

LMC6482

Datasheet

16 V CMOS dual rail-to-rail input and output, operational amplifiers

MiniSO8

SO8

Features

- Low input offset voltage: 2 mV max.
- Rail-to-rail input and output
- Excellent CMRR : 98 dB @ 16 V
- Low current consumption: 900 µA max.
- Gain bandwidth product: 2.7 MHz
- Low supply voltage: 2.7 16 V
- Unity gain stable
- Low input bias current: 50 pA max.
- High ESD tolerance: 4 kV HBM
- Extended temp. range: -40 °C to +125 °C

Applications

- Data acquisition systems
- Battery-powered instrumentation
- Instrumentation amplifier
- Active filtering
- DAC buffer
- High-impedance sensor interface
- Current sensing (high and low side)

Description

The LMC6482 offer rail-to-rail input and output functionality allowing this product to be used on full range input and output without limitation.

This rail to rail capability combined with excellent accuracy makes this device ideal for systems such as data acquisition, that require wide input signal range.

This is particularly useful for a low-voltage supply such as 2.7 V that the LMC6482 is able to operate with.

Thus, the LMC6482 has the great advantage of offering a large span of supply voltages, ranging from 2.7 V to 16 V. It can be used in multiple applications with a unique reference.

Low input bias current performance makes the LMC6482 perfect when used for signal conditioning in sensor interface applications. In addition, low- side and high-side current measurements can be easily made thanks to rail-to-rail functionality.

Maturity status link

1 Pin configuration

57

Figure 1. Pin connection (top view)

2 Absolute maximum ratings and operating conditions

Symbol	Parameter		Value	Unit	
V_{CC}	Supply voltage (1)		18	V	
V _{id}	Differential input voltage (2)		±V _{CC}	mV	
V _{in}	Input voltage	(V _{CC-}) - 0.2 to (V _{CC+}) + 0.2	V		
l _{in}	Input current ⁽³⁾	10	mA		
T _{stg}	Storage temperature	erature			
P	Thermal registerion innotion to embiant $(4)(5)$	MiniSO8	190	°C/W	
l ` thja	memanesistance junction to ambient over	SO-8	125	C/VV	
Tj	Maximum junction temperature		150	°C	
	HBM: Human body model ⁽⁶⁾		4000		
ESD	MM: machine model (7)		100	V	
	CDM: charged device model ⁽⁸⁾		1500		
	Latch-up immunity		200	mA	

Table 1. Absolute maximum ratings

1. All voltage values, except the differential voltage are with respect to the network ground terminal.

2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. See for the precautions to follow when using LMC6482 with a high differential input voltage.

- 3. Input current must be limited by a resistor in series with the inputs.
- 4. R_{th} are typical values.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. According to JEDEC standard JESD22-A114F.
- 7. According to JEDEC standard JESD22-A115A.
- 8. According to ANSI/ESD STM5.3.1.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.7 to 16	V
V _{icm}	Common mode input voltage range	$(V_{CC-}) - 0.1$ to $(V_{CC+}) + 0.1$	v
T _{oper}	Operating free air temperature range	-40 to +125	°C

3 Electrical characteristics

 V_{CC+} = +4 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 ° C, and R_L > 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified).

