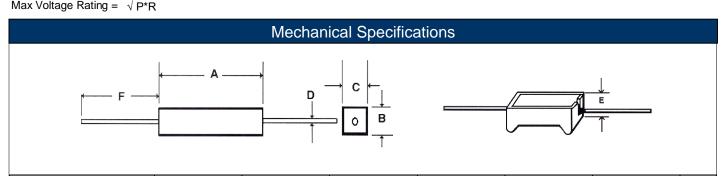
WCB / WCBF / NWCB Series

Welded Ceramic Housed Axial Leaded Wirewound Resistor


Resistive Product Solutions

Features:

- Welded element on ceramic core
- Low noise, high reliability compared to fiberglass core wirewounds
- Fireproof power wirewound
- High thermal conductivity
- NWCB Non-inductively Ayrton Perry winding
- Body standoffs available; add "F" after WCB
- RoHS compliant, lead free and halogen free

Electrical Specifications							
Power Rating (W)		Ohmic Range (Ω) and Tolerance					
@ 70ºC	TCR (ppn/°C)	0.5%	1%	5%			
5		1 - 10 K	0.1 -	10 K			
7		1 - 15 K	0.1 - 15 K				
10			0.1 - 20 K				
15		1 - 20 K					
20							
25	0.1Ω to $10 \Omega = \pm 50 \text{ ppm/}^{\circ}\text{C}$						
5	> 10 Ω = ± 20 ppm/°C		•	0.1 - 4.7 K			
7				0.1 - 7.5 K			
10							
15			-	0.1 10 1/			
20				0.1 - 10 K			
25							
	Power Rating (W) @ 70°C 5 7 10 15 20 25 5 5 7 10 15 20 25	Power Rating (W) @ 70°C TCR (ppm/°C) 5 7 10 15 20 0.1Ω to $10 \Omega = \pm 50 \text{ ppm/°C}$ 25 0.1Ω to $10 \Omega = \pm 20 \text{ ppm/°C}$ 7 $10 \Omega = \pm 20 \text{ ppm/°C}$ 10 $15 \Omega \Omega = \pm 20 \text{ ppm/°C}$	$\begin{array}{c c} \mbox{Power Rating (W)} & \mbox{TCR (ppm/°C)} & \begin{tabular}{ c c c c } \hline 0.5\% & \\ \hline 0.5\% & \\ \hline 0.5\% & \\ \hline 1 - 10 \ K & \\ \hline 1 - 10 \ K & \\ \hline 1 - 15 \ K & \\ \hline 1 - 15 \ K & \\ \hline 1 - 20 \ K & \\ \hline 1 - 20$	$\begin{array}{c c c c c c c c } \hline Power Rating (W) \\ @ 70^{\circ}C \end{array} & TCR (ppm/^{\circ}C) & \hline Ohmic Range (\Omega) and To \\\hline 0.5\% & 1\% \\\hline \hline 10 \\ \hline 15 \\ \hline 10 \\ \hline 15 \\ \hline 20 \\ \hline 7 \\ \hline 10 \\ \hline 25 \\ \hline 7 \\ \hline 10 \\ \hline 5 \\ \hline 7 \\ \hline 10 \\ \hline 15 \\ \hline 20 \\ \hline \end{array} & 0.1 \Omega to 10 \Omega = \pm 50 ppm/^{\circ}C \\ > 10 \Omega = \pm 20 ppm/^{\circ}C \\\hline \hline 1 - 20 K & 0.1 \\\hline 1 - 20 K & 0.1 \\\hline 1 - 20 K & 0.1 \\\hline \end{array}$			

Type / Code	A Body Length	B Height	C Width	D Lead Diameter	E (WCBF only)	F Lead Length	Unit
WCB5, WCBF5, NWCB5	0.875 ± 0.039	0.375 ± 0.039	0.375 ± 0.039	0.036 ± 0.002	0.437 ± 0.039	1.500 ± 0.250	inches
	22.23 ± 0.99	9.53 ± 0.99	9.53 ± 0.99	0.91 ± 0.05	11.10 ± 0.99	38.10 ± 6.35	mm
WCB7, WCBF7, NWCB7	1.400 ± 0.039	0.375 ± 0.039	0.375 ± 0.039	0.036 ± 0.002	0.500 ± 0.039	1.500 ± 0.250	inches
	35.56 ± 0.99	9.53 ± 0.99	9.53 ± 0.99	0.91 ± 0.05	12.70 ± 0.99	38.10 ± 6.35	mm
WCB10, WCBF10, NWCB10	1.875 ± 0.039	0.375 ± 0.039	0.375 ± 0.039	0.036 ± 0.002	0.500 ± 0.039	1.500 ± 0.250	inches
	47.63 ± 0.99	9.53 ± 0.99	9.53 ± 0.99	0.91 ± 0.05	12.70 ± 0.99	38.10 ± 6.35	mm
WCB15, WCBF15, NWCB15	1.875 ± 0.039	0.500 ± 0.039	0.500 ± 0.039	0.036 ± 0.002	0.625 ± 0.039	1.500 ± 0.250	inches
	47.63 ± 0.99	12.70 ± 0.99	12.70 ± 0.99	0.91 ± 0.05	15.88 ± 0.99	38.10 ± 6.35	mm
WCB20, WCBF20, NWCB20	2.500 ± 0.039	0.500 ± 0.039	0.500 ± 0.039	0.036 ± 0.002	0.625 ± 0.039	1.500 ± 0.250	inches
	63.50 ± 0.99	12.70 ± 0.99	12.70 ± 0.99	0.91 ± 0.05	15.88 ± 0.99	38.10 ± 6.35	mm
WCB25, WCBF25, NWCB25	2.500 ± 0.039	0.500 ± 0.039	0.500 ± 0.039	0.036 ± 0.002	0.625 ± 0.039	1.500 ± 0.250	inches
	63.50 ± 0.99	12.70 ± 0.99	12.70 ± 0.99	0.91 ± 0.05	15.88 ± 0.99	38.10 ± 6.35	mm

WCB / WCBF / NWCB Series

Welded Ceramic Housed Axial Leaded Wirewound Resistor

Stackpole Electronics, Inc.

