.0 V		40	
t _{STE,DIS}	impedance		3.0 V		35	ns
	SIMO input data setup time		2.0 V	8		ns
t _{SU,SI}			3.0 V	6		
	CIMO input data hald time		2.0 V	12		
t _{HD,SI}	SIMO input data hold time		3.0 V	12		ns
	COMI sustant data unlidations (2)	UCLK edge to SOMI valid,	2.0 V		68	
t _{VALID,SO}	SOMI output data valid time (2)	$C_L = 20 \text{ pF}$	3.0 V		42	ns
	COMI output data hald time (3)	0 00 5	2.0 V	5		20
t _{HD,SO}	SOMI output data hold time (3)	$C_L = 20 \text{ pF}$	3.0 V	5		ns

 $f_{\text{UCxCLK}} = 1/2t_{\text{LO/HI}} \text{ with } t_{\text{LO/HI}} \geq \max(t_{\text{VALID,MO(Master})} + t_{\text{SU,SI(eUSCI)}}, t_{\text{SU,MI(Master})} + t_{\text{VALID,SO(eUSCI)}}).$ For the master's parameters $t_{\text{SU,MI(Master)}}$ and $t_{\text{VALID,MO(Master)}}$ see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams (1)

in Figure 5-12 and Figure 5-13.

⁽³⁾ Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-12 and Figure 5-13.

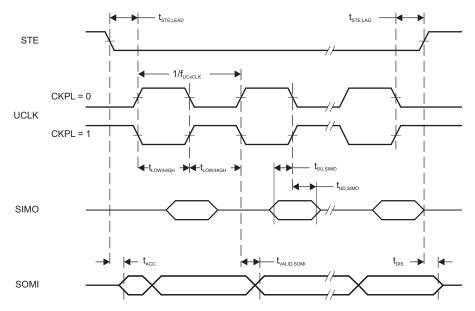


Figure 5-12. SPI Slave Mode, CKPH = 0

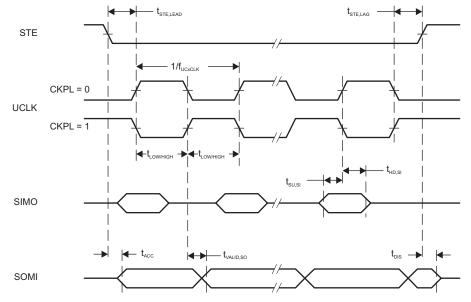


Figure 5-13. SPI Slave Mode, CKPH = 1

Table 5-19 lists the switching characteristics of the eUSCI (I²C mode).

Table 5-19. eUSCI (I²C Mode) Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-14)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	TINU
f _{eUSCI}	eUSCI input clock frequency	Internal: SMCLK, MODCLK External: UCLK Duty cycle = 50% ±10%				16	MHz
f _{SCL}	SCL clock frequency		2.0 V, 3.0 V	0		400	kHz
	Hold time (reported) CTART	f _{SCL} = 100 kHz	201/201/	4.0			
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	2.0 V, 3.0 V	0.6			μs
	Saturations for a reposited START	f _{SCL} = 100 kHz	2.0 V, 3.0 V	4.7			
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	2.0 V, 3.0 V	0.6			μs
t _{HD,DAT}	Data hold time		2.0 V, 3.0 V	0			ns
t _{SU,DAT}	Data setup time		2.0 V, 3.0 V	250			ns
	Setup time for STOP	f _{SCL} = 100 kHz	2.0 V, 3.0 V	4.0			
t _{SU,STO}	Setup time for STOP	f _{SCL} > 100 kHz	2.0 V, 3.0 V	0.6			μs
		UCGLITx = 0		50		600	
_	Pulse duration of spikes suppressed by	UCGLITx = 1	201/201/	25		300	ns
t _{SP}	input filter	UCGLITx = 2	2.0 V, 3.0 V	12.5		150	
		UCGLITx = 3		6.3		75	
		UCCLTOx = 1			27		
t _{TIMEOUT}	Clock low time-out	UCCLTOx = 2	2.0 V, 3.0 V		30		ms
		UCCLTOx = 3		33	16 400 600 300 150 75 27		

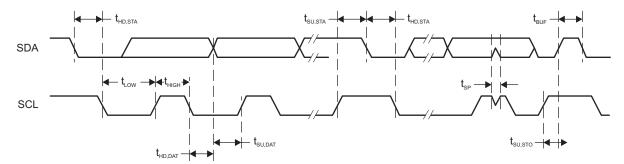


Figure 5-14. I²C Mode Timing

5.13.8 ADC

Table 5-20 lists the characteristics of the ADC power supply and input range conditions.

Table 5-20. ADC, Power Supply and Input Range Conditions

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
DV_CC	ADC supply voltage			2.0		3.6	V
$V_{(Ax)}$	Analog input voltage range	All ADC pins		0		DV_CC	V
	Operating supply current into	f _{ADCCLK} = 5 MHz, ADCON = 1,	2 V		185		
I _{ADC}	DVCC terminal, reference current not included, repeat- single-channel mode	REFON = 0, SHT0 = 0, SHT1 = 0, ADCDIV = 0, ADCCONSEQx = 10b	3 V		207		μΑ
C _I	Input capacitance	Only one terminal Ax can be selected at one time from the pad to the ADC capacitor array, including wiring and pad	2.2 V		2.5	3.5	pF
R _I	Input MUX ON resistance	$DV_{CC} = 2 \text{ V}, 0 \text{ V} = V_{Ax} = DV_{CC}$				2	kΩ

Table 5-21 lists the ADC 10-bit timing parameters.

Table 5-21. ADC, 10-Bit Timing Parameters

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{ADCCLK}		For specified performance of ADC linearity parameters	2 V to 3.6 V	0.45	5	5.5	MHz
f _{ADCOSC}	Internal ADC oscillator (MODOSC)	ADCDIV = 0, f _{ADCCLK} = f _{ADCOSC}	2 V to 3.6 V	3.8	4.8	5.8	MHz
t _{CONVERT}	Conversion time	REFON = 0, Internal oscillator, 10 ADCCLK cycles, 10-bit mode, f _{ADCOSC} = 4.5 MHz to 5.5 MHz	2 V to 3.6 V	2.18		2.67	μs
		External f_{ADCCLK} from ACLK, MCLK, or SMCLK, 2 V to ADCSSEL $\neq 0$ 3.6 V		12 x 1 / f _{ADCCLK}		·	
t _{ADCON}	Turnon settling time of the ADC	The error in a conversion started after t _{ADCON} is less than ±0.5 LSB. Reference and input signal are already settled.				100	ns
		$R_S = 1000 \ \Omega, \ R_I = 36000 \ \Omega, \ C_I = 3.5 \ pF.$	2 V	1.5			
t _{Sample}	Sampling time	Approximately 8 Tau (t) are required for an error of less than ±0.5 LSB.	3 V	2.0			μs

Table 5-22 lists the ADC 10-bit linearity parameters.

Table 5-22. ADC, 10-Bit Linearity Parameters

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
_	Integral linearity error (10-bit mode)	Veref+ reference	2.4 V to 3.6 V	-2		2	LCD
Eı	Integral linearity error (8-bit mode)	verer+ reference	2.0 V to 3.6 V	-2		2	LSB
_	Differential linearity error (10-bit mode)	Manafa nafanana	2.4 V to 3.6 V	-1		1	LCD
ED	Differential linearity error (8-bit mode)	Veref+ reference	2.0 V to 3.6 V	-1		1	LSB
E _O (Offset error (10-bit mode)	Veref+ reference	2.4 V to 3.6 V	-6.5		6.5	\/
EO	Offset error (8-bit mode)	verei+ reference	2.0 V to 3.6 V	-6.5		6.5	mV
	Onin among (40 hit and 45)	Veref+ as reference	0.41/4-0.01/	-2.0		2.0	LSB
_	Gain error (10-bit mode)	Internal 1.5-V reference	2.4 V to 3.6 V	-3.0%		3.0%	
E _G	Oning arrange (O. hit and da)	Veref+ as reference	0.01/1-0.01/	-2.0		2.0	LSB
	Gain error (8-bit mode)	Internal 1.5-V reference	2.0 V to 3.6 V	-3.0%		3.0%	
	T. 1 (10.1%)	Veref+ as reference	0.43440034	-2.0		2.0	LSB
_	Total unadjusted error (10-bit mode)	Internal 1.5-V reference	2.4 V to 3.6 V	-3.0%		3.0%	
ET	Tatalona disata da aman (O hitana da)	Veref+ as reference	0.01/1-0.01/	-2.0		2.0	LSB
	Total unadjusted error (8-bit mode)	Internal 1.5-V reference	2.0 V to 3.6 V	-3.0%		3.0%	
V _{SENSOR}	See ⁽¹⁾	ADCON = 1, INCH = 0Ch, T _A = 0°C	3 V		913		mV
TC _{SENSOR}	See (2)	ADCON = 1, INCH = 0Ch	3 V		3.35		mV/°C
t _{SENSOR}	Sample time required if channel 12 is selected (3)	ADCON = 1, INCH = 0Ch, Error of conversion result ≤1 LSB, AM and all LPMs above LPM3	3 V	30			μs
(sample)		ADCON = 1, INCH = 0Ch, Error of conversion result ≤1 LSB, LPM3	3 V	100			

⁽¹⁾ The temperature sensor offset can vary significantly. TI recommends a single-point calibration to minimize the offset error of the built-in temperature sensor.

⁽²⁾ The device descriptor structure contains calibration values for 30°C and 85°C for each available reference voltage level. The sensor voltage can be computed as V_{SENSOR} × (Temperature, °C) + V_{SENSOR}, where TC_{SENSOR} and V_{SENSOR} can be computed from the calibration values for higher accuracy.

⁽³⁾ The typical equivalent impedance of the sensor is 700 kΩ. The sample time required includes the sensor on time, t_{SENSOR(on)}.

5.13.9 Enhanced Comparator (eCOMP)

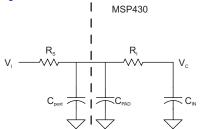

Table 5-23 lists the characteristics of eCOMP0.

Table 5-23. eCOMP0

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
VCC	Supply voltage		2.0		3.6	V	
V _{IC}	Common-mode input range		0		V_{CC}	V	
		CPEN = 1, CPHSEL = 00		0			
	DO invalidades	CPEN = 1, CPHSEL = 01		10		mV	
V_{HYS}	DC input hysteresis	CPEN = 1, CPHSEL = 10		20		mv	
		CPEN = 1, CPHSEL = 11		30			
V	land offert welters	CPEN = 1, CPMSEL = 0	-30		+30	\/	
V _{OFFSET}	Input offset voltage	CPEN = 1, CPMSEL = 1	-40		+40	mV	
	Quiescent current draw from	$V_{IC} = V_{CC} / 2$, CPEN = 1, CPMSEL = 0		24	35	^	
ICOMP	V _{CC} , only comparator	V _{IC} = V _{CC} / 2, CPEN = 1, CPMSEL = 1		1.6	5	μA	
C _{IN}	Input channel capacitance ⁽¹⁾			1		pF	
Б	Land the soul and a second to the	On (switch closed)		10	20	kΩ	
R _{IN}	Input channel series resistance	Off (switch open)	50			МΩ	
Propagation delay, response time	Propagation delay, response	CPMSEL = 0, CPFLT = 0, $V_{IC} = V_{CC} / 2$, Overdrive = 20 mV			1		
	CPMSEL = 1, CPFLT = 0, $V_{IC} = V_{CC} / 2$, Overdrive = 20 mV		3.2		μs		
		CPEN = 0→1, CPMSEL = 0, V+ and V- from pads, Overdrive = 20 mV		8.5			
t _{EN_CP}	Comparator enable time	CPEN = 0→1, CPMSEL = 1, V+ and V- from pads, Overdrive = 20 mV		1.4		μs	
	Comparator with reference DAC	CPEN = $0\rightarrow 1$, CPDACEN = $0\rightarrow 1$, CPMSEL = 0 , CPDACREFS = 1 , CPDACBUF1 = 0 F, Overdrive = 20 mV		8.5			
^T EN_CP_DAC	enable time	CPEN = $0 \rightarrow 1$, CPDACEN = $0 \rightarrow 1$, CPMSEL = 1, CPDACREFS = 1, CPDACBUF1 = 0F, Overdrive = 20 mV		101		μs	
		CPMSEL = 0, CPFLTDY = 00, Overdrive = 20 mV, CPFLT = 1		0.7			
t _{FDLY}	Propagation delay with analog filter active	CPMSEL = 0, CPFLTDY = 01, Overdrive = 20 mV, CPFLT = 1		1.1			
		CPMSEL = 0, CPFLTDY = 10, Overdrive = 20 mV, CPFLT = 1		1.9		μs	
		CPMSEL = 0, CPFLTDY = 11, Overdrive = 20 mV, CPFLT = 1		3.4			
INL	Integral nonlinearity		-0.5		0.5	LSB	
DNL	Differential nonlinearity		-0.5		0.5	LSB	

(1) eCOMP C_{IN,} model, see Figure 5-15 for details.

V_i = External source voltage

R_s = External source resistance

R = Internal MUX-on input resistance

 C_{IN} = Input capacitance C_{PAD} = PAD capacitance

 $C_{\text{\tiny Pext}}$ = Parasitic capacitance, external

V_c = Capacitance-charging voltage

Figure 5-15. eCOMP Input Circuit

5.13.10 Smart Analog Combo (SAC)

Table 5-24 lists the characteristics of SAC0 (SAC-L1, OA).

