

General Description

The D2940 is a low dropout regulator designed to provide output current up to 1A with a typical 500mV dropout Voltage and a maximum of 1V. It is capable of reducing the ground current when the differential between the input voltage and the output voltage outrun 3V.

The D2940 offers low quiescent current (typical current 30mA at 1A and an input-output differential of 5V). Higher quiescent currents only exist when the regulator is in the dropout mode (V_{IN} - $V_{OUT} \leq 3V$).

The D2940 is available in SOT-223 ,TO-252 ,TO-220 and TO-263 package.

Features

- 500mV Typical Dropout at 1A
- Output Current In Excess of 1A
- Low Quiescent Current
- Reverse-Battery Protection
- Current Limit and Thermal Shutdown
- Mirror Image Insertion Protection

Applications

- Powering VGA & Sound Card
- LCD Monitor
- Battery Powered Equipments / Laptop & Notebook
- SMPS Post Regulator / DC to DC Modules
- High Efficiency Linear Power Supply
- Adjustable Power Supply
- Bar Code Scanners

Functional Block Diagram

Pin Configuration

GND

TO-220

Shaoxing Silicore Technology Co.,Ltd www. silicore. com. cn

Pin Description

Pin Num	ber	Pin Name	Function Description
	1	INPUT	Input pin
SO1-223 TO-252 TO-220 TO-263	2	GND	Ground
10-2201 10-205	3	OUTPUT	Output pin

Absolute Maximum Ratings (Ta=25°C) *Note

Parameter	Name	Symbol	Value	Unit
Input Voltage		Vin	26	V
Internal Power Dissipation		PD	Internally limited	
Maximum Junction Tempe	rature	TJ	150	°C
Storage Temperature Range		T _{STG}	- 65 ~ +150	°C
Operating Temperature	SOT-223		$-40 \sim +85$	
	TO-252		-40~+125	°C
	ТО-220	$-40 \sim +125$		C
	TO-263		-40~+125	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Electrical Characteristics

D		Test Conditions	I	02940-5	V	I			
Parameter Name	Symbol		Min	Тур	Max	Min	Тур	Max	Unit
	Vout		$6.25V \leq V_{IN} \leq 26V$			$9.4V \leq V_{IN} \leq 26V$			V
Output Voltage	vout	JIIIA <u>SI0S</u> IA	4.85	5.00	5.15	7.76	8.00	8.24	v
Line Regulation	LNR	$V_{O}+2V \leq V_{IN} \leq 26V$ $I_{O} = 5mA$		20	50		20	80	mV
Load Regulation	LDR	$50mA \le I_O \le 1A$		35	50		55	80	mV
Output Impedance	Ro	$\begin{array}{l} 100mA_{DC} \text{ and} \\ 20mArms, \\ f_O = 120Hz \end{array}$		35			55		mΩ
Quiescent Current	IQ	$\begin{array}{l} V_{O}\!\!+\!2V \leq \!V_{IN} \!\leq \!26V \\ I_{O} \!=\!\!5mA \end{array}$		10	15		10	15	mA
Output Noise Voltage	eN	10Hz ~ 100kHz, I ₀ =5mA		150			240		μVrms
Ripple Rejection	RR	$f_0 = 120$ Hz, 1Vrms $I_0 = 100$ mA	60	72		54	66		dB
Long Term Stability				20			32		mV/ 1000Hr
Dropout	V-	$I_0 = 1A$		0.5	0.8		0.5	0.8	V
Voltage	V D	I _O =100mA		110	150		110	150	mV
Short Circuit Current	Isc		1.6	1.9		1.6	1.9		A
Maximum Line Transient	T _{IN}	$\begin{array}{l} R_{O} = 100\Omega \\ T \leq 100 ms \end{array}$	60	75		60	75		V
Reverse Polarity DC Input Voltage	V _{RIN}	$R_0 = 100\Omega$		-30	-15		-30	-15	V
Reverse Polarity Transient Input Voltage	V _{TRRI}	$\begin{array}{c} R_{O} = \!\! 100\Omega \\ T \leq 100ms \end{array}$		-75	-50		-75	-50	V

(V_{IN}=V_O+5V, I_{OUT}=1A, C_O=22 μ F, T_A = T_J = 25 °C, Unless otherwise specified.)