Resistive Product Solutions

275°C

280

240

320

200

Power Derating Curve: 100	conds	Test Results ± 5% ± 2% ± 5% ± 2% ± 2% ± 2% ± 2% ± 2% ± 2% ± 2% ± 2%				
Thermal Shock Load Life @ 70°C - 1000 hours Resistance to Soldering Heat Short Time Overload - 5 X Pn for 5 sec Dielectric Withstanding Voltage Operating Temperature Range: -55°C to +275°C Power Derating Curve: 100	conds	± 2% ± 5% ± 2% ± 2%				
Load Life @ 70°C - 1000 hours Resistance to Soldering Heat Short Time Overload - 5 X Pn for 5 sec Dielectric Withstanding Voltage Operating Temperature Range: -55°C to +275°C Power Derating Curve: 100	conds	± 5% ± 2% ± 2%				
Resistance to Soldering HeatShort Time Overload - 5 X Pn for 5 secDielectric Withstanding VoltageOperating Temperature Range: -55°C to +275°CPower Derating Curve: 100	conds	± 2% ± 2%				
Short Time Overload - 5 X Pn for 5 sec Dielectric Withstanding Voltage Operating Temperature Range: -55°C to +275°C Power Derating Curve: 100		± 2%				
Dielectric Withstanding Voltage Operating Temperature Range: -55°C to +275°C Power Derating Curve: 100						
Operating Temperature Range: -55°C to +275°C Power Derating Curve: 100		± 2%				
Power Derating Curve: 100		± 2%				
Bercent Rated Power (%) Bercent Rated Power (%) Comparison (%) Com	10 10	70°C				

Recommended Solder Profile

This information is intended as a reference for solder profiles for Stackpole resistive components. These profiles should be compatible with most soldering processes. These are only recommendations. Actual numbers will depend on board density, geometry, packages used, etc., especially those cells labeled with "*".

40

80

120

Ambient Temperature (°C)

160

-40

-80

100% Matte Tin / RoHS Compliant Terminations

Soldering iron recommended temperatures: 330°C to 350°C with minimum duration. Maximum number of reflow cycles: 3.

Wave Soldering						
Description	Maximum	Recommended	Minimum			
Preheat Time	80 seconds	70 seconds	60 seconds			
Temperature Diff.	140°C	120°C	100°C			
Solder Temp.	260°C	250°C	240°C			
Dwell Time at Max.	10 seconds	5 seconds	*			
Ramp DN (°C/sec)	N/A	N/A	N/A			

Temperature Diff. = Defference between final preheat stage and soldering stage.

Convection IR Reflow						
Description	Maximum	Recommended	Minimum			
Ramp Up (°C/sec)	3°C/sec	2°C/sec	*			
Dwell Time > 217°C	150 seconds	90 seconds	60 seconds			
Solder Temp.	260°C	245°C	*			
Dwell Time at Max.	30 seconds	15 seconds	10 seconds			
Ramp DN (°C/sec)	6°C/sec	3°C/sec	*			

WCB / WCBF / NWCB Series

Stackpole Electronics, Inc.

Resistive Product Solutions

Welded Ceramic Housed Axial Leaded Wirewound Resistor

Recommended Lead Free Resistor Reflow Profile T_p260°C ← Tc - 5°C < t</td> Max Ramp up Rate = 3°C/sec Max Ramp Down Rate = 6°C/sec 30 sec. T, 217°C Preheat Area 60 - 150 sec. 200°C Temperature °C 150°C t 60 - 180 sec 25°C Time 25°C to Peak Max 8 min.

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

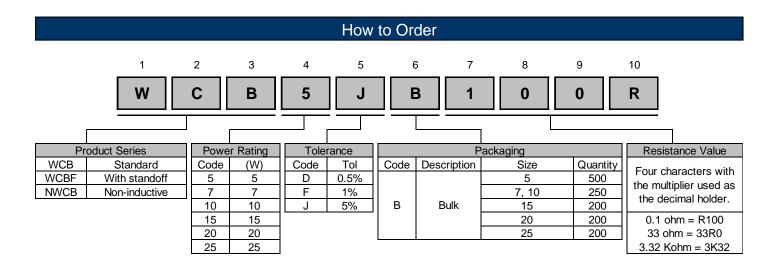
	RoHS Compliance Status							
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)		
WCB	Ceramic Housed with Axial Leads Wirewound Resistor	Axial	YES	100% Matte Sn	Jan-06	06/01		
WCBF	Ceramic Housed with Axial Leads Wirewound Resistor	Axial	Yes	100% Matte Sn	Always	Always		

"Conflict Metals" Commitment

We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the Eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.


Stackpole Electronics, Inc.

Welded Ceramic Housed Axial Leaded Wirewound Resistor

Resistive Product Solutions

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