Table 5-24. SAC0 (SAC-L1, OA)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{CC}	Supply voltage		2.0		3.6	V	
Vos	Input offset voltage		- 5		5	mV	
dV _{OS} /dT	Offset drift	OAPM = 0		3		μV/°C	
uv _{OS} /u1	Onset drift	OAPM = 1		5		μν/ С	
I _B	Input bias current			5		nA	
V_{CM}	Input voltage range		-0.1	Vo	CC + 0.1	V	
	Quiescent current	OAPM = 0		350			
I _{IDD}	Quiescent current	OAPM = 1		120		μΑ	
	Input noise voltage, f = 0.1 Hz to 10 Hz	$Vin = V_{CC} / 2$, $OAPM = 0$		40		μV	
E _{NI}	Input noise voltage density, f = 1 kHz	$Vin = V_{CC} / 2$, $OAPM = 0$		40		nV/√ Hz	
	Input noise voltage, f = 10 kHz	$Vin = V_{CC} / 2$, $OAPM = 0$		20		NV/VHZ	
CMRR	Common mode rejection ratio	OAPM = 0		70		dB	
CIVIRR	Common-mode rejection ratio	OAPM = 1		80			
PSRR	Douger cumply rejection ratio	OAPM = 0	70			٩D	
PSKK	Power supply rejection ratio	OAPM = 1		80		dB	
GBW	Cain bandwidth	OAPM = 0		4		NAL I-	
GBW	Gain bandwidth	OAPM = 1		1.4		MHz	
^	Open leen veltege gein	OAPM = 0		100		dB	
A _{OL}	Open-loop voltage gain	OAPM = 1		100		uБ	
φм	Phase margin	$C_L = 50 \text{ pF}$, $R_L = 2 \text{ k}\Omega$		65		deg	
	Desirius alaus rata	$C_L = 50 \text{ pF, OAPM} = 0$		3		\//··-	
	Positive slew rate	C _L = 50 pF, OAPM = 1		1		V/us	
C _{in}	Input capacitance	Common mode		2		pF	
Vo	Voltage output swing from supply rails	$R_L = 10 \text{ k}\Omega$		40	100	mV	
	OA sottling time	To 0.1% final value, $G = +1$, 1-V setup, $C_L = 50$ pF, OAPM = 0		1			
t _{ST}	OA settling time	To 0.1% final value, $G = +1$, 1-V setup, $C_L = 50$ pF, OAPM = 1		4.5		μs	

5.13.11 Transimpedance Amplifier (TIA)

Table 5-25 lists the characteristics of TIA0.

Table 5-25. TIA0

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage		2.0		3.6	V
Vos	Input offset voltage		- 5		5	mV
-1\	Office desire	TRIPM = 0		3		\//90
av _{OS} /a1	Offset drift	TRIPM = 1		5		μV/°C
I _B	Input bias current	V _B = 0 V, TSSOP-16 package with OA- dedicated pin input (see Figure 4-3)		5		pА
		TSSOP-20 and VQFN-16 packages		5		nA
V_{CM}	Input voltage range		-0.1		V _{CC} / 2	V
	Quiescent current	TRIPM = 0		350		
I _{IDD}	Quiescent current	TRIPM = 1		120		μA
	Input noise voltage, f = 0.1 Hz to 10 Hz	$Vin = V_{CC} / 2$, $TRIPM = 0$		40		μV
E _{NI}	Input noise voltage density, f = 1 kHz	$Vin = V_{CC} / 2$, $TRIPM = 0$		40		nV/√ Hz
	Input noise voltage, f = 10 kHz	$Vin = V_{CC} / 2$, $TRIPM = 0$		16		
CMRR	OMBB Owner and a second section and	TRIPM = 0	80		dB	
CIVIKK	Common-mode rejection ratio	TRIPM = 1		70		uБ
PSRR	Davida availa dia anti-	TRIPM = 0	80 70			dB
PSKK	Power supply rejection ratio	TRIPM = 1			ив	
GBW	Gain bandwidth	TRIPM = 0	5			MHz
GBW	Gain bandwidth	TRIPM = 1	1.8		IVIIIZ	
^	Once lean valtage main	TRIPM = 0	100			4D
A _{OL}	Open-loop voltage gain	TRIPM = 1		100		dB
	Dhaga marain	$C_L = 50 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, $TRIPM = 0$		40		doa
φм	Phase margin	$C_L = 50 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, $TRIPM = 1$		70		deg
	Positive slew rate	$C_L = 50 \text{ pF}, \text{TRIPM} = 0$		4		\//u0
	Positive siew rate	C _L = 50 pF, TRIPM = 1		1		V/µs
C _{in}	Input capacitance	Common mode		7		pF
Vo	Voltage output swing from supply rails	$R_L = 10 \text{ k}\Omega$		40	100	mV
to-	TIA settling time	To 0.1% final value, $G = +1$, 1-V setup, $C_L = 50$ pF, TRIPM = 0			116	
t _{ST}	TIA Setting title	To 0.1% final value, $G = +1$, 1-V setup, $C_L = 50$ pF, TRIPM = 1		5		μs

5.13.12 FRAM

Table 5-26 lists the characteristics of the FRAM.

Table 5-26, FRAM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Read and write endurance		10 ¹⁵			cycles
		$T_J = 25^{\circ}C$	100			
t _{Retention} Data retention duration	T _J = 70°C	40			years	
		T _J = 85°C	10			
I _{WRITE}	Current to write into FRAM			I _{READ} ⁽¹⁾		nA
I _{ERASE}	Erase current			N/A ⁽²⁾		nA
t _{WRITE}	Write time			t _{READ} (3)		ns
t _{READ} Re	Read time	NWAITSx = 0	1/f	SYSTEM ⁽⁴⁾		no
		NWAITSx = 1	2/f	SYSTEM ⁽⁴⁾		ns

⁽¹⁾ Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read current I_{READ} is included in the active mode current consumption numbers I_{AM, FRAM}.

5.13.13 Emulation and Debug

Table 5-27 lists the characteristics of the 2-wire Spy-Bi-Wire interface.

Table 5-27. JTAG, Spy-Bi-Wire Interface

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-16)

	PARAMETER	V _{cc}	MIN	TYP	MAX	UNIT
f _{SBW}	Spy-Bi-Wire input frequency	2.0 V, 3.0 V	0		8	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse duration	2.0 V, 3.0 V	0.028		15	μs
t _{SU,SBWTDIO}	SBWTDIO setup time (before falling edge of SBWTCK in TMS and TDI slot Spy-Bi-Wire)	2.0 V, 3.0 V	4			ns
t _{HD,SBWTDIO}	SBWTDIO hold time (after rising edge of SBWTCK in TMS and TDI slot Spy-Bi-Wire)	2.0 V, 3.0 V	19			ns
t _{Valid,SBWTDIO}	SBWTDIO data valid time (after falling edge of SBWTCK in TDO slot Spy-Bi-Wire)	2.0 V, 3.0 V			31	ns
t _{SBW, En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1)	2.0 V, 3.0 V			110	μs
t _{SBW,Ret}	Spy-Bi-Wire return to normal operation time ⁽²⁾		15		100	μs
R _{internal}	Internal pulldown resistance on TEST	2.0 V, 3.0 V	20	35	50	kΩ

Tools that access the Spy-Bi-Wire interface must wait for the t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

40

⁽²⁾ FRAM does not require a special erase sequence.

³⁾ Writing into FRAM is as fast as reading.

⁽⁴⁾ The maximum read (and write) speed is specified by f_{SYSTEM} using the appropriate wait state settings (NWAITSx).

⁽²⁾ Maximum t_{SBW,Rst} time after pulling or releasing the TEST/SBWTCK pin low, the Spy-Bi-Wire pins revert from their Spy-Bi-Wire function to their application function. This time applies only if the Spy-Bi-Wire mode was selected.

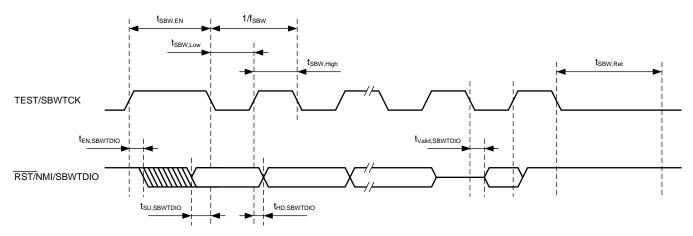


Figure 5-16. JTAG Spy-Bi-Wire Timing

Table 5-28 lists the characteristics of the JTAG 4-wire interface.

Table 5-28. JTAG, 4-Wire Interface

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-17)

	PARAMETER	V _{CC}	MIN	TYP	MAX	UNIT
f _{TCK}	TCK input frequency (1)	2.0 V, 3.0 V	0		10	MHz
t _{TCK,Low}	Spy-Bi-Wire low clock pulse duration	2.0 V, 3.0 V	15			ns
t _{TCK,high}	Spy-Bi-Wire high clock pulse duration	2.0 V, 3.0 V	15			ns
t _{SU,TMS}	TMS setup time (before rising edge of TCK)	2.0 V, 3.0 V	11			ns
t _{HD,TMS}	TMS hold time (after rising edge of TCK)	2.0 V, 3.0 V	3			ns
t _{SU,TDI}	TDI setup time (before rising edge of TCK)	2.0 V, 3.0 V	13			ns
t _{HD,TDI}	TDI hold time (after rising edge of TCK)	2.0 V, 3.0 V	5			ns
t _{z-Valid,TDO}	TDO high impedance to valid output time (after falling edge of TCK)	2.0 V, 3.0 V			26	ns
t _{Valid,TDO}	TDO to new valid output time (after falling edge of TCK)	2.0 V, 3.0 V			26	ns
t _{Valid-Z,TDO}	TDO valid to high-impedance output time (after falling edge of TCK)	2.0 V, 3.0 V			26	ns
t _{JTAG,Ret}	Spy-Bi-Wire return to normal operation time		15		100	μs
R _{internal}	Internal pulldown resistance on TEST	2.0 V, 3.0 V	20	35	50	kΩ

⁽¹⁾ Tools that access the Spy-Bi-Wire interface must wait for the t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

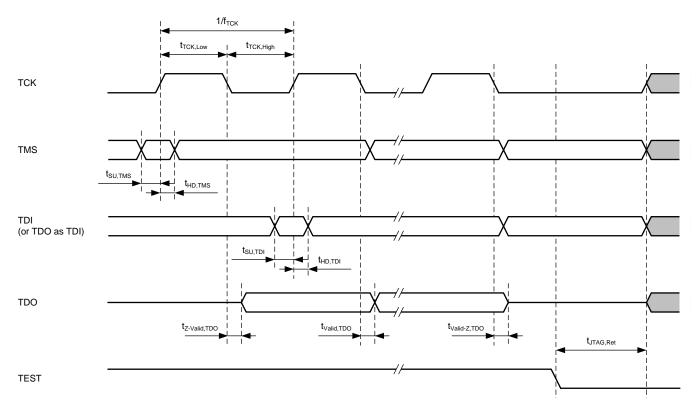


Figure 5-17. JTAG 4-Wire Timing

6 Detailed Description

6.1 Overview

The MSP430FR231x FRAM MCU features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The DCO also allows the device to wake up from low-power modes to active mode typically in less than 10 µs. The feature set of this microcontroller is ideal for applications ranging from smoke detectors to portable health and fitness accessories.

6.2 CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter (PC), stack pointer (SP), status register (SR), and constant generator (CG), respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

6.3 Operating Modes

The MSP430 has one active mode and several software-selectable low-power modes of operation (see Table 6-1). An interrupt event can wake up the device from low-power mode (LPM0, LPM3, or LPM4), service the request, and restore back to the low-power mode on return from the interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption.

Table 6-1. Operating Modes

		AM	LPM0	LPM3	LPM4	LPM3.5	LPM4.5
MODE		ACTIVE MODE	CPU OFF	STANDBY	OFF	ONLY RTC COUNTER	SHUTDOWN
Maximum system of	clock	16 MHz	16 MHz	40 kHz	0	40 kHz	0
Power consumption	n at 25°C, 3 V	126 μA/MHz	40 μA/MHz	1.11 µA with RTC counter only in LFXT	0.45 μA without SVS	0.71 μA with RTC counter only in LFXT	32 nA without SVS
Wake-up time		N/A	instant	10 µs	10 µs	350 µs	350 µs
Wake-up events		N/A	All	All	I/O	RTC Counter I/O	1/0
_	Regulator	Full Regulation	Full Regulation	Partial Power Down	Partial Power Down	Partial Power Down	Power Down
Power	SVS	On	On	Optional	Optional	Optional	Optional
	Brownout	On	On	On	On	On	On

Table 6-1. Operating Modes (continued)

		AM	LPM0	LPM3	LPM4	LPM3.5	LPM4.5
	MODE	ACTIVE MODE	CPU OFF	STANDBY	OFF	ONLY RTC COUNTER	SHUTDOWN
	MCLK	Active	Off	Off	Off	Off	Off
	SMCLK	Optional	Optional	Off	Off	Off	Off
	FLL	Optional	Optional	Off	Off	Off	Off
	DCO	Optional	Optional	Off	Off	Off	Off
Clock ⁽¹⁾	MODCLK	Optional	Optional	Off	Off	Off	Off
Clock	REFO	Optional	Optional	Optional	Off	Off	Off
	ACLK	Optional	Optional	Optional	Off	Off	Off
	XT1HFCLK ⁽²⁾	Optional	Optional	Off	Off	Off	Off
	XT1LFCLK	Optional	Optional	Optional	Off ⁽³⁾	Optional	Off
	VLOCLK	Optional	Optional	Optional	Off ⁽³⁾	Optional	Off
	CPU	On	Off	Off	Off	Off	Off
0	FRAM	On	On	Off	Off	Off	Off
Core	RAM	On	On	On	On	Off	Off
	Backup Memory (4)	On	On	On	On	On	Off
	Timer0_B3	Optional	Optional	Optional	Off	Off	Off
	Timer1_B3	Optional	Optional	Optional	Off	Off	Off
	WDT	Optional	Optional	Optional	Off	Off	Off
	eUSCI_A0	Optional	Optional	Optional	Off	Off	Off
	eUSCI_B0	Optional	Optional	Optional	Off	Off	Off
Peripherals	CRC	Optional	Optional	Off	Off	Off	Off
	ADC	Optional	Optional	Optional	Off	Off	Off
	eCOMP	Optional	Optional	Optional	Optional	Off	Off
	TIA	Optional	Optional	Optional	Optional	Off	Off
	SAC0	Optional	Optional	Optional	Optional	Off	Off
	RTC Counter	Optional	Optional	Optional	Off	Optional	Off
I/O	General Digital Input/Output	On	Optional	State Held	State Held	State Held	State Held
	Capacitive Touch I/O	Optional	Optional	Optional	Off	Off	Off

⁽¹⁾ The status shown for LPM4 applies to internal clocks only.