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
Min	Input offect veltage	$V_{icm} = V_{CC}/2$			2	m) (
VIO	input onset voitage	$T_{min} < T_{op} < T_{max}$			2.5	mv	
$\Delta V_{io}/\Delta T$	Input offset voltage drift (1)				5	µV/°C	
ΔV _{io}	Long term input offset voltage drift (2)	T = 25 °C		1		$\frac{nV}{\sqrt{month}}$	
L	lanut biog current (1)	$V_{out} = V_{CC}/2$		1	50		
lip	input bias current (1)	$T_{min} < T_{op} < T_{max}$			200		
	(1)	$V_{out} = V_{CC}/2$		1	50	рА	
lio	Input onset current (1)	$T_{min} < T_{op} < T_{max}$			200		
R _{IN}	Input resistance			1		ТΩ	
C _{IN}	Input capacitance			12.5		pF	
CMDD	Common mode rejection ratio $20 \log (\Delta V / \Delta V)$	V_{icm} = -0.1 to 4.1 V, V_{out} = $V_{CC}/2$	65	85			
CIVIRR		$T_{min} < T_{op} < T_{max}$	60				
	A _{vd} Large signal voltage gain	R_L = 2 kΩ, V_{out} = 0.3 to 3.7 V	85	136			
Δ		$T_{min} < T_{op} < T_{max}$	80			dB	
Avd		R_L = 10 k Ω , V_{out} = 0.2 to 3.8 V	85	140			
		$T_{min} < T_{op} < T_{max}$	80				
		R _L =2 k Ω to V _{CC} /2		28	50		
Maria	High level output voltage	$T_{min} < T_{op} < T_{max}$			60		
VОН	(voltage drop from V_{CC^+})	R_L = 10 k Ω to V _{CC} /2		6	15	mv	
		$T_{min} < T_{op} < T_{max}$			20		
		$R_L = 2 k\Omega$ to $V_{CC}/2$		23	50		
Max		$T_{min} < T_{op} < T_{max}$			60	m) (
VOL	Low level output voltage	R_L = 10 k Ω to V _{CC} /2		5	15	mv	
		$T_{min} < T_{op} < T_{max}$			20		
		V _{out} = V _{CC}	25	37			
	Isink	$T_{min} < T_{op} < T_{max}$	15			m (
lout		V _{out} = 0 V	35	45		- mA	
	Isource	$T_{min} < T_{op} < T_{max}$	20				
1	Supply surrent per emplifier	No load, $V_{out} = V_{CC}/2$		570	800		
'CC	Supply current per amplifier	$T_{min} < T_{op} < T_{max}$			900	μA	
GBP	Gain bandwidth product	R_L = 10 kΩ, C_L = 100 pF	1.9	2.7		MHz	

Table 3. Electrical characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
φm	Phase margin	R _L = 10 kΩ, C _L = 100 pF		50		Degrees
Gm	Gain margin	R _L = 10 kΩ, C _L = 100 pF		15		dB
SRn Negative	Negative slow rate	Av = 1, V_{out} = 3 V_{PP} , 10 % to 90%	0.6	0.85		
		$T_{min} < T_{op} < T_{max}$	0.5			Mue
0Dm	Positivo elevy rete	Av = 1, V_{out} = 3 V_{PP} , 10 % to 90%	1.0	1.4		v/µs
Sith	FOSITIVE SIEW FALE	$T_{min} < T_{op} < T_{max}$	0.9			
Α.	Equivalent input paice voltage	f = 1 kHz		22		nV
en	Equivalent input hoise voltage	f = 10 kHz		19		\sqrt{Hz}
	Total harmonic distortion + noise	f = 1 kHz, Av = 1, R_L = 10 kΩ,		0.001		0/2
		BW = 22 kHz, V_{in} = 0.8 V_{PP}		0.001		70

1. Maximum values are guaranteed by design.

2. Typical value is based on the V_{io} drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.6 Long term input offset voltage drift).

 V_{CC+} = +10 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 ° C, and R_L > 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified).

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
Vio	Input offect veltage	$V_{icm} = V_{CC}/2$			2	m)/	
VIO	input onset voltage	$T_{min} < T_{op} < T_{max}$			2.5	IIIV	
$\Delta V_{io}/\Delta T$	Input offset voltage drift (1)				5	µV/°C	
ΔV _{io}	Longterm input offset voltage drift (2)	T = 25 °C		25		$\frac{nV}{\sqrt{month}}$	
Le langut bing gumpert (1)		$V_{out} = V_{CC}/2$		1	50		
di		$T_{min} < T_{op} < T_{max}$			200	n۸	
	Input offset current ⁽¹⁾	$V_{out} = V_{CC}/2$		1	50	рА	
10		$T_{min} < T_{op} < T_{max}$			200		
R _{IN}	Input resistance			1		ТΩ	
C _{IN}	Input capacitance			12.5		pF	
CMDD	Common mode rejectionratio 20 log (AV/ /AV/)	V_{icm} = -0.1 to 10.1 V, V_{out} = $V_{CC}/2$	72	92			
CIVILAR		$T_{min} < T_{op} < T_{max}$	67				
		$\rm R_L$ = 2 kΩ, V _{out} = 0.3 to 9.7 V	90	140		dP	
		$T_{min} < T_{op} < T_{max}$	85			dВ	
~vd	Large signal voltage gain	R_L = 10 kΩ, V_{out} = 0.2 to 9.8 V	90			-	
		$T_{min} < T_{op} < T_{max}$	85				