Note: Output current will decrease with temperature increase but will not drop below 1A at the maximum specified temperature.

Electrical Characteristics (Cont.)

(V _{IN} =V _O +5V, I _O =1A, C _O =22 μ F, T _A = T _J = 25 °C, unless otherwise specified.)								
Danamatan Nama	Comb a 1	Test Conditions	Ι)2940-9	V	D	2940-10	
Parameter Name	Symbol	l est Conditions	Min	Tyn	Max	Min	Tyn	

Parameter Name	C1 - 1	Test Conditions	D2940-9V			D2940-10V			I
	Symbol		Min	Тур	Max	Min	Тур	Max	Unit
Output Valtage	Vaut	$5\text{mA} \le I_0 \le 1\text{A}$	$10.5V \le V_{IN} \le 26V$			$11.5V \le V_{IN} \le 26V$			
Output Voltage	vout		8.73	9.00	9.27	9.70	10.0	10.3	
Line Regulation	LNR	$V_0+2V \le V_{IN} \le 26V$ $I_0=5mA$		20	90		20	100	mV
Load Regulation	LDR	$50mA \le I_O \le 1A$		60	90		65	100	mV
Output Impedance	Ro	$\begin{array}{c} 100 \text{mA}_{\text{DC}} \text{ and} \\ 20 \text{mArms}, \\ f_{\text{O}} = 120 \text{Hz} \end{array}$		60			65		mΩ
Quiescent Current	IQ	$V_0+2V \le V_{IN} \le 26V$ $I_0=5mA$		10	15		10	15	mA
Output Noise Voltage	eN	10Hz ~ 100kHz, I ₀ =5mA		270			300		μVrms
Ripple Rejection	RR	f _o =120Hz, 1Vrms I _o =100mA	52	64		51	63		dB
Long term Stability				34			36		mV/ 1000Hr
Dropout Voltago		$I_0 = 1A$		0.5	0.8		0.5	0.8	V
Diopout voltage	VD	$I_0 = 100 \text{mA}$		110	150		110	150	mV
Short Circuit Current	Isc		1.6	1.9		1.6	1.9		А
Maximum Line Transient	T _{IN}	$\begin{array}{c} R_{O} = 100\Omega \\ T \leq 100 ms \end{array}$	60	75		60	75		V
Reverse Polarity DC Input Voltage	V _{RIN}	$R_0 = 100\Omega$		-30	-15		-30	-15	V
Reverse Polarity Transient Input Voltage	V _{TRRI}	$\begin{array}{c} R_{O} = 100\Omega \\ T \leq 100 ms \end{array}$		-75	-50		-75	-50	V

Note: Output current will decrease with temperature increase but will not drop below 1A at the maximum specified temperature.

Electrical Characteristics (Cont.)

Parameter	0 1 1	Test Conditions	D2940-12V			D2940-15V			T T •4	
Name	Symbol		Min	Тур	Max	Min	Тур	Max	Unit	
Output Valtaga	Vaut		13.6V≤V _{IN} ≤26V			16.7	5V≤V _{IN} ≤	≤26V	N/	
Output voltage	vout	JMA≤I0≤IA	11.64	12.0	12.36	14.55	15.0	15.45		
Line Regulation	LNR	$V_0+2V \le V_{IN} \le 26V$ $I_0=5mA$		20	120		20	150	mV	
Load Regulation	LDR	$50mA \le I_0 \le 1A$		55	120		70	150	mV	
Output Impedance	Ro	$100 \text{mA}_{\text{DC}} \text{ and}$ 20mArms, $f_{\text{O}} = 120 \text{Hz}$		80			100		mΩ	
Quiescent Current	IQ	$V_0+2V \le V_{IN} \le 26V$ $I_0=5mA$		10	15		10	15	mA	
Output Noise Voltage	eN	10Hz-100kHz, I _O =5mA		360			450		μVrms	
Ripple Rejection	RR	$f_0 = 120$ Hz, 1Vrms $I_0 = 100$ mA	54	66		52	64		dB	
Long term Stability				48			60		mV/ 1000Hr	
Dranaut Valtaga	Va	$I_0 = 1A$		0.5	0.8		0.5	0.8	V	
Diopout voltage	V D	$I_0 = 100 \text{mA}$		110	150		110	150	mV	
Short Circuit Current	Isc		1.6	1.9		1.6	1.9		А	
Maximum Line Transient	T _{IN}	$\begin{array}{l} R_{O} = 100\Omega \\ T \leq 100 ms \end{array}$	60	75		60	75		V	
Reverse Polarity DC Input Voltage	V _{RIN}	$R_0 = 100\Omega$		-30	-15		-30	-15	V	
Reverse Polarity Transient Input Voltage	V _{TRRI}	$\begin{array}{c} R_{O} = 100\Omega \\ T \leq 100 ms \end{array}$		-75	-50		-75	-50	V	

Note: Output current will decrease with temperature increase but will not drop below 1A at the maximum

specified temperature.

Typical Application

Note: 1.C1 is required if regulator is located far from power supply filter.

 $2.C_{\text{OUT}}$ must be higher than $22\mu F$ for stability, and locate as close as possible to the regulator.

Application Information

External Capacitors

The output capacitor is critical to maintaining regulator stability, and must meet the required conditions for both ESR (Equivalent Series Resistance) and minimum amount of capacitance.

Minimum Capacitance:

The minimum output capacitance required to maintain stability is 22 μ F (this value may be increased without limit). Larger values of output capacitance will give improved transient response.

ESR Limits:

The ESR of the output capacitor will cause loop instability if it is too high or too low. The acceptable range of ESR plotted versus load current is shown in the graph below. It is essential that the output capacitor meet these requirements, or oscillations can result.

Output Capacitor ESR

It is important to note that for most capacitors, ESR is specified only at room temperature. However, the designer must ensure that the ESR will stay inside the limits shown over the entire operating temperature range for the design.

For aluminum electrolytic capacitors, ESR will increase by about 30X as the temperature is reduced from 25° C to -40° C. This type of capacitor is not well-suited for low temperature operation.

Solid tantalum capacitors have a more stable ESR over temperature, but are more expensive than aluminum electrolytics. A cost-effective approach sometimes used is to parallel an aluminum electrolytic with a solid Tantalum, with the total capacitance split about 75/25% with the Aluminum being the larger value.

If two capacitors are paralleled, the effective ESR is the parallel of the two individual values. The "flatter" ESR of the Tantalum will keep the effective ESR from rising as quickly at low temperatures.

Characteristics Curve

Quiescent Current

40

80

TEMPERATURE (°C)

120

160

0

-40

Shaoxing Silicore Technology Co.,Ltd www. silicore. com. cn

Shaoxing Silicore Technology Co.,Ltd www. silicore. com. cn

Shaoxing Silicore Technology Co.,Ltd www. silicore. com. cn

 $= 100 \Omega$

INPUT VOLTAGE (V)

INPUT VOLTAGE (V)

INPUT VOLTAGE (V)

 May. 2015 Rev. 1.0 Page 11 of 16

Shaoxing Silicore Technology Co.,Ltd www. silicore. com. cn

Outline Dimensions

Shaoxing Silicore Technology Co.,Ltd www. silicore. com. cn

Shaoxing Silicore Technology Co.,Ltd www. silicore. com. cn

Statements

- Silicore Technology reserves the right to make changes without further notice to any products or specifications herein. Before customers place an order, customers need to confirm whether datasheet obtained is the latest version, and to verify the integrity of the relevant information.
- Failure or malfunction of any semiconductor products may occur under particular conditions, customers shall have obligation to comply with safety standards when customers use Silicore Technology products to do their system design and machine manufacturing, and take corresponding safety measures in order to avoid potential risk of failure that may cause personal injury or property damage.
- The product upgrades without end, Silicore Technology will wholeheartedly provide customers integrated circuits that have better performance and better quality.