NOTE

XT1CLK and VLOCLK can be active during LPM4 if requested by low-frequency peripherals.

6.4 Interrupt Vector Addresses

The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table 6-2). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence

⁽²⁾ HFXT must be disabled before entering into LPM3, LPM4, or LPMx.5 mode.

⁽³⁾ Refer to following NOTE for details info as below.

⁽⁴⁾ Backup memory contains one 32-byte register in the peripheral memory space. See Table 6-23 and Table 6-38 for the memory allocation of backup memory.

Table 6-2. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power-up, Brownout, Supply Supervisor External Reset RST Watchdog Time-out, Key Violation FRAM uncorrectable bit error detection Software POR, BOR FLL unlock error	SVSHIFG PMMRSTIFG WDTIFG PMMPORIFG, PMMBORIFG SYSRSTIV FLLULPUC	Reset	FFFEh	63, Highest
System NMI Vacant Memory Access JTAG Mailbox FRAM access time error FRAM bit error detection	VMAIFG JMBINIFG, JMBOUTIFG CBDIFG, UBDIFG	(Non)maskable	FFFCh	62
User NMI External NMI Oscillator Fault	NMIIFG OFIFG	(Non)maskable	FFFAh	61
Timer0_B3	TB0CCR0 CCIFG0	Maskable	FFF8h	60
Timer0_B3	TB0CCR1 CCIFG1, TB0CCR2 CCIFG2, TB0IFG (TB0IV)	Maskable	FFF6h	59
Timer1_B3	TB1CCR0 CCIFG0	Maskable	FFF4h	58
Timer1_B3	TB1CCR1 CCIFG1, TB1CCR2 CCIFG2, TB1IFG (TB1IV)	Maskable	FFF2h	57
RTC Counter	RTCIFG	Maskable	FFF0h	56
Watchdog Timer Interval mode	WDTIFG	Maskable	FFEEh	55
eUSCI_A0 Receive or Transmit	UCTXCPTIFG, UCSTTIFG, UCRXIFG, UCTXIFG (UART mode) UCRXIFG, UCTXIFG (SPI mode) (UCA0IV))	Maskable	FFECh	54
eUSCI_B0 Receive or Transmit	UCBORXIFG, UCBOTXIFG (SPI mode) UCALIFG, UCNACKIFG, UCSTTIFG, UCSTPIFG, UCRXIFGO, UCTXIFGO, UCRXIFG1, UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3, UCCNTIFG, UCBIT9IFG,UCCLTOIFG(I ² C mode) (UCBOIV)	Maskable	FFEAh	53
ADC	ADCIFGO, ADCINIFG, ADCLOIFG, ADCHIIFG, ADCTOVIFG, ADCOVIFG (ADCIV)	Maskable	FFE8h	52
P1	P1IFG.0 to P1IFG.7 (P1IV)	Maskable	FFE6h	51
P2	P2IFG.0 to P2IFG.7 (P2IV) ⁽¹⁾	Maskable	FFE4h	50
eCOMP	CPIIFG, CPIFG (CPIV)	Maskable	FFE2h	49
Reserved	Reserved	Maskable	FFE0h to FF88h	
	BSL Signature 2		0FF86h	
Signatures	BSL Signature 1		0FF84h	
Oignatures	JTAG Signature 2		0FF82h	
	JTAG Signature 1		0FF80h	

⁽¹⁾ P2.0, P2.1, P2.6, and P2.7 support both pin and software interrupts. Others ports support software interrupts only.

6.5 Memory Organization

Table 6-3 summarizes the memory map of the MSP430FR231x MCUs.

Table 6-3. Memory Organization

	ACCESS	MSP430FR2311	MSP430FR2310
Memory (FRAM) Main: interrupt vectors and signatures Main: code memory	Read/Write (Optional Write Protect) ⁽¹⁾	3.75KB FFFFh to FF80h FFFFh to F100h	2KB FFFFh to FF80h FFFFh to F800h
RAM	Read/Write 1KB 23FFh to 2000h		1KB 23FFh to 2000h
Bootloader (BSL1) Memory (ROM) (TI Internal Use)	Read only	2KB 17FFh to 1000h	2KB 17FFh to 1000h
Bootloader (BSL2) Memory (ROM) (TI Internal Use)	Read only	1KB FFFFFh to FFC00h	1KB FFFFFh to FFC00h
Peripherals	Read/Write	4KB 0FFFh to 0000h	4KB 0FFFh to 0000h

⁽¹⁾ The Program FRAM can be write protected by setting the PFWP bit in the SYSCFG0 register. See the System Resets, Interrupts, and Operating Modes, System Control Module (SYS) chapter in the MSP430FR4xx and MSP430FR2xx Family User's Guide for more details

6.6 Bootloader (BSL)

The BSL lets users program the FRAM or RAM using a UART or I²C serial interface. Access to the device memory through the BSL is protected by a user-defined password. Use of the BSL requires four pins (see Table 6-4 and Table 6-5). BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins.

This device supports blank device detection to automatically invoke the BSL and skip the special entry sequence, which saves time and simplifies onboard programming. For complete description of the features of the BSL and its implementation, see MSP430 Programming With the Bootloader (BSL). For the complete description of feature of the I²C BSL, see the MSP430 I²C Bootloader (BSL) User's Guide.

Table 6-4. UART BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION
RST/NMI/SBWTDIO	Entry sequence signal
TEST/SBWTCK	Entry sequence signal
P1.7	Data transmit
P1.6	Data receive
V _{CC}	Power supply
VSS	Ground supply

Table 6-5. I²C BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION		
RST/NMI/SBWTDIO	Entry sequence signal		
TEST/SBWTCK	Entry sequence signal		
P1.2	Data receive and transmit		
P1.3	Clock		
V _{CC}	Power supply		
VSS	Ground supply		

6.7 JTAG Standard Interface

The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin enables the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO pin interfaces with MSP430 development tools and device programmers. Table 6-6 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide.

DEVICE SIGNAL DIRECTION JTAG FUNCTION P1.4/UCA0STE/TCK/OA0+/A4 JTAG clock input IN P1.5/UCA0CLK/TMS/TRI0O/A5 IN JTAG state control P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/TRI0-/A6 IN JTAG data input and TCLK input P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/TRI0+/A7/VREF+ JTAG data output OUT TEST/SBWTCK Enable JTAG pins IN RST/NMI/SBWTDIO IN External reset Power supply V_{CC} VSS Ground supply

Table 6-6. JTAG Pin Requirements and Function

6.8 Spy-Bi-Wire Interface (SBW)

The MSP430 family supports the 2-wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 6-7 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide.

DEVICE SIGNAL	DIRECTION	SBW FUNCTION
TEST/SBWTCK	IN	Spy-Bi-Wire clock input
RST/NMI/SBWTDIO	IN, OUT	Spy-Bi-Wire data input and output
V _{CC}	_	Power supply
VSS	_	Ground supply

Table 6-7. Spy-Bi-Wire Pin Requirements and Functions

6.9 FRAM

The FRAM can be programmed using the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in system by the CPU. Features of the FRAM include:

- · Byte and word access capability
- Programmable wait state generation
- Error correction coding (ECC)

6.10 Memory Protection

The device features memory protection of user access authority and write protection include:

- Securing the whole memory map to prevent unauthorized access from JTAG port or BSL, by writing JTAG and BSL signatures using the JTAG port, SBW, the BSL, or in system by the CPU.
- Write protection enabled to prevent unwanted write operation to FRAM contents by setting the control
 bits with accordingly password in System Configuration register 0. For more detailed information, see
 the System Resets, Interrupts, and Operating Modes, System Control Module (SYS) chapter in the
 MSP430FR4xx and MSP430FR2xx Family User's Guide.

6.11 Peripherals

Peripherals are connected to the CPU through data, address, and control buses. All peripherals can be handled by using all instructions in the memory map. For complete module description, see the MSP430FR4xx and MSP430FR2xx Family User's Guide.

6.11.1 Power-Management Module (PMM) and On-chip Reference Voltages

The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also includes supply voltage supervisor (SVS) and brownout protection. The brownout reset circuit (BOR) is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is available on the primary supply.

The device contains two on-chip reference: 1.5 V for internal reference and 1.2 V for external reference.

The 1.5-V reference is internally connected to ADC channel 13. DVCC is internally connected to ADC channel 15. When DVCC is set as the reference voltage for ADC conversion, the DVCC can be easily represent as Equation 1 by using ADC sampling 1.5-V reference without any external components support.

$$DVCC = (1023 \times 1.5 \text{ V}) \div 1.5 \text{-V reference ADC result}$$
 (1)

The 1.5-V reference is also internally connected to the Comparator built-in DAC as reference voltage. DVCC is internally connected to another source of DAC reference, and both are controlled by the CPDACREFS bit. For more detailed information, see the *Enhanced Comparator (eCOMP)* chapter of the MSP430FR4xx and MSP430FR2xx Family User's Guide.

A 1.2-V reference voltage can be buffered, when EXTREFEN = 1 on PMMCTL2 register, and it can be output to P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/TRI0+/A7/VREF+, meanwhile the ADC channel 7 can also be selected to monitor this voltage. For more detailed information, see the MSP430FR4xx and MSP430FR2xx Family User's Guide.

6.11.2 Clock System (CS) and Clock Distribution

The clock system includes a 32-kHz low-frequency oscillator (XT1 low frequency) or up to a 16-MHz high-frequency crystal oscillator (XT1 high frequency), an internal very low-power low-frequency oscillator (VLO), an integrated 32-kHz RC oscillator (REFO), an integrated internal digitally controlled oscillator (DCO) that can use frequency-locked loop (FLL) locking with internal or external 32-kHz reference clock, and on-chip asynchronous high-speed clock (MODOSC). The clock system is designed to target cost-effective designs with minimal external components. A fail-safe mechanism is designed for XT1. The clock system module offers the following clock signals.

- Main Clock (MCLK): system clock used by the CPU and all relevant peripherals accessed by the bus.
 All clock sources except MODOSC can be selected as the source with a predivider of 1, 2, 4, 8, 16, 32, 64, or 128.
- Sub-Main Clock (SMCLK): subsystem clock used by the peripheral modules. SMCLK derives from the MCLK with a predivider of 1, 2, 4, or 8. This means SMCLK is always equal to or less than MCLK.
- Auxiliary Clock (ACLK): derived from the external XT1 clock or internal REFO clock up to 40 kHz.

All peripherals may have one or several clock sources depending on specific functionality. Table 6-8 and Table 6-9 show the clock distribution used in this device.

Table 6-8. Clock Distribution

	CLOCK SOURCE SELECT BITS ⁽¹⁾	MCLK	SMCLK	ACLK	MODCLK	VLOCLK	EXTERNAL PIN
Frequency Range		DC to 16 MHz	DC to 16 MHz	DC to 40 kHz	5 MHz ±10%	10 kHz ±50%	-
CPU	N/A	Default	_	I	_	_	_
FRAM	N/A	Default	_	-	_	_	_
RAM	N/A	Default	_	-	_	_	-
CRC	N/A	Default	_	ı	_	_	_
I/O	N/A	Default	_	-	_	-	
TB0	TBSSEL	_	10b	01b	_	_	00b (TB0CLK pin)
TB1	TBSSEL	_	10b	01b	_	_	00b (TB1CLK pin)
eUSCI_A0	UCSSEL	_	10b or 11b	01b	_	_	00b (UCA0CLK pin)
eUSCI_B0	UCSSEL	_	10b or 11b	01b	_	-	00b (UCB0CLK pin)
WDT	WDTSSEL	_	00b	01b	_	10b	_
ADC	ADCSSEL	-	10b or 11b	01b	00b	-	-
RTC	RTCSS	-	01b ⁽²⁾	01b ⁽²⁾	_	11b	-

- (1) N/A = not applicable
- (2) Controlled by the RTCCLK bit in the SYSCFG2 register.

Figure 6-1. Clock Distribution Block Diagram

Table 6-9. XTCLK Distribution

OPERATION MODE	CLOCK SOURCE SELECT BITS	XTHFCLK	XTLFCLK	XTLFCLK (LPMx.5)
MODE	SELECT BITS	AM TO LPM0	AM TO LPM3	AM TO LPM3.5
MCLK	SELMS	10b	10b	10b
SMCLK	SELMS	10b	10b	10b
REFO	SELREF	0b	0b	0b
ACLK	SELA	0b	0b	0b
RTC	RTCSS	-	10b	10b

6.11.3 General-Purpose Input/Output Port (I/O)

There are up to 16 I/O ports implemented.