Table 4. Electrical characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		R _L =2 k Ω to V _{CC} /2		45	70	
Maria	High level output voltage	$T_{min} < T_{op} < T_{max}$			80	m) (
VOH	(voltage drop from V_{CC^+})	R_L = 10 k Ω to V _{CC} /2		10	30	mv
		$T_{min} < T_{op} < T_{max}$			40	
		$R_L = 2 k\Omega$ to $V_{CC}/2$		42	70	
Va		$T_{min} < T_{op} < T_{max}$			80	m\/
VOL	Low level output voltage	R_L = 10 k Ω to V _{CC} /2		9	30	mv
		$T_{min} < T_{op} < T_{max}$			40	
		V _{out} = V _{CC}	30	39		
	Isink	$T_{min} < T_{op} < T_{max}$	15			m (
out		V _{out} = 0 V	50	69		mA
Isource	Isource	$T_{min} < T_{op} < T_{max}$	40			
1	Supply auront per amplifier	No load, $V_{out} = V_{CC}/2$		630	850	
ICC		$T_{min} < T_{op} < T_{max}$			1000	μΑ
GBP	Gain bandwidth product	R _L = 10 kΩ, C _L = 100 pF	1.9	2.7		MHz
фm	Phase margin	R _L = 10 kΩ, C _L = 100 pF		53		Degrees
Gm	Gain margin	R _L = 10 kΩ, C _L = 100 pF		15		dB
CD ₂	Negative clow rate	Av = 1, V _{out} = 8 V _{PP} , 10 % to 90%	0.8	1		
SKI	Regative siew rate	$T_{min} < T_{op} < T_{max}$	0.7			Muo
CD ₂	Desitive alow rate	Av = 1, V _{out} = 8 V _{PP} , 10 % to 90%	1.0	1.3		v/µs
экρ	Positive siew rate	$T_{min} < T_{op} < T_{max}$	0.9			
Α.	Equivalant input poiso voltago	f = 1 kHz		22		nV
⊂n		f = 10 kHz		19		\sqrt{Hz}
THD+N	Total harmonic distortion + noise	f = 1 kHz, Av = 1, R_L = 10 k Ω ,		0 0003		%
		BW = 22 kHz, V_{in} = 5 V_{PP}		0.0000		70

1. Maximum values are guaranteed by design.

2. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.6 Long term input offset voltage drift).

57

 V_{CC+} = +16 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 $^\circ$ C, and R_L > 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified).

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	land affect with an	$V_{icm} = V_{CC}/2$			2	
VIO	input onset voltage	$T_{min} < T_{op} < T_{max}$			2.5	mv
$\Delta V_{io} / \Delta T$	Input offset voltage drift (1)				5	µV/°C
ΔV _{io}	Longterm input offset voltage drift (2)	T = 25 °C		500		$\frac{nV}{\sqrt{month}}$
	least him as mark (1)	$V_{out} = V_{CC}/2$		1	50	
lib	input bias current ()	$T_{min} < T_{op} < T_{max}$			200	- 0
	1	$V_{out} = V_{CC}/2$		1	50	рА
lio	Input onset current (1)	$T_{min} < T_{op} < T_{max}$			200	
R _{IN}	Input resistance			1		ТΩ
C _{IN}	Input capacitance			12.5		pF
	Common mode rejection ratio	V_{icm} = -0.1 to 16.1 V, V_{out} = $V_{CC}/2$	75	98		
CMRR	20 log ($\Delta V_{ic} / \Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	70			
	Supply voltage rejection ratio	V _{cc} = 4 to 16 V	100	131		
SVRR 20 log ($\Delta V_{cc} / \Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	90				
		R_L = 2 k Ω , V_{out} = 0.3 to 15.7 V	90	146		dB
	Large signal voltage gain	$T_{min} < T_{op} < T_{max}$	85			
A _{vd}		R_L = 10 kΩ, V_{out} = 0.2 to 15.8 V	90	149		
		$T_{min} < T_{op} < T_{max}$	85			
		$R_L = 2 k\Omega$ to V/2		70	130	
	High level output voltage	$T_{min} < T_{op} < T_{max}$			150	
VOH	(voltage drop from V_{CC^+})	R _L = 10 kΩ		16	40	mV
		$T_{min} < T_{op} < T_{max}$			50	
		R _L = 2 kΩ		70	130	
		$T_{min} < T_{op} < T_{max}$			150	
VOL	Low level output voltage	R _L = 10 kΩ		15	40	mV
		$T_{min} < T_{op} < T_{max}$			50	
		V _{out} = V _{CC}	30	40		
	lsink	$T_{min} < T_{op} < T_{max}$	15			
lout		V _{out} = 0 V	50	68		mA
	Isource	$T_{min} < T_{op} < T_{max}$	45			
		No load, V _{out} = V _{CC} /2		660	900	
ICC	Supply current per amplifier	$T_{min} < T_{op} < T_{max}$			1000	μA
GBP	Gain bandwidth product	R _L = 10 kΩ, C _L = 100 pF	1.9	2.7		MHz