- P1 and P2 are full 8-bit ports.
- All individual I/O bits are independently programmable.
- Any combination of input and output is possible for P1 and P2. All inputs of P1 and four inputs of P2 (P2.0, P2.1, P2.6, P2.7) can be configured for interrupt input.
- · Programmable pullup or pulldown on all ports.
- All inputs of P1 and four inputs of P2 (P2.0, P2.1, P2.6, P2.7) can be configured for edge-selectable interrupt and for LPM3.5, LPM4, and LPM4.5 wake-up input capability.
- Read and write access to port-control registers is supported by all instructions.
- Ports can be accessed byte-wise or word-wise in pairs.
- Capacitive Touch I/O functionality is supported on all pins.

NOTE

Configuration of digital I/Os after BOR reset

To prevent any cross currents during start-up of the device, all port pins are high-impedance with Schmitt triggers and module functions disabled. To enable the I/O functions after a BOR reset, the ports must be configured first and then the LOCKLPM5 bit must be cleared. For details, see the *Configuration After Reset* section in the *Digital I/O* chapter of the MSP430FR4xx and MSP430FR2xx Family User's Guide.

6.11.4 Watchdog Timer (WDT)

The primary function of the WDT module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as interval timer and can generate interrupts at selected time intervals.

Table 6-10, WDT Clocks

WDTSSEL	NORMAL OPERATION (WATCHDOG AND INTERVAL TIMER MODE)
00	SMCLK
01	ACLK
10	VLOCLK
11	Reserved

6.11.5 System Module (SYS)

The SYS module handles many of the system functions within the device. These system functions include power-on reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators, bootloader entry mechanisms, and configuration management (device descriptors) (see Table 6-11). SYS also includes a data exchange mechanism through SBW called a JTAG mailbox that can be used in the application.

Table 6-11. System Module Interrupt Vector Registers

INTERRUPT VECTOR REGISTER	ADDRESS	INTERRUPT EVENT	VALUE	PRIORITY
		No interrupt pending	00h	
		Brownout (BOR)	02h	Highest
		RSTIFG RST/NMI (BOR)	04h	
		PMMSWBOR software BOR (BOR)	06h	
		LPMx.5 wakeup (BOR)	08h	
		Security violation (BOR)	0Ah	
		Reserved	0Ch	
		SVSHIFG SVSH event (BOR)	0Eh	
		Reserved	10h	
OVODOTIV. Ovotova Danat	04551	Reserved	12h	
SYSRSTIV, System Reset	015Eh	PMMSWPOR software POR (POR)	14h	
		WDTIFG watchdog time-out (PUC)	16h	
		WDTPW password violation (PUC)	18h	
		FRCTLPW password violation (PUC)	1Ah	
		Uncorrectable FRAM bit error detection	1Ch	
		Peripheral area fetch (PUC)	1Eh	
		PMMPW PMM password violation (PUC)	20h	
		Reserved	22h	
		FLL unlock (PUC)	24h	
		Reserved	26h to 3Eh	Lowest
		No interrupt pending	00h	
		SVS low-power reset entry	02h	Highest
		Uncorrectable FRAM bit error detection	04h	
		Reserved	06h	
		Reserved	08h	
		Reserved	0Ah	
0)/001/11/20	2.721	Reserved	0Ch	
SYSSNIV, System NMI	015Ch	Reserved	0Eh	
		Reserved	10h	
		VMAIFG Vacant memory access	12h	
		JMBINIFG JTAG mailbox input	14h	
		JMBOUTIFG JTAG mailbox output	16h	
		Correctable FRAM bit error detection	18h	
		Reserved	1Ah to 1Eh	Lowest
		No interrupt pending	00h	
		NMIIFG NMI pin or SVS _H event	02h	Highest
SYSUNIV, User NMI	015Ah	OFIFG oscillator fault	04h	g
		Reserved	06h to 1Eh	Lowest

6.11.6 Cyclic Redundancy Check (CRC)

The 16-bit cyclic redundancy check (CRC) module produces a signature based on a sequence of data values and can be used for data checking purposes. The CRC generation polynomial is compliant with CRC-16-CCITT standard of $x^{16} + x^{12} + x^5 + 1$.

6.11.7 Enhanced Universal Serial Communication Interface (eUSCI_A0, eUSCI_B0)

The eUSCI modules are used for serial data communications. The eUSCI_A module supports either UART or SPI communications. The eUSCI_B module supports either SPI or I²C communications. In addition, the eUSCI_A module supports automatic baud-rate detection and IrDA.. The eUSCI_B module is connected either from P1 port or P2 port, it can be selected from the USCIBRMAP bit of the SYSCFG2 register (see Table 6-12).

UART SPI P1.7 TXD SIMO P1.6 RXD eUSCI A0 SOMI P1.5 **SCLK** P1.4 STE PIN (USCIBRMP = 0) I²C SPI P1.0 STE P1.1 **SCLK** P1.2 SDA SIMO P1.3 SCL SOMI eUSCI_B0 PIN (USCIBRMP = 1) I²C SPI P2.2 STE P2.3 **SCLK** P2.4 SDA SIMO P2.5 SCL SOMI

Table 6-12. eUSCI Pin Configurations

6.11.8 Timers (Timer0 B3, Timer1 B3)

The Timer0_B3 and Timer1_B3 modules are 16-bit timers and counters with three capture/compare registers each. Each can support multiple captures or compares, PWM outputs, and interval timing (see Table 6-13 and Table 6-14). Each has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. The CCR0 registers on TB0 and TB1 are not externally connected and can be used only for hardware period timing and interrupt generation. In Up mode, they can set the overflow value of the counter.

The interconnection of Timer0_B3 and Timer1_B3 can modulate the eUSCI_A pin of UCA0TXD/UCA0SIMO in either ASK or FSK mode, with which a user can easily acquire a modulated infrared command for directly driving an external IR diode (see Figure 6-2). The IR functions are fully controlled by the SYS configuration registers including IREN (enable), IRPSEL (polarity select), IRMSEL (mode select), IRDSEL (data select), and IRDATA (data) bits. For more information, see the System Resets, Interrupts, and Operating Modes, System Control Module (SYS) chapter in the MSP430FR4xx and MSP430FR2xx Family User's Guide.

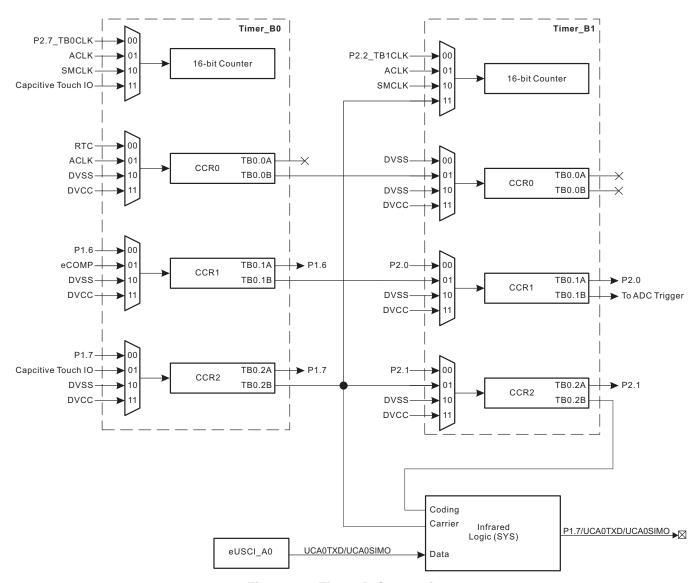


Figure 6-2. Timer_B Connections

Table 6-13. Timer0_B3 Signal Connections

PORT PIN	DEVICE INPUT SIGNAL	MODULE INPUT NAME	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL
P2.7	TB0CLK	TBCLK			
	ACLK (internal)	ACLK			
	SMCLK (internal)	SMCLK	Timer	N/A	
	From Capacitive Touch I/O (internal)	INCLK			
	From RTC (internal)	CCI0A			
	ACLK (internal)	CCI0B	CCR0	TB0	Timer1_B3 CCI0B input
	DVSS	GND			
	DVCC	V_{CC}			
P1.6	TB0.1	CCI1A			TB0.1
	From eCOMP (internal)	CCI1B	CCR1	TB1	Timer1_B3 CCI1B input
	DVSS	GND			
	DVCC	V _{cc}			
P1.7	TB0.2	CCI2A			TB0.2
	From Capacitive Touch I/O (internal)	CCI2B	CCR2	TB2	Timer1_B3 INCLK Timer1_B3 CCl2B input, IR input
	DVSS	GND			
	DVCC	V _{CC}			

Table 6-14. Timer1_B3 Signal Connections

PORT PIN	DEVICE INPUT SIGNAL	MODULE INPUT NAME	MODULE BLOCK	MODULE OUTPUT SIGNAL	DEVICE OUTPUT SIGNAL
P2.2	TB1CLK	TBCLK			
	ACLK (internal)	ACLK			
	SMCLK (internal)	SMCLK	Timer	N/A	
	Timer0_B3 CCR2B output (internal)	INCLK			
	DVSS	CCI0A			
	Timer0_B3 CCR0B output (internal)	CCI0B	CCR0	TB0	
	DVSS	GND			
	DVCC	V_{CC}			
P2.0	TB1.1	CCI1A	CCR1	R1 TB1	TB1.1
	Timer0_B3 CCR1B output (internal)	CCI1B			To ADC trigger
	DVSS	GND			
	DVCC	V_{CC}			
P2.1	TB1.2	CCI2A			TB1.2
	Timer0_B3 CCR2B output (internal)	CCI2B	CCR2	TB2	IR input
	DVSS	GND			
	DVCC	V _{CC}			

The Timer_B module includes a feature that puts all Timer_B outputs into a high-impedance state when the selected source is triggered. The source can be selected from an external pin or an internal signal, and it is controlled by TBxTRG in SYS. For more information, see the *System Resets, Interrupts, and Operating Modes, System Control Module (SYS)* chapter in the *MSP430FR4xx and MSP430FR2xx Family User's Guide.*

Table 6-15 lists the Timer B high-impedance trigger source selections.

Table 6-15. TBxOUTH

TBxTRGSEL	TBxOUTH TRIGGER SOURCE SELECTION	Timer_B PAD OUTPUT HIGH IMPEDANCE	
TB0TRGSEL = 0	eCOMP0 output (internal)	D4 6 D4 7	
TB0TRGSEL= 1	P1.2	P1.6, P1.7	
TB1TRGSEL = 0	eCOMP0 output (internal)	D2 0 D2 4	
TB1TRGSEL = 1	P2.3	P2.0, P2.1	

6.11.9 Backup Memory (BAKMEM)

The BAKMEM supports data retention during LPM3.5 mode. This device provides up to 32 bytes that are retained during LPM3.5.

6.11.10 Real-Time Clock (RTC) Counter

The RTC counter is a 16-bit modulo counter that is functional in AM, LPM0, LPM3, LPM4, and LPM3.5. This module may periodically wake up the CPU from LPM0, LPM3, LPM4, and LPM3.5 based on timing from a low-power clock source such as the XT1, ACLK, or VLO clocks. In AM, RTC can be driven by SMCLK to generate high-frequency timing events and interrupts. ACLK and SMCLK both can source to the RTC, however only one of them can be selected simultaneously. The RTC overflow events trigger:

- Timer0 B3 CCI0A
- ADC conversion trigger when ADCSHSx bits are set as 01b

6.11.11 10-Bit Analog-to-Digital Converter (ADC)

The 10-bit ADC module supports fast 10-bit analog-to-digital conversions with single-ended input. The module implements a 10-bit SAR core, sample select control, a reference generator, and a conversion result buffer. A window comparator with lower and upper limits allows CPU-independent result monitoring with three window comparator interrupt flags.

The ADC supports 10 external inputs and 4 internal inputs (see Table 6-16).

Table 6-16. ADC Channel Connections

ADCSHSx	ADC CHANNELS	EXTERNAL PIN
0	A0/Veref+	P1.0
1	A1	P1.1
2	A2/Veref-	P1.2
3	A3	P1.3
4	A4	P1.4
5	A5	P1.5
6	A6	P1.6
7	A7 ⁽¹⁾	P1.7
8	Not used	N/A
9	Not used	N/A
10	Not used	N/A
11	Not used	N/A
12	On-chip temperature sensor	N/A
13	Reference voltage (1.5 V)	N/A
14	DVSS	N/A
15	DVCC	N/A

⁽¹⁾ When A7 is used, the PMM 1.2-V reference voltage can be output to this pin by setting the PMM control register. The 1.2-V voltage can be measured by the A7 channel.

The analog-to-digital conversion can be started by software or a hardware trigger. Table 6-17 lists the trigger sources that are available.

Table 6-17. ADC Trigger Signal Connections

ADCSHSx		TRIGGER SOURCE
BINARY	DECIMAL	TRIGGER SOURCE
00	0	ADCSC bit (software trigger)
01	1	RTC event
10	2	TB1.1B
11	3	eCOMP0 COUT

6.11.12 eCOMP0

The enhanced comparator is an analog voltage comparator with built-in 6-bit DAC as an internal voltage reference. The integrated 6-bit DAC can be set up to 64 steps for comparator reference voltage. This module has 4-level programmable hysteresis and configurable power modes, high power or low power.

eCOMP0 supports external inputs and internal inputs (see Table 6-18) and outputs (see Table 6-19).

Table 6-18. eCOMP0 Input Channel Connections

CPPSEL, CPNSEL	COMPO CHANNELS	EXTERNAL OR INTERNAL
BINARY	eCOMP0 CHANNELS	CONNECTION
000	C0	P1.0
001	C1	P1.1
010	Not used	N/A
011	Not used	N/A
100	C4	SAC0 , OA0O on positive port TIA0, TRI0O on negative port
101	Not used	N/A
110	C6	Built-in 6-bit DAC

Table 6-19. eCOMP0 Output Channel Connections

eCOMP0 OUT	EXTERNAL PIN OUT, MODULE
1	P2.0
2	TB0.1B, TB0 (TB0OUTH), TB1 (TB1OUTH), ADC

6.11.13 SACO

The Smart Analog Combo (SAC) integrates a high-performance low-power operational amplifier. SAC-L1 is integrated in FR231x. SAC-L1 supports only a general-purpose amplifier. For more information, see the Smart Analog Combo (SAC) chapter in the MSP430FR4xx and MSP430FR2xx Family User's Guide.

SAC0 supports external inputs and internal inputs (see Table 6-20 and Table 6-21).

Table 6-20. SAC0 Positive Input Channel Connections

PSEL	SAC0 CHANNELS	EXTERNAL PIN OUT, MODULE
00	SAC0, OA0 positive channel 1	P1.4
10	SAC0, OA0 positive channel 2	TRI0O

Table 6-21. SAC0 Negative Input Channel Connections

NSEL	SAC0 CHANNELS	EXTERNAL PIN OUT, MODULE
00	SAC0, OA0 negative channel 1	P1.2
10	Not used	N/A

6.11.14 TIA0

The Transimpedance Amplifier (TIA) is a high-performance low-power amplifier with rail-to-rail output. This module is an amplifier that converts current to voltage. It has programmable power modes: high power or low power. For more information, see the *Transimpedance Amplifier (TIA)* chapter in the *MSP430FR4xx* and *MSP430FR2xx Family User's Guide*.

The FR231x device in the TSSOP-16 package supports a dedicated low-leakage pad for TIA negative input to support low-leakage performance. In other packages (TSSOP-20 and VQFN-16), the TIA negative port is shared with a GPIO to support the transimpedance amplifier function. For more information, see Section 4 and Table 5-25.

The TIA supports external input (see Table 6-22 and Section 4).

Table 6-22. TIA Input Channel Connections

TRIPSEL	TIA0 CHANNELS	EXTERNAL PIN OUT, MODULE
00	Positive input	P1.7
01	Not used	N/A
10	Not used	N/A
11	Not used	N/A

6.11.15 eCOMP0, SAC0, TIA0, and ADC in SOC Interconnection

Figure 6-3 shows how the high-performance analog modules are internally connected.

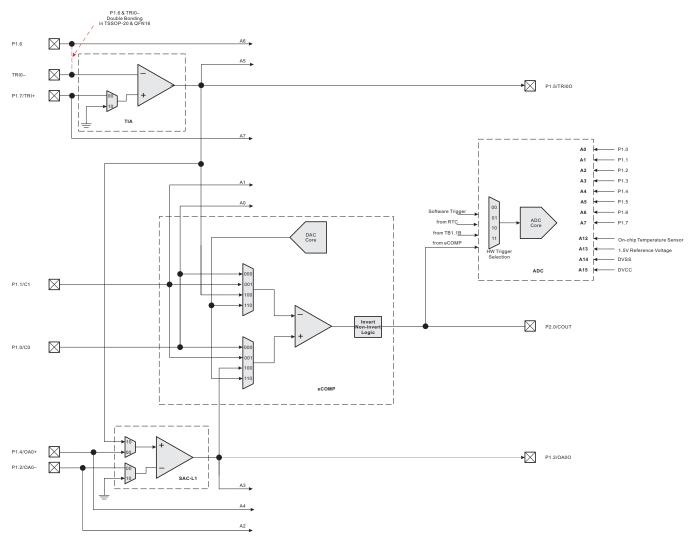


Figure 6-3. High-Performance Analog SOC Interconnection

The analog modules can be connected internally, see details as below (see Figure 6-4):

Figure 6-4. SOC Interconnection

6.11.16 Embedded Emulation Module (EEM)

The EEM supports real-time in-system debugging. The EEM on these devices has the following features:

- Three hardware triggers or breakpoints on memory access
- One hardware trigger or breakpoint on CPU register write access
- Up to four hardware triggers that can be combined to form complex triggers or breakpoints
- · One cycle counter
- · Clock control on module level

6.11.17 Peripheral File Map

Table 6-23 lists the base address of the registers for each peripheral. Table 6-24 through Table 6-42 list all of the available registers for each peripheral and their address offsets.

Table 6-23. Peripherals Summary

MODULE NAME	BASE ADDRESS	SIZE
Special Functions (see Table 6-24)	0100h	0010h
PMM (see Table 6-25)	0120h	0020h
SYS (see Table 6-26)	0140h	0040h
CS (see Table 6-27)	0180h	0020h
FRAM (see Table 6-28)	01A0h	0010h
CRC (see Table 6-29)	01C0h	0008h
WDT (see Table 6-30)	01CCh	0002h
Port P1, P2 (see Table 6-31)	0200h	0020h
Capacitive Touch I/O (see Table 6-32)	02E0h	0010h
RTC (see Table 6-33)	0300h	0010h
Timer0_B3 (see Table 6-34)	0380h	0030h
Timer1_B3 (see Table 6-35)	03C0h	0030h
eUSCI_A0 (see Table 6-36)	0500h	0020h
eUSCI_B0 (see Table 6-37)	0540h	0030h
Backup Memory (see Table 6-38)	0660h	0020h
ADC (see Table 6-39)	0700h	0040h
eCOMP0 (see Table 6-40)	08E0h	0020h
SAC0 (see Table 6-41)	0C80h	0010h
TIA0 (see Table 6-42)	0F00h	0010h

Table 6-24. Special Function Registers (Base Address: 0100h)

REGISTER DESCRIPTION	REGISTER	OFFSET
SFR interrupt enable	SFRIE1	00h
SFR interrupt flag	SFRIFG1	02h
SFR reset pin control	SFRRPCR	04h

Table 6-25. PMM Registers (Base Address: 0120h)

REGISTER DESCRIPTION	REGISTER	OFFSET
PMM control 0	PMMCTL0	00h
PMM control 1	PMMCTL1	02h
PMM control 2	PMMCTL2	04h
PMM interrupt flags	PMMIFG	0Ah
PM5 control 0	PM5CTL0	10h

Table 6-26. SYS Registers (Base Address: 0140h)

REGISTER DESCRIPTION	REGISTER	OFFSET
System control	SYSCTL	00h
Bootloader configuration area	SYSBSLC	02h
JTAG mailbox control	SYSJMBC	06h
JTAG mailbox input 0	SYSJMBI0	08h
JTAG mailbox input 1	SYSJMBI1	0Ah
JTAG mailbox output 0	SYSJMBO0	0Ch

Table 6-26. SYS Registers (Base Address: 0140h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
JTAG mailbox output 1	SYSJMBO1	0Eh
User NMI vector generator	SYSUNIV	1Ah
System NMI vector generator	SYSSNIV	1Ch
Reset vector generator	SYSRSTIV	1Eh
System configuration 0	SYSCFG0	20h
System configuration 1	SYSCFG1	22h
System configuration 2	SYSCFG2	24h

Table 6-27. CS Registers (Base Address: 0180h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CS control 0	CSCTL0	00h
CS control 1	CSCTL1	02h
CS control 2	CSCTL2	04h
CS control 3	CSCTL3	06h
CS control 4	CSCTL4	08h
CS control 5	CSCTL5	0Ah
CS control 6	CSCTL6	0Ch
CS control 7	CSCTL7	0Eh
CS control 8	CSCTL8	10h

Table 6-28. FRAM Registers (Base Address: 01A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
FRAM control 0	FRCTL0	00h
General control 0	GCCTL0	04h
General control 1	GCCTL1	06h

Table 6-29. CRC Registers (Base Address: 01C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CRC data input	CRC16DI	00h
CRC data input reverse byte	CRCDIRB	02h
CRC initialization and result	CRCINIRES	04h
CRC result reverse byte	CRCRESR	06h

Table 6-30. WDT Registers (Base Address: 01CCh)

REGISTER DESCRIPTION	REGISTER	OFFSET
Watchdog timer control	WDTCTL	00h

Table 6-31. Port P1, P2 Registers (Base Address: 0200h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 input	P1IN	00h
Port P1 output	P1OUT	02h
Port P1 direction	P1DIR	04h
Port P1 pulling enable	P1REN	06h
Port P1 selection 0	P1SEL0	0Ah
Port P1 selection 1	P1SEL1	0Ch
Port P1 interrupt vector word	P1IV	0Eh

Detailed Description

Table 6-31. Port P1, P2 Registers (Base Address: 0200h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 interrupt edge select	P1IES	18h
Port P1 interrupt enable	P1IE	1Ah
Port P1 interrupt flag	P1IFG	1Ch
Port P2 input	P2IN	01h
Port P2 output	P2OUT	03h
Port P2 direction	P2DIR	05h
Port P2 pulling enable	P2REN	07h
Port P2 selection 0	P2SEL0	0Bh
Port P2 selection 1	P2SEL1	0Dh
Port P2 interrupt vector word	P2IV	1Eh
Port P2 interrupt edge select	P2IES	19h
Port P2 interrupt enable	P2IE	1Bh
Port P2 interrupt flag	P2IFG	1Dh

Table 6-32. Capacitive Touch I/O Registers (Base Address: 02E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Capacitive touch I/O 0 control	CAPIO0CTL	0Eh

Table 6-33. RTC Registers (Base Address: 0300h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RTC control	RTCCTL	00h
RTC interrupt vector	RTCIV	04h
RTC modulo	RTCMOD	08h
RTC counter	RTCCNT	0Ch

Table 6-34. Timer0_B3 Registers (Base Address: 0380h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB0 control	TB0CTL	00h
Capture/compare control 0	TB0CCTL0	02h
Capture/compare control 1	TB0CCTL1	04h
Capture/compare control 2	TB0CCTL2	06h
TB0 counter	TB0R	10h
Capture/compare 0	TB0CCR0	12h
Capture/compare 1	TB0CCR1	14h
Capture/compare 2	TB0CCR2	16h
TB0 expansion 0	TB0EX0	20h
TB0 interrupt vector	TB0IV	2Eh

Table 6-35. Timer1_B3 Registers (Base Address: 03C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB1 control	TB1CTL	00h
Capture/compare control 0	TB1CCTL0	02h
Capture/compare control 1	TB1CCTL1	04h
Capture/compare control 2	TB1CCTL2	06h
TB1 counter	TB1R	10h
Capture/compare 0	TB1CCR0	12h

Table 6-35. Timer1_B3 Registers (Base Address: 03C0h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
Capture/compare 1	TB1CCR1	14h
Capture/compare 2	TB1CCR2	16h
TB1 expansion 0	TB1EX0	20h
TB1 interrupt vector	TB1IV	2Eh

Table 6-36. eUSCI_A0 Registers (Base Address: 0500h)

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_A control word 0	UCA0CTLW0	00h
eUSCI_A control word 1	UCA0CTLW1	02h
eUSCI_A control rate 0	UCA0BR0	06h
eUSCI_A control rate 1	UCA0BR1	07h
eUSCI_A modulation control	UCA0MCTLW	08h
eUSCI_A status	UCA0STAT	0Ah
eUSCI_A receive buffer	UCA0RXBUF	0Ch
eUSCI_A transmit buffer	UCA0TXBUF	0Eh
eUSCI_A LIN control	UCA0ABCTL	10h
eUSCI_A IrDA transmit control	IUCA0IRTCTL	12h
eUSCI_A IrDA receive control	IUCA0IRRCTL	13h
eUSCI_A interrupt enable	UCA0IE	1Ah
eUSCI_A interrupt flags	UCA0IFG	1Ch
eUSCI_A interrupt vector word	UCA0IV	1Eh

Table 6-37. eUSCI_B0 Registers (Base Address: 0540h)

REGISTER DESCRIPTION	REGISTER	OFFSET
eUSCI_B control word 0	UCB0CTLW0	00h
eUSCI_B control word 1	UCB0CTLW1	02h
eUSCI_B bit rate 0	UCB0BR0	06h
eUSCI_B bit rate 1	UCB0BR1	07h
eUSCI_B status word	UCB0STATW	08h
eUSCI_B byte counter threshold	UCB0TBCNT	0Ah
eUSCI_B receive buffer	UCB0RXBUF	0Ch
eUSCI_B transmit buffer	UCB0TXBUF	0Eh
eUSCI_B I2C own address 0	UCB0I2COA0	14h
eUSCI_B I2C own address 1	UCB0I2COA1	16h
eUSCI_B I2C own address 2	UCB0I2COA2	18h
eUSCI_B I2C own address 3	UCB0I2COA3	1Ah
eUSCI_B receive address	UCB0ADDRX	1Ch
eUSCI_B address mask	UCB0ADDMASK	1Eh
eUSCI_B I2C slave address	UCB0I2CSA	20h
eUSCI_B interrupt enable	UCB0IE	2Ah
eUSCI_B interrupt flags	UCB0IFG	2Ch
eUSCI_B interrupt vector word	UCB0IV	2Eh

Table 6-38. Backup Memory Registers (Base Address: 0660h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Backup memory 0	BAKMEM0	00h
Backup memory 1	BAKMEM1	02h
Backup memory 2	BAKMEM2	04h
Backup memory 3	BAKMEM3	06h
Backup memory 4	BAKMEM4	08h
Backup memory 5	BAKMEM5	0Ah
Backup memory 6	BAKMEM6	0Ch
Backup memory 7	BAKMEM7	0Eh
Backup memory 8	BAKMEM8	10h
Backup memory 9	BAKMEM9	12h
Backup memory 10	BAKMEM10	14h
Backup memory 11	BAKMEM11	16h
Backup memory 12	BAKMEM12	18h
Backup memory 13	BAKMEM13	1Ah
Backup memory 14	BAKMEM14	1Ch
Backup memory 15	BAKMEM15	1Eh

Table 6-39. ADC Registers (Base Address: 0700h)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC control 0	ADCCTL0	00h
ADC control 1	ADCCTL1	02h
ADC control 2	ADCCTL2	04h
ADC window comparator low threshold	ADCLO	06h
ADC window comparator high threshold	ADCHI	08h
ADC memory control 0	ADCMCTL0	0Ah
ADC conversion memory	ADCMEM0	12h
ADC interrupt enable	ADCIE	1Ah
ADC interrupt flags	ADCIFG	1Ch
ADC interrupt vector word	ADCIV	1Eh

Table 6-40. eCOMP0 Registers (Base Address: 08E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Comparator control 0	CPCTL0	00h
Comparator control 1	CPCTL1	02h
Comparator interrupt	CPINT	06h
Comparator interrupt vector	CPIV	08h
Comparator built-in DAC control	CPDACCTL	10h
Comparator built-in DAC data	CPDACDATA	12h

Table 6-41. SAC0 Registers (Base Address: 0C80h)

REGISTER DESCRIPTION	REGISTER	OFFSET
SAC0 OA control	SAC0OA	00h

Table 6-42. TIA0 Registers (Base Address: 0F00h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TIA control	TRICTL	00h

6.12 Input/Output Diagrams

6.12.1 Port P1 Input/Output With Schmitt Trigger

Figure 6-5 shows the port diagram. Table 6-43 summarizes the selection of the port functions.