Table 5. Electrical characteristics

-

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
φm	Phase margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		55		Degrees
Gm	Gain margin	R _L = 10 kΩ, C _L = 100 pF		15		dB
SRn Negative slew rate	Av = 1, V _{out} = 10 V _{PP} , 10 % to 90%	0.7	0.95			
	$T_{min} < T_{op} < T_{max}$	0.6				
CD ₂		Av = 1, V _{out} = 10 V _{PP} , 10 % to 90%	1	1.4		v/µs
ЗКР		$T_{min} < T_{op} < T_{max}$	0.9			
θ.	Equivalant input paisa valtaga	f = 1 kHz		22		nV
	Equivalent input hoise voltage	f = 10 kHz		19		\sqrt{Hz}
	Total harmonic distortion + noise	f = 1 kHz, Av = 1, R_L = 10 kΩ,		0 0002		0/2
THD+N I	Iotal narmonic distortion + noise	BW = 22 kHz, V_{in} = 10 V_{PP}		0.0002		/0

1. Maximum values are guaranteed by design.

2. Typical value is based on the V_{io} drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.6 Long term input offset voltage drift).

30

25

20

15

10

5

0 -

-2.0 -1.6 -1.2 -0.8

Population (%)

Vcc=4V Vicm=2V T=25°C

Figure 4. Input offset voltage distribution at V_{CC} = 4 V

-0.4 0.0 0.4 0.8

Input offset voltage (mV)

1.2 1.6

2.0

Figure 5. Channel separation 140 0 Channel separation (dB) 0 80 60 Vcc=16V Vicm=8V 40 Gain=1 Vin=2Vpp T=25°C 20 0L 10 100 100k 10k 1M 1k Frequency (Hz)

Figure 8. Output low voltage vs. supply voltage 30 Vid=-0.1V T=-40°C RI=10k Ω to Vcc/2 25 T=25°C 20 Output voltage (mV) T=125°C 15 10 5 0 4 6 8 10 12 14 16 Supply Voltage (V)

Figure 9. Output high voltage (drop from V_{CC+}) vs. supply voltage

Figure 11. Slew rate vs. supply voltage 2.0 1.5 1.0 0.5 Slew rate (V/µs) Vicm=Vcc/2 Vload=Vcc/2 0.0 T=125°C T=25°C T=-40°C $R = 10 k\Omega$ CI=100pF -0.5 -1.0 -15 -2.0 4 6 10 12 14 16 8 Supply Voltage (V)

57/

57

1M

Figure 21. Output impedance vs. frequency in closed loop configuration

Figure 23. THD + N vs. output voltage 0.1 RI=2kΩ RI=10kΩ (%) N + OHJ 0.01 #I⊞ RI=100kΩ Vcc=16V Vicm=8V 1E-3 Gain=1 f=1kHz BW=22kHz T=25°C 1E-4 0.01 0.1 1 10 Output Voltage (Vpp)

57/

5 Application information

5.1 Operating voltages

The LMC6482 device can operate from 2.7 to 16 V. The parameters are fully specified for 4 V, 10 V, and 16 V power supplies. However, the parameters are very stable in the full V_{CC} range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to 125 °C.

5.2 Input pin voltage ranges

The LMC6482 device have internal ESD diode protection on the inputs. These diodes are connected between the input and each supply rail to protect the input MOSFETs from electrical discharge.

If the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become conductive and excessive current can flow through them. Without limitation this over current can damage the device.

In this case, it is important to limit the current to 10 mA, by adding resistance on the input pin, as described in figure below.

Figure 26. Input current limitation

5.3 Rail-to-rail input

The LMC6482 device have a rail-to-rail input, and the input common mode range is extended from (V_{CC-}) - 0.1 V to (V_{CC+}) + 0.1 V.

5.4 Rail-to-rail output

The operational amplifier output levels can go close to the rails: to a maximum of 40 mV above and below the rail when connected to a 10 k Ω resistive load to V_{CC}/2.

5.5 Input offset voltage drift over temperature

The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift over temperature is computed using Equation 1.

$$\frac{\Delta V_{io}}{\Delta T} = \max \left| \frac{V_{io}(T) - V_{io}(25^{\circ}C)}{T - 25^{\circ}C} \right|$$
(1)

where T = -40 $^{\circ}$ C and 125 $^{\circ}$ C.

The LMC6482 datasheet maximum values are guaranteed by measurements on a representative sample size ensuring a C_{pk} (process capability index) greater than 1.3.

5.6 Long term input offset voltage drift

To evaluate product reliability, two types of stress acceleration are used:

Voltage acceleration, by changing the applied voltage

Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.

The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2

$$A_{FV} = \epsilon^{\beta \cdot V_S - V_U} \tag{2}$$

where:

 A_{FV} is the voltage acceleration factor

 β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)

V_S is the stress voltage used for the accelerated test

 V_U is the voltage used for the application

The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3

$$A_{FT} = e^{\frac{E_a}{k}} \cdot \left(\frac{1}{T_U} - \frac{1}{T_S}\right)$$
(3)

Where:

AFT is the temperature acceleration factor

 E_a is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10⁻⁵ eV.K⁻¹)

 T_U is the temperature of the die when V_U is used (K)

 T_S is the temperature of the die under temperature stress (K)

The final acceleration factor, A_F , is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4)

$$A_F = A_{FT} \times A_{FV} \tag{4}$$

 A_F is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.

$$Months = A_F \times 1000 \ h \times 12 \ months / \ 24 \ h \times \ 365.25 \ days \tag{5}$$

To evaluate the op amp reliability, a follower stress condition is used where V_{CC} is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The V_{io} drift (in μ V) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see equation 6)

 $V_{CC} = \max V_{PP} \text{ with } V_{icm} = V_{CC}/2 \tag{6}$

The long term drift parameter (ΔV_{io}), estimating the reliability performance of the product, is obtained using the ratio of the V_{io} (input offset voltage value) drift over the square root of the calculated number of months (Equation 7)

$$\Delta V_{io} = \frac{V_{io} \, drift}{\sqrt{months}} \tag{7}$$

Where V_{io} drift is the measured drift value in the specified test conditions after 1000 h stress duration.

5.7 High values of input differential voltage

In a closed loop configuration, which represents the typical use of an op amp, the input differential voltage is low (close to V_{io}). However, some specific conditions can lead to higher input differential values, such as:

operation in an output saturation state

operation at speeds higher than the device bandwidth, with output voltage dynamics limited by slew rate.

use of the amplifier in a comparator configuration, hence in open loop

Use of the LMC6482 in comparator configuration, especially combined with high temperature and long duration can create a permanent drift of V_{io} .

5.8 Capacitive load

Driving large capacitive loads can cause stability problems. Increasing the load capacitance produces gain peaking in the frequency response, with overshoot and ringing in the step response. It is usually considered that with a gain peaking higher than 2.3 dB an op amp might become unstable.

Generally, the unity gain configuration is the worst case for stability and the ability to drive large capacitive loads. Figure below "Stability criteria with a serial resistor at different supply voltage" shows the serial resistor that must be added to the output, to make a system stable. The Figure 28. Test configuration for Riso shows the test configuration using an isolation resistor, Riso.

Figure 27. Stability criteria with a serial resistor at different supply voltage

Figure 28. Test configuration for Riso

5.9 PCB layout recommendations

Particular attention must be paid to the layout of the PCB, tracks connected to the amplifier, load, and power supply. The power and ground traces are critical as they must provide adequate energy and grounding for all circuits. The best practice is to use short and wide PCB traces to minimize voltage drops and parasitic inductance.

In addition, to minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used.

The copper traces that connect the output pins to the load and supply pins should be as wide as possible to minimize trace resistance.