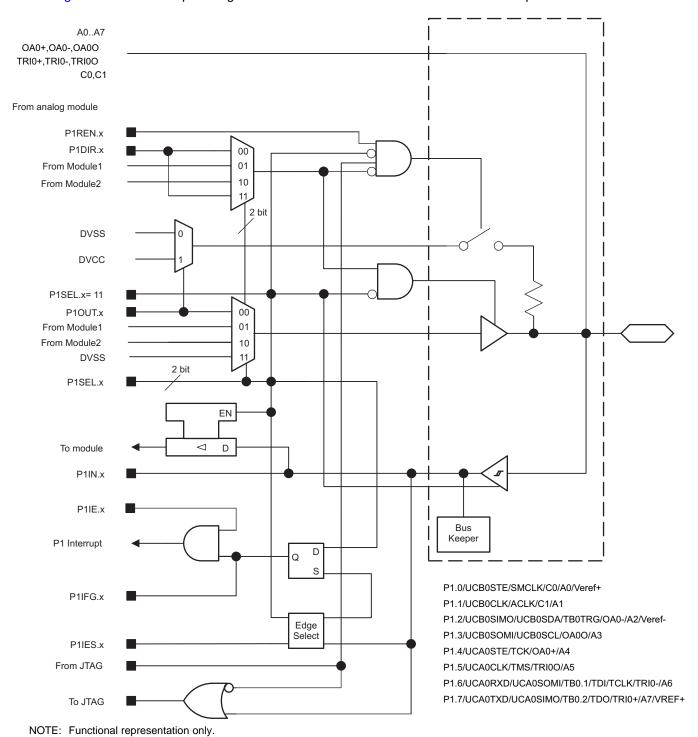
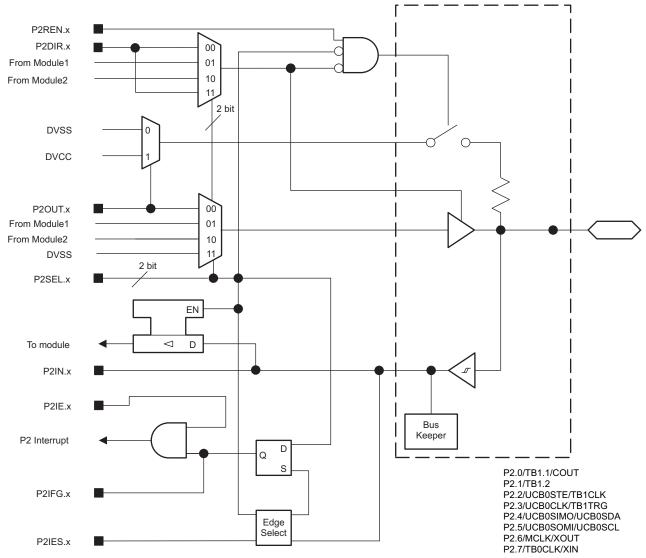


Figure 6-5. Port P1 Input/Output With Schmitt Trigger


Table 6-43. Port P1 Pin Functions

DIN NAME (D4)			CONTRO	CONTROL BITS AND SIGNALS ⁽¹⁾		
PIN NAME (P1.x)	X	FUNCTION	P1DIR.x	P1SELx	JTAG	
P1.0/UCB0STE/SMCLK/ C0/A0/Veref+		P1.0 (I/O)	I: 0; O: 1	00	N/A	
		UCB0STE	X	01	N/A	
	0	SMCLK	1	10	N/A	
		VSS	0	10		
		C0, A0/Veref+	X	11	N/A	
		P1.1 (I/O)	I: 0; O: 1	0	N/A	
		UCB0CLK	Х	01	N/A	
P1.1/UCB0CLK/ACLK/ C1A1	1	ACLK	1	40	N1/A	
CIAI		VSS	0	10	N/A	
		C1, A1	X	11	N/A	
		P1.2 (I/O)	I: 0; O: 1	00	N/A	
P1.2/UCB0SIMO/	_	UCB0SIMO/UCB0SDA	X	01	N/A	
UCB0SDA/TB0TRG/ OA0-/A2/Veref-	2	TB0TRG	0	10	N/A	
0.10 // 12/ 1010.		OA0-, A2/Veref-	X	11	N/A	
		P1.3 (I/O)	I: 0; O: 1	00	N/A	
P1.3/UCB0SOMI/ UCB0SCL/OA0O/A3	3	UCB0SOMI/UCB0SCL	X	01	N/A	
UCBUSCL/OAUO/AS		OA0O, A3	X	11	N/A	
		P1.4 (I/O)	I: 0; O: 1	00	Disabled	
P1.4/UCA0STE/TCK/		UCAOSTE	X	01	Disabled	
OA0+/A4	4	OA0+, A4	X	11	Disabled	
		JTAG TCK	X	X	TCK	
		P1.5 (I/O)	I: 0; O: 1	00	Disabled	
P1.5/UCA0CLK/TMS/	_	UCA0CLK	X	01	Disabled	
TRI0O/A5	5	TRI0O, A5	X	11	Disabled	
		JTAG TMS	X	X	TMS	
		P1.6 (I/O)	I: 0; O: 1	00	Disabled	
		UCA0RXD/UCA0SOMI	X	01	Disabled	
P1.6/UCA0RXD/	6	TB0.CCI1A	0	10 Dis		
UCA0SOMI/TB0.1/TDI/ TCLK/TRI0-/A6		TB0.1	1		Disabled	
		TRI0-, A6	X	11	Disabled	
		JTAG TDI/TCLK	X	X	TDI/TCLK	
		P1.7 (I/O)	I: 0; O: 1	00	Disabled	
		UCA0TXD/UCA0SIMO	X	01	Disabled	
P1.7/UCA0TXD/ UCA0SIMO/TB0.2/TDO/ TRI0+/A7/VREF+	7	TB0.CCI2A	0		5.	
		TB0.2	1	10	Disabled	
		TRI0+, A7, VREF+	X	11	Disabled	
		JTAG TDO	X	X	TDO	

⁽¹⁾ X = don't care

6.12.2 Port P2 Input/Output With Schmitt Trigger

Figure 6-6 shows the port diagram. Table 6-44 summarizes the selection of the port functions.

NOTE: Functional representation only.

Figure 6-6. Port P2 Input/Output With Schmitt Trigger

Table 6-44. Port P2 Pin Functions

PIN NAME (P2.x)	х	FUNCTION	CONTROL BITS	CONTROL BITS AND SIGNALS ⁽¹⁾		
			P2DIR.x	P2SELx		
P2.0/TB1.1/COUT	0	P2.0 (I/O)	I: 0; O: 1	00		
		TB1.CCI1A	0	0.4		
		TB1.1	1	01		
		COUT	1	10		
		P2.1 (I/O)0	I: 0; O: 1	00		
P2.1/TB1.2	1	TB1.CCI2A	0	01		
		TB1.2	1	01		
		P2.2 (I/O)	l: 0; O: 1	00		
P2.2/UCB0STE/TB1CLK	2	UCB0STE	X	01		
F2.2/UCBUSTE/TBTCLK	2	TB1CLK	0	10		
		VSS	1	10		
		P2.3 (I/O)	l: 0; O: 1	00		
P2.3/UCB0CLK/TB1TRG	3	UCB0CLK	X	01		
		TB1TRG	0	10		
P2.4/UCB0SIMO/UCB0SDA	4	P2.4 (I/O)	I: 0; O: 1	00		
F2.4/UCBUSINIO/UCBUSDA	4	UCB0SIMO/UCB0SDA	X	01		
P2.5/UCB0SOMI/UCB0SCL	5	P2.5 (I/O)	l: 0; O: 1	00		
72.5/UCBUSOIVII/UCBUSCL	5	UCB0SOMI/UCB0SCL	X	01		
	6	P2.6 (I/O)	I: 0; O: 1	00		
DO O/MOLIKINOLIT		MCLK	1	01		
P2.6/MCLK/XOUT		VSS	0	U1		
		XOUT	X	10		
		P2.7 (I/O)	I: 0; O: 1	00		
P2.7/TB0CLK/XIN	7	TB0CLK	0	04		
		VSS	1	01		
		XIN	X	10		

⁽¹⁾ X = don't care

6.13 Device Descriptors (TLV)

Table 6-45 lists the Device IDs of the MSP430FR231x MCU variants. Table 6-46 lists the contents of the device descriptor tag-length-value (TLV) structure for the devices.

Table 6-45. Device IDs

DEVICE	DEVICE ID		
DEVICE	1A04h	1A05h	
MSP430FR2311	F0	82	
MSP430FR2310	F1	82	

Table 6-46. Device Descriptors

		MSP430FR231x		
DESCRIPTION		ADDRESS	VALUE	
Info block	Info length	1A00h	06h	
	CRC length	1A01h	06h	
	222 (1)	1A02h	Per unit	
	CRC value ⁽¹⁾	1A03h	Per unit	
		1A04h	O T-1-1- O-45	
	Device ID	1A05h	See Table 6-45.	
	Hardware revision	1A06h	Per unit	
	Firmware revision	1A07h	Per unit	
	Die record tag	1A08h	08h	
	Die record length	1A09h	0Ah	
		1A0Ah	Per unit	
	Let water ID	1A0Bh	Per unit	
	Lot wafer ID	1A0Ch	Per unit	
Die record		1A0Dh	Per unit	
ле гесога	Die V ansitien	1A0Eh	Per unit	
	Die X position	1A0Fh	Per unit	
	Die Versitier	1A10h	Per unit	
	Die Y position	1A11h	Per unit	
	Test result	1A12h	Per unit	
	restresuit	1A13h	Per unit	
	ADC calibration tag	1A14h	Per unit	
	ADC calibration length	1A15h	Per unit	
ADC calibration	ADC agin factor	1A16h	Per unit	
	ADC gain factor	1A17h	Per unit	
	ADC offers	1A18h	Per unit	
	ADC offset	1A19h	Per unit	
	ADC 1.5 V reference, temperature 20°C	1A1Ah	Per unit	
	ADC 1.5-V reference, temperature 30°C	1A1Bh	Per unit	
	ADC 1.5-V reference, temperature 85°C	1A1Ch	Per unit	
		1A1Dh	Per unit	

Table 6-46. Device Descriptors (continued)

DESCRIPTION		MSP430FR231x		
		ADDRESS	VALUE	
Reference and DCO calibration	Calibration tag	1A1Eh	12h	
	Calibration length	1A1Fh	04h	
	4.5.V. reference forter	1A20h	Per unit	
	1.5-V reference factor	1A21h	Per unit	
	DCO ton patting for 4C MHz, tong and the 2000 (2)	1A22h	Per unit	
	DCO tap settings for 16 MHz, temperature 30°C (2)	1A23h	Per unit	

⁽²⁾ This value can be directly loaded into the DCO bits in the CSCTL0 register to get an accurate 16-MHz frequency at room temperature, especially when MCU exits from LPM3 and below. TI also suggests using a predivider to decrease the frequency if the temperature drift might result an overshoot above 16 MHz.

6.14 Identification

6.14.1 Revision Identification

The device revision information is shown as part of the top-side marking on the device package. The device-specific errata sheet describes these markings. For links to all of the errata sheets for the devices in this data sheet, see Section 8.4.

The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Hardware Revision" entries in Section 6.13.

6.14.2 Device Identification

The device type can be identified from the top-side marking on the device package. The device-specific errata sheet describes these markings. For links to all of the errata sheets for the devices in this data sheet, see Section 8.4.

A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Device ID" entries in Section 6.13.

6.14.3 JTAG Identification

Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in detail in the MSP430 Programming With the JTAG Interface.

7 Applications, Implementation, and Layout

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their implementation to confirm system functionality.

7.1 Device Connection and Layout Fundamentals

This section describes the recommended guidelines when designing with the MSP430. These guidelines are to make sure that the device has proper connections for powering, programming, debugging, and optimum analog performance.

7.1.1 Power Supply Decoupling and Bulk Capacitors

TI recommends connecting a combination of a 10-µF capacitor and a 100-nF low-ESR ceramic decoupling capacitor to the DVCC pin. Higher-value capacitors may be used but can affect supply rail ramp-up time. Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a few millimeters).

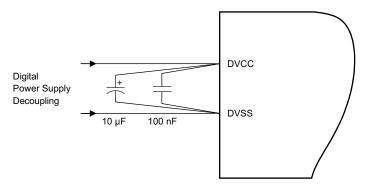


Figure 7-1. Power Supply Decoupling

7.1.2 External Oscillator

Depending on the device variant (see Table 3-1), the device can support a low-frequency crystal (32 kHz) on the LFXT pins, a high-frequency crystal on the HFXT pins, or both. External bypass capacitors for the crystal oscillator pins are required.

It is also possible to apply digital clock signals to the LFXIN and HFXIN input pins that meet the specifications of the respective oscillator if the appropriate LFXTBYPASS or HFXTBYPASS mode is selected. In this case, the associated LFXOUT and HFXOUT pins can be used for other purposes. If the LFXOUT and HFXOUT pins are left unused, they must be terminated according to Section 4.6.

Figure 7-2 shows a typical connection diagram.

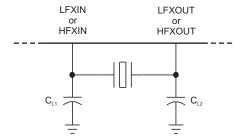
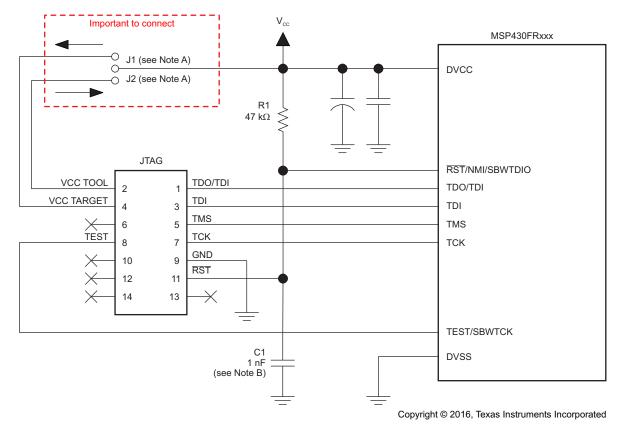
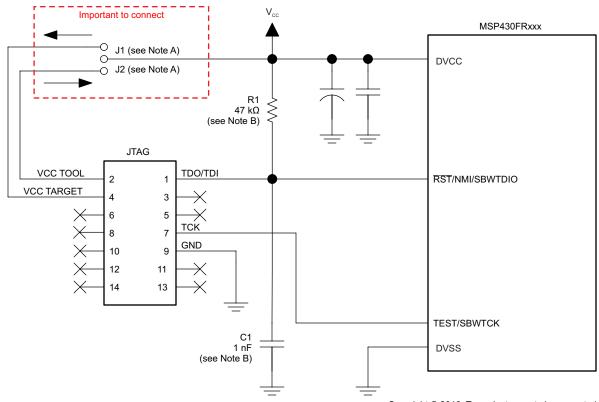


Figure 7-2. Typical Crystal Connection


See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal oscillator with the MSP430 devices.

7.1.3 JTAG

With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the connections also support the MSP-GANG production programmers, thus providing an easy way to program prototype boards, if desired. Figure 7-3 shows the connections between the 14-pin JTAG connector and the target device required to support in-system programming and debugging for 4-wire JTAG communication. Figure 7-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).


The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are identical. Both can supply V_{CC} to the target board (through pin 2). In addition, the MSP-FET and MSP-FET430UIF interface modules and MSP-GANG have a V_{CC} sense feature that, if used, requires an alternate connection (pin 4 instead of pin 2). The VCC-sense feature detects the local V_{CC} present on the target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. Figure 7-3 and Figure 7-4 show a jumper block that supports both scenarios of supplying V_{CC} to the target board. If this flexibility is not required, the desired V_{CC} connections may be hardwired to eliminate the jumper block. Pins 2 and 4 must not be connected at the same time.

For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User's Guide.

- A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection J2.
- B. The upper limit for C1 is 1.1 nF when using TI tools. TI recommends a 1-nF capacitor to enable high-speed SBW communication.

Figure 7-3. Signal Connections for 4-Wire JTAG Communication

- Copyright © 2016, Texas Instruments Incorporated
- A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or programming adapter.
- B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is 1.1 nF when using TI tools. TI recommends a 1-nF capacitor to enable high-speed SBW communication.

Figure 7-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)

7.1.4 Reset

The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function Register (SFR), SFRRPCR.

In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing specifications generates a BOR-type device reset.

Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI. When an external NMI event occurs, the NMIIFG is set.

The \overline{RST}/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not. If the \overline{RST}/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an external 47-k Ω pullup resistor to the \overline{RST}/NMI pin with a 10-nF pulldown capacitor. The pulldown capacitor should not exceed 1.1 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers.

See the MSP430FR4xx and MSP430FR2xx Family User's Guide for more information on the referenced control registers and bits.

7.1.5 Unused Pins

For details on the connection of unused pins, see Section 4.6.

7.1.6 General Layout Recommendations

- Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430 32-kHz Crystal Oscillators for recommended layout guidelines.
- Proper bypass capacitors on DVCC, AVCC, and reference pins if used.
- Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital switching signals such as PWM or JTAG signals away from the oscillator circuit and ADC signals.
- Proper ESD level protection should be considered to protect the device from unintended high-voltage electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.

7.1.7 Do's and Don'ts

During power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in the Absolute Maximum Ratings section. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.

7.2 Peripheral- and Interface-Specific Design Information

7.2.1 ADC Peripheral

7.2.1.1 Partial Schematic

Figure 7-5 shows the recommended decoupling circuit when an external voltage reference is used.

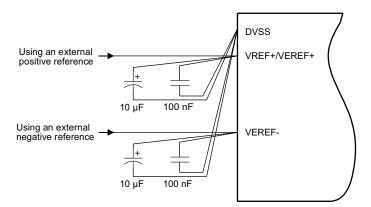


Figure 7-5. ADC Grounding and Noise Considerations

7.2.1.2 Design Requirements

As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should be followed to eliminate ground loops, unwanted parasitic effects, and noise.

Ground loops are formed when return current from the ADC flows through paths that are common with other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can add to or subtract from the reference or input voltages of the ADC. The general quidelines in Section 7.1.1 combined with the connections shown in Figure 7-5 prevent this.

In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital switching or switching power supplies can corrupt the conversion result. TI recommends a noise-free design using separate analog and digital ground planes with a single-point connection to achieve high accuracy.

Figure 7-5 shows the recommended decoupling circuit when an external voltage reference is used. The internal reference module has a maximum drive current as described in the sections *ADC Pin Enable* and 1.2-V Reference Settings of the MSP430FR4xx and MSP430FR2xx Family User's Guide.

www.ti.com

The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage enters the device. In this case, the 10-µF capacitor buffers the reference pin and filters any low-frequency ripple. A bypass capacitor of 100 nF filters out any high-frequency noise.

7.2.1.3 Layout Guidelines

Components that are shown in the partial schematic (see Figure 7-5) should be placed as close as possible to the respective device pins to avoid long traces, because they add additional parasitic capacitance, inductance, and resistance on the signal.

Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM), because the high-frequency switching can be coupled into the analog signal.

7.3 Typical Applications

Table 7-1 provides a link to a LaunchPad[™] development kit. For the most up-to-date list of available tools and TI Designs, see the device-specific product folders listed in Section 8.5.

Table 7-1. Tools

NAME	LINK
MSP430FR2311 LaunchPad Development Kit	http://www.ti.com/tool/MSP-EXP430FR2311

8 Device and Documentation Support

8.1 Getting Started and Next Steps

For more information on the MSP430[™] family of devices and the tools and libraries that are available to help with your development, visit the Getting Started page.

8.2 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP430 MCU devices and support tools. Each MSP430 MCU commercial family member has one of three prefixes: MSP, PMS, or XMS (for example, MSP430FR2311). Texas Instruments recommends two of three possible prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully qualified production devices and tools (with MSP for devices and MSP for tools).

Device development evolutionary flow:

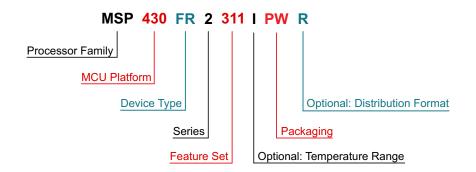
XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

MSP - Fully qualified production device

Support tool development evolutionary flow:

MSPX – Development-support product that has not yet completed Texas Instruments internal qualification testing.

MSP – Fully-qualified development-support product


XMS devices and MSPX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PM) and temperature range (for example, T). Figure 8-1 provides a legend for reading the complete device name for any family member.

Processor Family	MSP = Mixed-Signal Processor XMS = Experimental Silicon							
MCU Platform	TI's MSP430 16-Bit Low-Power Microcontroller Platform							
Device Type	Memory Type FR = FRAM							
Series	FRAM 4 Series = Up to 16 MHz with LCD FRAM 2 Series = Up to 16 MHz without LCD							
Feature Set	1st and 2nd Digit – Smart Analog Combo (SAC) Level / ADC Channels / COMP / 16-bit Timers / I/O 1 = 4 / 1 0 = 2 / 1							
Optional: Temperature Range	S = 0°C to 50°C I = -40°C to 85°C T = -40°C to 105°C							
Packaging	www.ti.com/packaging							
Optional: Distribution Format	T = Small Reel R = Large Reel No Marking = Tube or Tray							

Figure 8-1. Device Nomenclature

8.3 Tools and Software

See the Code Composer Studio for MSP430 User's Guide for details on the available features.

Table 8-1 lists the debug features supported by these microcontrollers

Table 8-1. Hardware Features

MSP430 ARCHITECTURE	4-WIRE JTAG	2-WIRE JTAG	BREAK- POINTS (N)	RANGE BREAK- POINTS	CLOCK CONTROL	STATE SEQUENCER	TRACE BUFFER	LPMx.5 DEBUGGING SUPPORT	EEM VERSION
MSP430Xv2	Yes	Yes	3	Yes	Yes	No	No	No	S

Design Kits and Evaluation Modules

- MSP430FR2311 LaunchPad Development Kit The MSP-EXP430FR2311 LaunchPad Development Kit is an easy-to-use microcontroller development board for the MSP430FR2311 MCU. It contains everything needed to start developing quickly on the MSP430FR2x FRAM platform, including onboard emulation for programming, debugging, and energy measurements.
- MSP-FET + MSP-TS430PW20 FRAM Microcontroller Development Kit Bundle The MSP-FET430U20 bundle combines two debugging tools that support the 20-pin PW package for the MSP430FR23x microcontroller (for example, MSP430FR2311PW20). These two tools include MSP-TS430PW20 and MSP-FET.
- MSP-TS430PW20 20-Pin Target Development Board for MSP430FR2x MCUs The MSP-TS430PW20 is a stand-alone ZIF socket target board used to program and debug the MSP430 in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol. The development board supports all MSP430FR23x and MSP430FR21x Flash parts in a 20-pin or 16 pin TSSOP package (TI package code: PW).

Software

- MSP430Ware MSP430Ware software is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware software also includes a high-level API called MSP430 Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of CCS or as a stand-alone package.
- MSP430FR231x Code Examples C Code examples are available for every MSP device that configures each of the integrated peripherals for various application needs.
- MSP Driver Library The abstracted API of MSP Driver Library provides easy-to-use function calls that free you from directly manipulating the bits and bytes of the MSP430 hardware. Thorough documentation is delivered through a helpful API Guide, which includes details on each function call and the recognized parameters. Developers can use Driver Library functions to write complete projects with minimal overhead.
- MSP EnergyTrace™ Technology EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and displays the energy profile of the application and helps to optimize it for ultra-low-power consumption.
- ULP (Ultra-Low Power) Advisor ULP Advisor™ software is a tool for guiding developers to write more efficient code to fully use the unique ultra-low-power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to help minimize the energy consumption of your application. At build time, ULP Advisor provides notifications and remarks to highlight areas of your code that can be further optimized for lower power.
- FRAM Embedded Software Utilities for MSP Ultra-Low-Power Microcontrollers The FRAM Utilities is designed to grow as a collection of embedded software utilities that leverage the ultra-low-power and virtually unlimited write endurance of FRAM. The utilities are available for MSP430FRxx FRAM microcontrollers and provide example code to help start application development. Included utilities include Compute Through Power Loss (CTPL). CTPL is utility API set that enables ease of use with LPMx.5 low-power modes and a powerful shutdown mode that allows an application to save and restore critical system components when a power loss is detected.

IEC60730 Software Package The IEC60730 MSP430 software package was developed to help

customers comply with IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use – Part 1: General Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters, power tools, e-bikes, and many others. The IEC60730 MSP430 software package can be embedded in customer applications running on MSP430 MCUs to help simplify the customer's certification efforts of functional safety-compliant consumer devices to IEC 60730-1:2010 Class B.

- Fixed Point Math Library for MSP The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably lower than equivalent code written using floating-point math.
- Floating Point Math Library for MSP430 Continuing to innovate in the low-power and low-cost microcontroller space, TI provides MSPMATHLIB. Leveraging the intelligent peripherals of our devices, this floating-point math library of scalar functions that are up to 26 times faster than the standard MSP430 math functions. Mathlib is easy to integrate into your designs. This library is free and is integrated in both Code Composer Studio IDE and IAR Embedded Workbench IDE.

Development Tools

- Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers

 Composer Studio (CCS) integrated development environment (IDE) supports all MSP microcontroller devices. CCS comprises a suite of embedded software utilities used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features.
- Command-Line Programmer MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary files (.txt or .hex) directly to the MSP microcontroller without an IDE.
- MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool often called a debug probe which lets users quickly begin application development on MSP low-power MCUs. Creating MCU software usually requires downloading the resulting binary program to the MSP device for validation and debugging.
- MSP-GANG Production Programmer The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight identical MSP430 or MSP432 flash or FRAM devices at the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that let the user fully customize the process.

8.4 Documentation Support

The following documents describe the MSP430FR231x microcontrollers. Copies of these documents are available on the Internet at www.ti.com.

Receiving Notification of Document Updates

To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (see Section 8.5 for links to product folders). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

Errata

- MSP430FR2311 Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device.
- MSP430FR2310 Device Erratasheet Describes the known exceptions to the functional specifications for all silicon revisions of this device.

User's Guides

- MSP430FR4xx and MSP430FR2xx Family User's Guide Detailed description of all modules and peripherals available in this device family.
- MSP430 FRAM Device Bootloader (BSL) User's Guide The bootloader (BSL) on MSP430 MCUs lets users communicate with embedded memory in the MSP430 MCU during the prototyping phase, final production, and in service. Both the programmable memory (FRAM memory) and the data memory (RAM) can be modified as required.
- MSP430 Programming With the JTAG Interface This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).
- MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described.

Application Reports

- MSP430 32-kHz Crystal Oscillators Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production.
- MSP430 System-Level ESD Considerations System-Level ESD has become increasingly demanding with silicon technology scaling towards lower voltages and the need for designing cost-effective and ultra-low-power components. This application report addresses three different ESD topics to help board designers and OEMs understand and design robust system-level designs: (1) Component-level ESD testing and system-level ESD testing, their differences and why component-level ESD rating does not ensure system-level robustness. (2) General design guidelines for system-level ESD protection at different levels including enclosures, cables, PCB layout, and on-board ESD protection devices. (3) Introduction to System Efficient ESD Design (SEED), a co-design methodology of on-board and on-chip ESD protection to achieve system-level ESD robustness, with example simulations and test results. A few real-world system-level ESD protection design examples and their results are also discussed.

8.5 Related Links

Table 8-2 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 8-2. Related Links

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
MSP430FR2311	Click here	Click here	Click here	Click here	Click here
MSP430FR2310	Click here	Click here	Click here	Click here	Click here

8.6 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

8.7 Trademarks

LaunchPad, MSP430, MSP430Ware, Code Composer Studio, E2E, EnergyTrace, ULP Advisor are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

8.8 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.9 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

www.ti.com

9 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, see the left-hand navigation.

18-Jul-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
MSP430FR2310IPW16	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	(3) Level-2-260C-1 YEAR	-40 to 85	(4/5) FR2310	Samples
MSP430FR2310IPW16R	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FR2310	Samples
MSP430FR2310IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FR2310	Samples
MSP430FR2310IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FR2310	Samples
MSP430FR2310IRGYR	ACTIVE	VQFN	RGY	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FR2310	Samples
MSP430FR2310IRGYT	ACTIVE	VQFN	RGY	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FR2310	Samples
MSP430FR2311IPW16	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FR2311	Samples
MSP430FR2311IPW16R	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FR2311	Samples
MSP430FR2311IPW20	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FR2311	Samples
MSP430FR2311IPW20R	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FR2311	Samples
MSP430FR2311IRGYR	ACTIVE	VQFN	RGY	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FR2311	Samples
MSP430FR2311IRGYT	ACTIVE	VQFN	RGY	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	FR2311	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

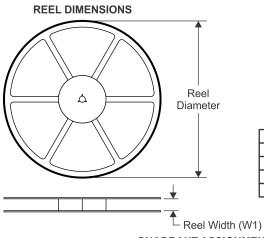
PACKAGE OPTION ADDENDUM

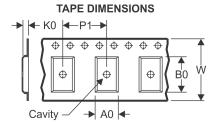
18-Jul-2016

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

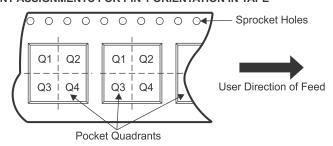
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

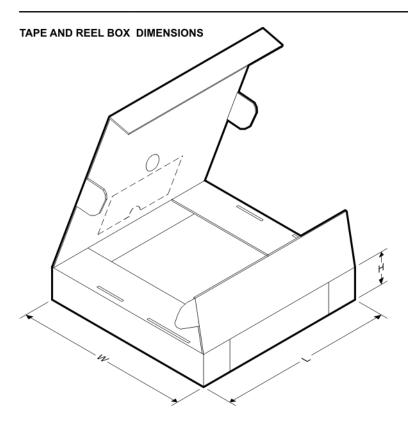

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 4-Jul-2017


TAPE AND REEL INFORMATION

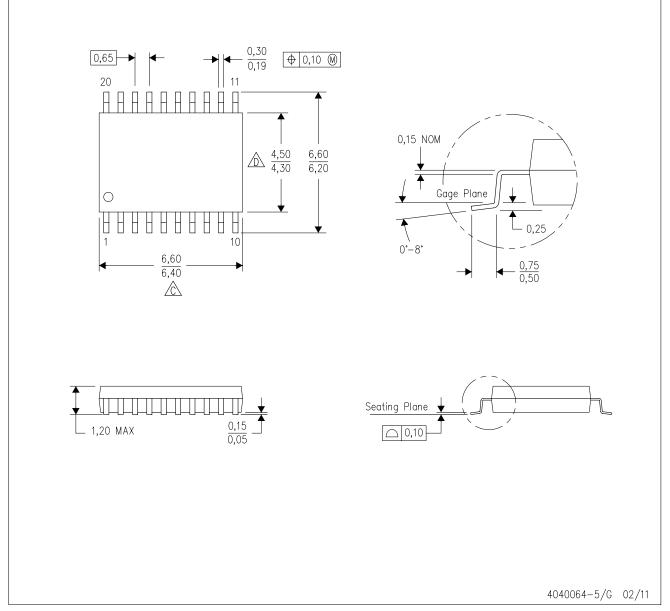
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All difficultions are norminal	1				1	1					1	1
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430FR2310IPW16R	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
MSP430FR2310IPW20R	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
MSP430FR2310IRGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1
MSP430FR2310IRGYT	VQFN	RGY	16	250	180.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1
MSP430FR2311IPW16R	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
MSP430FR2311IPW20R	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
MSP430FR2311IRGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1
MSP430FR2311IRGYT	VQFN	RGY	16	250	180.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1

www.ti.com 4-Jul-2017

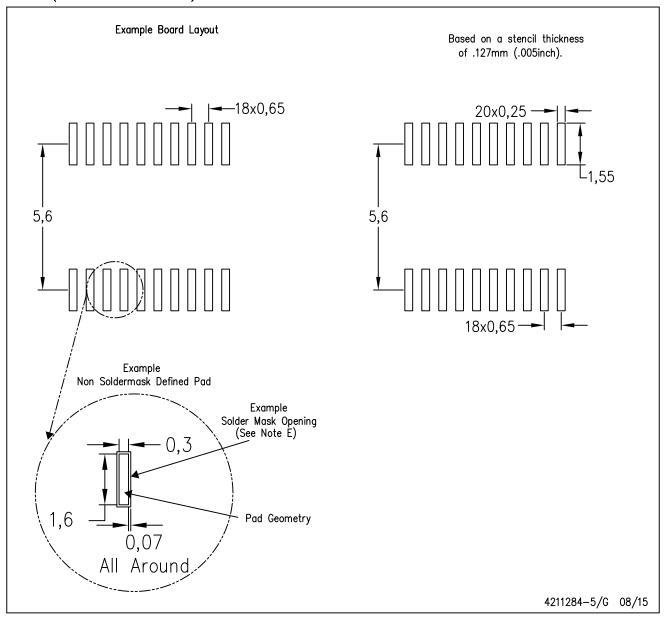


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430FR2310IPW16R	TSSOP	PW	16	2000	367.0	367.0	38.0
MSP430FR2310IPW20R	TSSOP	PW	20	2000	367.0	367.0	38.0
MSP430FR2310IRGYR	VQFN	RGY	16	3000	367.0	367.0	35.0
MSP430FR2310IRGYT	VQFN	RGY	16	250	210.0	185.0	35.0
MSP430FR2311IPW16R	TSSOP	PW	16	2000	367.0	367.0	38.0
MSP430FR2311IPW20R	TSSOP	PW	20	2000	367.0	367.0	38.0
MSP430FR2311IRGYR	VQFN	RGY	16	3000	367.0	367.0	35.0
MSP430FR2311IRGYT	VQFN	RGY	16	250	210.0	185.0	35.0

PW (R-PDSO-G20)

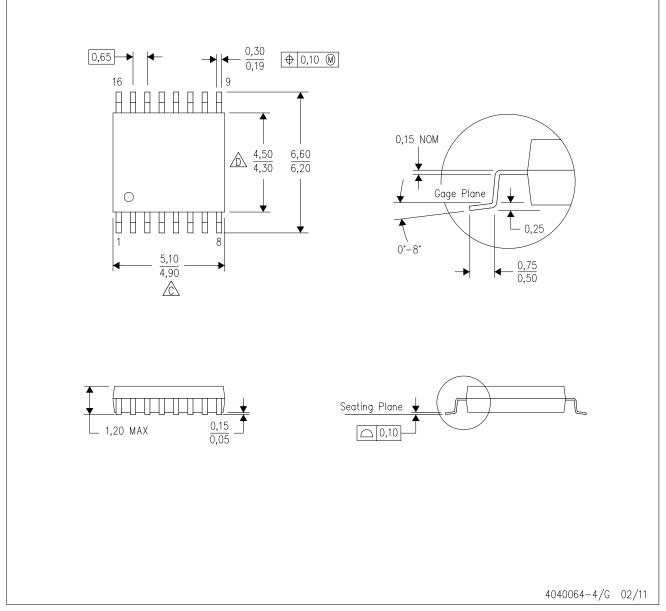
PLASTIC SMALL OUTLINE



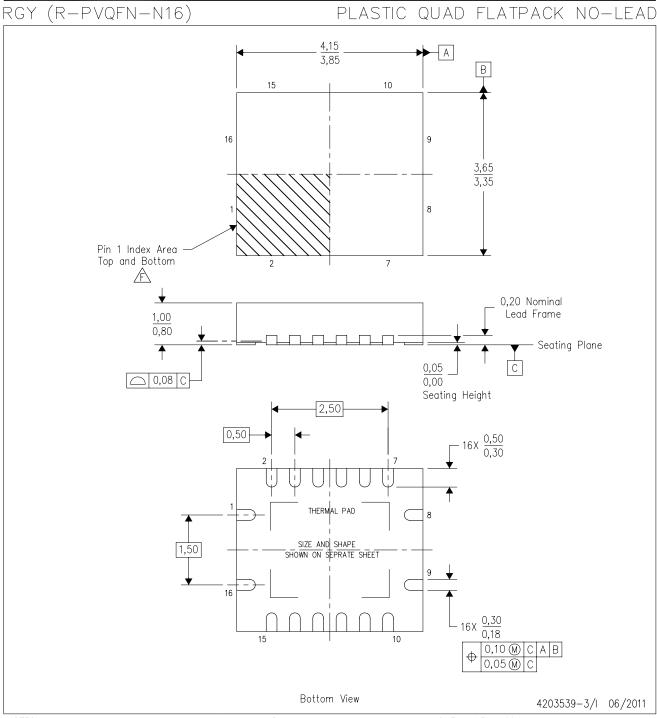
- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE



- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


PW (R-PDSO-G16)

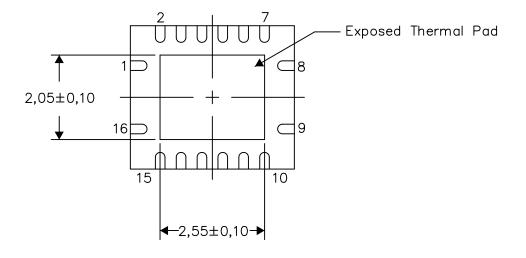
PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (R-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

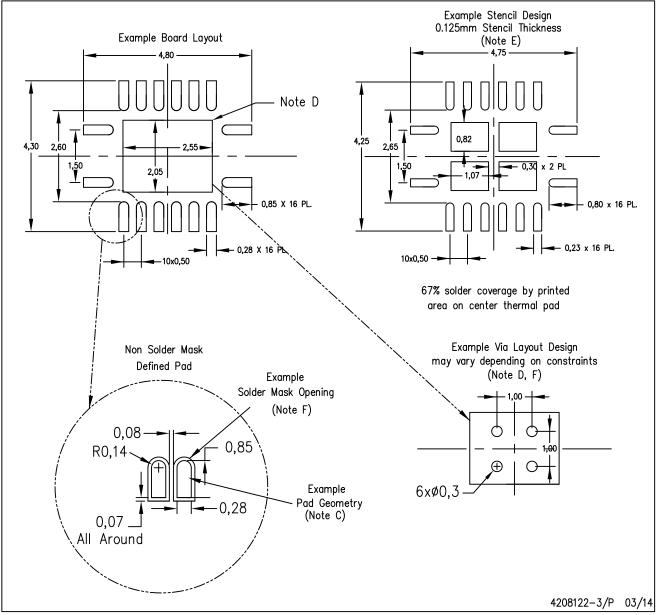
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions


4206353-3/P 03/14

NOTE: All linear dimensions are in millimeters

RGY (R-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.