5.10 Optimized application recommendation

It is recommended to place a 22 nF capacitor as close as possible to the supply pin. A good decoupling will help to reduce electromagnetic interference impact.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

6.1 MiniSO8 package information

Figure 29. MiniSO8 package outline

Table 6. MiniSO8 mechanical data

Dim.	Millim	neters		Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
A			1.1			0.043
A1	0		0.15	0		0.006
A2	0.75	0.85	0.95	0.03	0.033	0.037
b	0.22		0.4	0.009		0.016
С	0.08		0.23	0.003		0.009
D	2.8	3	3.2	0.11	0.118	0.126
E	4.65	4.9	5.15	0.183	0.193	0.203
E1	2.8	3	3.1	0.11	0.118	0.122
е		0.65			0.026	
L	0.4	0.6	0.8	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.01	
k	0°		8°	0°		8°
ccc			0.1			0.004

6.2 SO8 package information

57

Figure 30. SO8 package outline

Table 7. SO-8 mechanical data

Dim	Millim	neters		Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
A1	0.1		0.25	0.004		0.01
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.01
D	4.8	4.9	5	0.189	0.193	0.197
Е	5.8	6	6.2	0.228	0.236	0.244
E1	3.8	3.9	4	0.15	0.154	0.157
е		1.27			0.05	
h	0.25		0.5	0.01		0.02
L	0.4		1.27	0.016		0.05
L1		1.04			0.04	
k	0		8 °	1 °		8 °
ccc			0.1			0.004

7 Ordering information

Table	8.	Order	code

Order code	Temperature range	Package	Packing
LMC6482IDT	-40° to +125 °C	SO8	Tapa and real
LMC6482IST		MiniSO8	Tape and Teel

Revision history

Table 9. Document revision history

Date	Revision	Changes
24-Jul-2018	1	Initial release.
12-Sep-2018	2	Updated the temperature range value in Table 8. Order code.

Contents

1	Pin c	onfiguration	2
2	Abso	lute maximum ratings and operating conditions	3
3	Elect	rical characteristics	4
4	Elect	rical characteristic curves	9
5	Appli	cation information	4
	5.1	Operating voltages	4
	5.2	Input pin voltage ranges	4
	5.3	Rail-to-rail input	4
	5.4	Rail-to-rail output14	4
	5.5	Input offset voltage drift over temperature14	4
	5.6	Long term input offset voltage drift	5
	5.7	High values of input differential voltage18	5
	5.8	Capacitive load	6
	5.9	PCB layout recommendations	6
	5.10	Optimized application recommendation	7
6	Packa	age information	8
	6.1	MiniSO8 package information	8
	6.2	SO8 package information	8
7	Orde	ring information	D
Revi	sion h	nistory	1

List of tables

Table 1.	Absolute maximum ratings
Table 2.	Operating conditions
Table 3.	Electrical characteristics
Table 4.	Electrical characteristics
Table 5.	Electrical characteristics
Table 6.	MiniSO8 mechanical data
Table 7.	SO-8 mechanical data
Table 8.	Order code
Table 9.	Document revision history

List of figures

Figure 1.	Pin connection (top view)	2
Figure 2.	Supply current vs. supply voltage	9
Figure 3.	Input offset voltage distribution at V _{CC} = 16 V	9
Figure 4.	Input offset voltage distribution at V _{CC} = 4 V	9
Figure 5.	Channel separation	9
Figure 6.	Output current vs. output voltage at V _{CC} = 2.7 V	10
Figure 7.	Output current vs. output voltage at V _{CC} = 16 V	10
Figure 8.	Output low voltage vs. supply voltage	10
Figure 9.	Output high voltage (drop from V _{CC+}) vs. supply voltage	10
Figure 10.	Output voltage vs. input voltage close to the rail at V _{CC} = 16 V	10
Figure 11.	Slew rate vs. supply voltage	10
Figure 12.	Negative slew rate at V _{CC} = 16 V	11
Figure 13.	Positive slew rate at V _{CC} = 16 V	11
Figure 14.	Response to a small input voltage step	11
Figure 15.	Recovery behavior after a negative step on the input.	11
Figure 16.	Recovery behavior after a positive step on the input	11
Figure 17.	Bode diagram at V _{CC} = 2.7 V	11
Figure 18.	Bode diagram at V _{CC} = 16 V	12
Figure 19.	Power supply rejection ratio (PSRR) vs. frequency	12
Figure 20.	Output overshoot vs. capacitive load	12
Figure 21.	Output impedance vs. frequency in closed loop configuration	12
Figure 22.	THD + N vs. frequency	12
Figure 23.	THD + N vs. output voltage	12
Figure 24.	Noise vs. frequency.	13
Figure 25.	0.1 to 10 Hz noise.	13
Figure 26.	Input current limitation	14
Figure 27.	Stability criteria with a serial resistor at different supply voltage	16
Figure 28.	Test configuration for Riso	16
Figure 29.	MiniSO8 package outline	18
Figure 30.	SO8 package outline	19

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved