General Purpose Thick Film Standard Power and High-Power Chip Resistor

Stackpole Electronics, Inc.

Resistive Product Solutions

Features:

- RMCF standard power ratings
- RMCP high power ratings
- Nickel barrier terminations standard
- Power derating from 100% at 70°C to zero at +155°C
- AEC-Q200 compliant (except RMCP0201)
- RoHS compliant and halogen free

	Electrical Specifications - RMCF								
Type/Code	Power Rating (W)	Max. Working	Max. Overload	Max. Jumper Current	TCR (ppm/⁰C)	Ohmic Range (Ω)			
	@ 70°C	Voltage (V) ⁽¹⁾	Voltage (V)	(A)		1%	5%		
RMCF01005	0.03	15	30	0.5	± 300	10 -			
	0.00	10		0.0	± 200	100			
RMCF0201	0.05	25	50	0.5	± 400	1 - 9			
141101 0201	0.00	20		0.0	± 200	10 -			
					± 200		76 ⁽³⁾		
RMCF0402	0.063	50	100	1	± 100	10 -	1M		
					± 200	1.02M - 10M	1.1M - 20M		
					± 500	0.1 - (0.499		
					± 400	0.5 -	0.976		
RMCF0603	0.1	75	150	1	± 200	1 - 9.76	1 - 20M		
					± 100	10 - 1M	-		
					± 200	1.02M - 10M	-		
					± 200	0.1 - 9.76	0.1 - 20M		
RMCF0805	0.125	150	300	2	± 100	10 - 1M	-		
					± 200	1.02M - 10M	-		
					± 200	0.1 - 9.76	0.1 - 20M		
RMCF1206	0.25	200	400	2	± 100	10 - 1M	-		
					± 200	1.02M - 10M	-		
					± 200	0.1 - (0.976		
RMCF1210	0.5	200	400	3	± 400	1 - 9	9.76		
					± 100	10 -	10M		
					± 200	0.1 - (0.976		
514050040	0.75		100		± 400	1-9	9.76		
RMCF2010	0.75	200	400	3	± 200	-	10 - 10M		
					± 100	10 - 10M	-		
					± 200	0.1 - (0.976		
DMOSOCIO		000	400	<u>^</u>	± 400	1-9	9.76		
RMCF2512	1	200	400	3	± 200	-	10 - 10M		
				2	± 100	10 - 10M	-		

Notes: (1) Lesser of $\sqrt{P^*R}$ or maximum working voltage

(2) Contact Stackpole for extended ohmic values

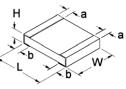
(3) Contact Stackpole for lower ohmic values

General Purpose Thick Film Standard Power and High-Power Chip Resistor

Stackpole Electronics, Inc.

Resistive Product Solutions

		El	ectrical Spe	cifications - F	RMCP	
Type/Code	Power Rating (W)	Max. Working	Max. Overload	Max. Jumper Current	TCR (ppm/ºC)	Ohmic Range (Ω) and Tolerance $^{(2)}$
	@ 70°C	Voltage (V) ⁽¹⁾	Voltage (V)	(A)		1%, 5%
DMCD0004	0.062		50	1	-200 / +400	1 - 9.76
RMCP0201	0.063	25	50	1	± 200	10 - 10M
RMCP0402	0.125	50	100	1.5	± 200	1 - 9.76
RINCP0402	0.125	50	100	1.5	± 100	10 - 10M
RMCP0603	0.25	75	150	2	± 200	1 - 9.76
RIVICPU003	0.25	75	150	2	± 100	10 - 10M
RMCP0805	0.33	150	300	2.5	± 200	1 - 9.76
RIVICE 0005	0.55	150	300	2.0	± 100	10 - 10M
RMCP1206	0.5	200	400	3.5	± 400	1 - 9.76
RIVICE 1200	0.5	200	400	5.5	± 100	10 - 10M
RMCP1210	0.66	200	400	5	± 400	1 - 9.76
RIVICE 1210	0.00	200	400	5	± 100	10 - 10M
RMCP2010	1	200	400	6	± 200	1 - 9.76
TRIVICE 2010	1	200	400	0	± 100	10 - 10M
RMCP2512	2	250	500	7	± 200	1 - 9.76
1100-2012	2	230	500	1	± 100	10 - 10M


Notes: (1) Lesser of $\sqrt{P^*R}$ or maximum working voltage

(2) Contact Stackpole for extended ohmic values

	Electrical Specifications - Jumper								
Type/Code	Jumper Rated Current (A)	Max Overload Current (A)*	Jumper Resistance Value (Ω)						
RMCF01005	0.5	1							
RMCF0201	0.5	1							
RMCF0402	1	3							
RMCF0603	1	5							
RMCF0805	2	5	0.05 max.						
RMCF1206	2	10							
RMCF1210	3	12							
RMCF2010	3	12							
RMCF2512	3	15	7						

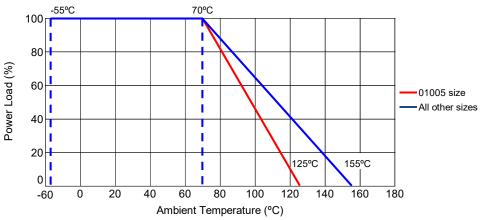
* < 1 second and 1 time

Mechanical Specifications

Turne/Code	Average Unit	L	W	Н	а	b	Unit
Type/Code	Weight (mg)	Body Length	Body Width	Body Height	Top Termination	Bottom Termination	Unit
RMCF01005	0.07	0.016 ± 0.0008	0.008 ± 0.0008	0.005 ± 0.0008	0.004 ± 0.0012	0.004 ± 0.0012	inches
RIVICEU 1005	0.07	0.40 ± 0.02	0.20 ± 0.02	0.13 ± 0.02	0.10 ± 0.03	0.10 ± 0.03	mm
RMCF0201	0.16	0.024 ± 0.0012	0.012 ± 0.0012	0.009 ± 0.0012	0.006 ± 0.002	0.006 ± 0.002	inches
RMCP0201	0.10	0.60 ± 0.03	0.30 ± 0.03	0.23 ± 0.03	0.15 ± 0.05	0.15 ± 0.05	mm
RMCF0402	0.57	0.039 ± 0.004	0.020 ± 0.002	0.012 ± 0.004	0.008 ± 0.004	0.010 ± 0.006	inches
RMCP0402	0.62	1.00 ± 0.10	0.50 ± 0.05	0.30 ± 0.10	0.20 ± 0.10	0.25 ± 0.15	mm
RMCF0603	1.88	0.061 ± 0.006	0.031 ± 0.006	0.018 ± 0.004	0.012 ± 0.008	0.012 ± 0.008	inches
RMCP0603	2.04	1.55 ± 0.15	0.80 ± 0.15	0.45 ± 0.10	0.30 ± 0.20	0.30 ± 0.20	mm
RMCF0805	5.00	0.079 ± 0.008	0.049 ± 0.004	0.020 ± 0.006	0.014 ± 0.010	0.014 ± 0.010	inches
RMCP0805	4.37	2.00 ± 0.20	1.25 ± 0.10	0.50 ± 0.15	0.35 ± 0.25	0.35 ± 0.25	mm

This specification may be changed at any time without prior notice Please confirm technical specifications before you order and/or use.

Stackpole Electronics, Inc. Resistive Product Solutions


and High-Power Chip Resistor

	Mechanical Specifications (cont.)									
Turne/Carda	Average Unit	L	W	Н	а	b	Linit			
Type/Code	Weight (mg)	Body Length	Body Width	Body Height	Top Termination	Bottom Termination	Unit			
RMCF1206	8.86	0.126 ± 0.010	0.063 ± 0.006	0.022 ± 0.006	0.020 ± 0.012	0.020 ± 0.012	inches			
RMCP1206	8.95	3.20 ± 0.25	1.60 ± 0.15	0.55 ± 0.15	0.50 ± 0.30	0.50 ± 0.30	mm			
RMCF1210	15.55	0.126 ± 0.010	0.098 ± 0.010	0.022 ± 0.006	0.020 ± 0.012	0.020 ± 0.012	inches			
RMCP1210	15.96	3.20 ± 0.25	2.50 ± 0.25	0.55 ± 0.15	0.50 ± 0.30	0.50 ± 0.30	mm			
RMCF2010	23.56	0.197 ± 0.008	0.098 ± 0.008	0.022 ± 0.006	0.024 ± 0.012	0.024 ± 0.014	inches			
RMCP2010	24.24	5.00 ± 0.20	2.50 ± 0.20	0.55 ± 0.15	0.60 ± 0.30	0.60 ± 0.35	mm			
RMCF2512	40.02	0.248 ± 0.008	0.126 ± 0.010	0.022 ± 0.008	0.024 ± 0.012	0.024 ± 0.014	inches			
RMCP2512	39.45	6.30 ± 0.20	3.20 ± 0.25	0.55 ± 0.20	0.60 ± 0.30	0.60 ± 0.35	mm			

	Performance C	Characteristics			
Test	Test Specifications	Test Conditions (JIS-C 5202)			
	± (2% + 0.1Ω)	2.5 X rated voltage for 5 seconds			
Short Time Overload	Jumper: Max 0.05Ω after test	0201 = 1A 0402 / 0603 / 0805 = 2.5A 1206 / 1210 / 2010 / 2512 = 5A			
Dielectric Withstanding Voltage	No flashover or breakdown	100 VAC, 1 minute			
Resistance to Soldering Heat	± 1%	260°C ± 5°C, for 10 seconds ± 0.5 seconds (Solder Bath)			
Solderability	95% coverage, minimum	235°C ± 5°C, for 2 seconds ± 0.5 seconds (Colophonium flux)			
Temperature Cycle	± (1% + 0.05Ω) Jumper (< 0.05Ω)	-65°C: 30 minutes 25°C: 2 to 3 minutes 155°C: 30 minutes 25°C: 2 to 3 minutes (5 Cycles)			
Load Life (Endurance)	1% and below: ± (1% + 0.05Ω) 2% and 5%: ± (3% + 0.1Ω) Value < 1Ω: ± (3% + 0.1Ω) Jumper: Max 0.1Ω after test.	70°C ± 2°C, RCWV or max. working voltage whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 hour "OFF"			
Voltage Coefficient	± 100 (ppm/V)	1/10 rated voltage for 3 seconds max. then rated voltage for 3 seconds max.			
Robustness of Termination	± (1% + 0.05Ω)	Bend of 3 mm for 5 ± 1 seconds			
Resistance to Solvent	1%: ± (0.5% + 0.05Ω) 5%: ± (0.5% + 0.05Ω) Jumper: Max. 0.05Ω after test	The tested resistor should be immersed into isopropyl alcohol of 20°C ~ 25°C for 60 seconds. Then the resitor is left in the room for 48 hours.			
Damp Heat with Load	1%: ± (1% + 0.05Ω) 5%: ± (2% + 0.05Ω) Values < 1Ω: ± (3% + 0.1Ω) Jumper: Max. 0.1Ω after test	40°C ± 2°C, 90%~95% R.H. RCWV or max. working voltage whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 ho "OFF"			

Operating temperature range is -55°C to +155°C for all sizes except for 01005 size Operating temperature range for 01005 is -55°C to +125°C

Power Derating Curve:

and High-Power Chip Resistor

Repetitive Pulse Information

(This information is for reference only and is not guaranteed performance.)

If repetitive pulses are applied to resistors, pulse wave form must be less than "Pulse limiting voltage", "Pulse limiting current" or "Pulse limiting wattage" calculated by the formula below.

 $Vp = K\sqrt{P \times R \times T/t}$

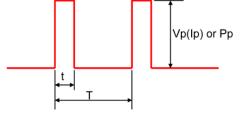
lp =
$$K\sqrt{P/R \times T/t}$$

 $Pp = K^2 x P x T/t$

Where: Vp: Pulse limiting voltage (V)

- lp: Pulse limiting current (A)
- Pp: Pulse limiting wattage (W)
- P: Power rating (W)
- R: Nominal resistance (ohm)
- T: Repetitive period (sec)
- t: Pulse duration (sec)
- K: Coefficient by resistors type (refer to below matrix)
- [Vr: Rated Voltage (V), Ir: Rated Current (A)]

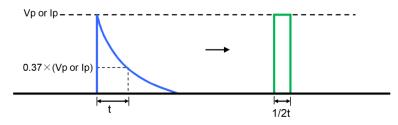
Note 1: If T > 10 \rightarrow T = 10 (sec), T / t > 1000 \rightarrow T / t = 1000

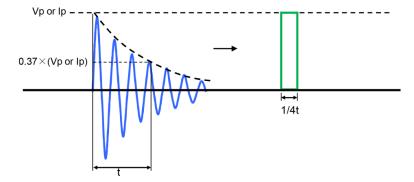

- Note 2: If T > 10 and T / t > 1000, "Pulse Limiting power (Single pulse) is applied
- Note 3: If Vp < Vr (Ip < Ir or Pp < P), Vr (Ir, P) is Vp (Ip, Pp)

Note 4: Pulse limiting voltage (current, wattage) is applied at less than rated ambient temperature. If ambient temperature is more than the rated temperature (70°C), please decrease power rating according to "Power Derating Curve"

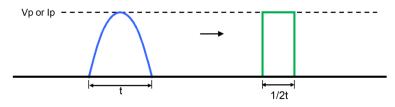
Note 5: Please assure sufficient margin for use period and conditions for "Pulse limiting voltage"

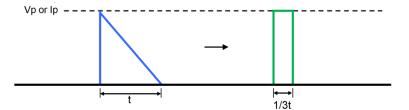
Note 6: If the pulse waveform is not square wave, please judge after transform the waveform into square wave according to the "Waveform Transformation to Square Wave".

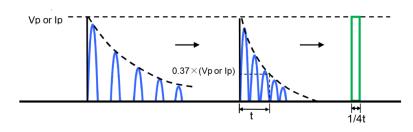

RMCF Coefficient (K) Matrix							
Ohmic Value	К						
R < 10Ω	0.50						
10Ω ≤ R < 100Ω	0.45						
100Ω ≤ R < 1KΩ	0.35						
1KΩ ≤ R < 10KΩ	0.25						
10KΩ ≤ R	0.20						


Resistive Product Solutions

Waveform Transformation to Square Wave


1. Discharge curve wave with time constant "t" \rightarrow Square wave


2. Damping oscillation wave with time constant of envelope "t" \rightarrow Square wave


3. Half-wave rectification wave \rightarrow Square wave

4. Triangular wave \rightarrow Square wave

5. Special wave \rightarrow Square wave

General Purpose Thick Film Standard Power and High-Power Chip Resistor

Resistive Product Solutions

	Recommended Pad Layout									
Type/Code	Α	В	С	Unit						
RMCF01005	0.008 0.20	0.020 0.50	0.008 0.20	inches mm						
RMCF0201	0.012	0.039	0.016	inches						
RMCP0201	0.30	1.00	0.40	mm						
RMCF0402	0.020	0.059	0.024	inches						
RMCP0402	0.50	1.50	0.60	mm						
RMCF0603	0.031	0.083	0.035	inches						
RMCP0603	0.80	2.10	0.90	mm						
RMCF0805	0.047	0.118	0.051	inches						
RMCP0805	1.20	3.00	1.30	mm						
RMCF1206	0.087	0.165	0.063	inches						
RMCP1206	2.20	4.20	1.60	mm						
RMCF1210	0.087	0.165	0.110	inches						
RMCP1210	2.20	4.20	2.80	mm						
RMCF2010	0.138	0.240	0.110	inches						
RMCP2010	3.50	6.10	2.80	mm						
RMCF2512	0.193	0.315	0.138	inches						
RMCP2512	4.90	8.00	3.50	mm						

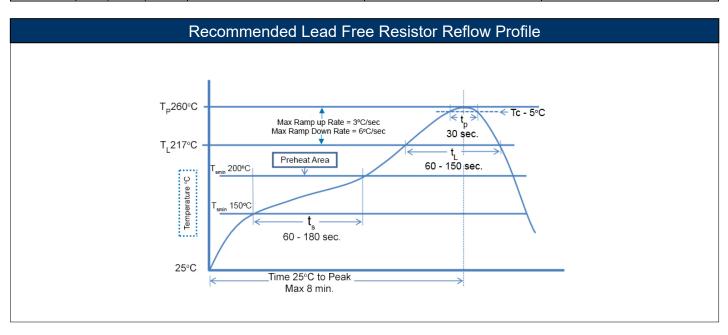
Recommended Solder Profile

This information is intended as a reference for solder profiles for Stackpole resistive components. These profiles should be compatible with most soldering processes. These are only recommendations. Actual numbers will depend on board density, geometry, packages used, etc., especially those cells labeled with "*".

100% Matte Tin / RoHS Compliant Terminations

Soldering iron recommended temperatures: 330°C to 350°C with minimum duration. Maximum number of reflow cycles: 3.

	Wave Soldering									
Description	Maximum	Recommended	Minimum							
Preheat Time	80 seconds	70 seconds	60 seconds							
Temperature Diff.	140°C	120°C	100°C							
Solder Temp.	260°C	250°C	240°C							
Dwell Time at Max.	10 seconds	5 seconds	*							
Ramp DN (°C/sec)	N/A	N/A	N/A							


Temperature Diff. = Defference between final preheat stage and soldering stage.

General Purpose Thick Film Standard Power and High-Power Chip Resistor

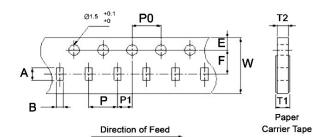
Stackpole Electronics, Inc.

Resistive Product Solutions

	Convection IR Reflow									
Description	Maximum	Recommended	Minimum							
Ramp Up (°C/sec)	3°C/sec	2°C/sec	*							
Dwell Time > 217°C	150 seconds	90 seconds	60 seconds							
Solder Temp.	260°C	245°C	*							
Dwell Time at Max.	30 seconds	15 seconds	10 seconds							
Ramp DN (°C/sec)	6°C/sec	3°C/sec	*							

Packaging (EIA Standard RS-481)

		P	ackaging Spe	cifications			
			A B C	MD			
Reel Type	Wa	М	А	В	С	D	Unit
7" reel for	0.354 ± 0.020	7.008 ± 0.079	0.079 ± 0.020	0.531 ± 0.020	0.827 ± 0.020	2.362 ± 0.039	inches
8 mm tape	9.00 ± 0.50	178.00 ± 2.00	2.00 ± 0.50	13.50 ± 0.50	21.00 ± 0.50	60.00 ± 1.00	mm
10" reel for	0.394 ± 0.020	10.000 ± 0.079	0.079 ± 0.020	0.531 ± 0.020	0.827 ± 0.020	3.937 ± 0.039	inches
8 mm tape	10.00 ± 0.50	254.00 ± 2.00	2.00 ± 0.50	13.50 ± 0.50	21.00 ± 0.50	100.00 ± 1.00	mm


General Purpose Thick Film Standard Power and High-Power Chip Resistor

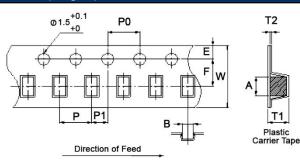
Stackpole Electronics, Inc.

Resistive Product Solutions

	Taping Specifications - 01005, 0201, 0402										
$\begin{array}{c} ^{01.5} \xrightarrow{+0.1}_{+0} \xrightarrow{P0}_{+0} \xrightarrow{F}_{+0} \xrightarrow{F}$											
Type/Code	7" Reel Quantity	• •	ical Full Neight (g)	Tape Width	А	В	W		E	F	Unit
RMCF01005	10000	127.3	3 ± 12.0	0.315 8.00	0.018 ± 0.001 0.45 ± 0.02	0.010 ± 0.001 0.25 ± 0.02	0.315 ± 0.012 8.00 ± 0.30		± 0.004 ± 0.10	0.138 ± 0.002 3.50 ± 0.05	inches mm
RMCF0201 RMCP0201	10000	97.2	2 ± 9.0	0.315 8.00	0.028 ± 0.006 0.70 ± 0.15	0.016 ± 0.006 0.40 ± 0.15	0.315 ± 0.008 8.00 ± 0.20	0.069	± 0.004 ± 0.10	0.138 ± 0.002 3.50 ± 0.05	inches mm
RMCF0402 RMCP0402	10000	94.5	5 ± 9.0	0.315 8.00	0.047 ± 0.006 1.20 ± 0.15	0.028 ± 0.006 0.70 ± 0.15	0.315 ± 0.008 8.00 ± 0.20		± 0.004 ± 0.10	0.138 ± 0.002 3.50 ± 0.05	inches mm
Type/Code	T1		T2		Р	P0	P1	Unit			
RMCF01005	0.012 ± 0.31 ±		0.007 ± 0 0.17 ± 0		0.079 ± 0.002 2.00 ± 0.05	0.157 ± 0.002 4.00 ± 0.05	0.079 ± 0.002 2.00 ± 0.05	inches mm			
RMCF0201 RMCP0201	0.015 ± 0.38 ±		0.011 ± 0 0.28 ± 0		0.079 ± 0.004 2.00 ± 0.10	0.157 ± 0.004 4.00 ± 0.10	0.079 ± 0.002 2.00 ± 0.05	inches mm			
RMCF0402 RMCP0402	0.016 ± 0.40 ±		0.016 ± 0 0.40 ± 0		0.079 ± 0.004 2.00 ± 0.10	0.157 ± 0.004 4.00 ± 0.10	0.079 ± 0.002 2.00 ± 0.05	inches mm			
			•								

Taping Specifications - 0603, 0805, 1206, 1210

	•							
Type/Code	7" Reel Quantity ⁽¹⁾	Typical Full Reel Weight (g)	Tape Width	А	В	W	Е	Unit
RMCF0603	5000	118.3 ± 11.0	0.315	0.071 ± 0.008	0.041 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	inches
RMCP0603	5000	110.3 ± 11.0	8.00	1.80 ± 0.20	1.05 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	mm
RMCF0805	5000	139.2 ± 13.0	0.315	0.093 ± 0.010	0.063 ± 0.010	0.315 ± 0.008	0.069 ± 0.004	inches
RMCP0805	5000		8.00	2.35 ± 0.25	1.60 ± 0.25	8.00 ± 0.20	1.75 ± 0.10	mm
RMCF1206	5000	151.4 ± 15.0	0.315	0.140 ± 0.010	0.077 ± 0.010	0.315 ± 0.008	0.069 ± 0.004	inches
RMCP1206	5000	151.4 ± 15.0	8.00	3.55 ± 0.25	1.95 ± 0.25	8.00 ± 0.20	1.75 ± 0.10	mm
RMCF1210	4000	175.7 ± 17.0	0.315	0.138 ± 0.008	0.110 ± 0.010	0.315 ± 0.008	0.069 ± 0.004	inches
RMCP1210	CP1210 4000	175.7 ± 17.0	8.00	3.50 ± 0.20	2.80 ± 0.25	8.00 ± 0.20	1.75 ± 0.10	mm

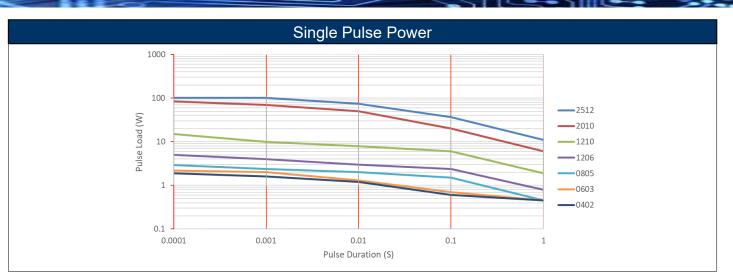

General Purpose Thick Film Standard Power and High-Power Chip Resistor

Stackpole Electronics, Inc.

Resistive Product Solutions

Taping Specifications - 0603, 0805, 1206, 1210 (cont.)												
Type/Code	F	T1	T2	Р	P0	P1	Unit					
RMCF0603	0.138 ± 0.002	0.024 ± 0.008	0.024 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.079 ± 0.002	inches					
RMCP0603	3.50 ± 0.05	0.60 ± 0.20	0.60 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05	mm					
RMCF0805	0.138 ± 0.002	0.030 ± 0.008	0.030 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.079 ± 0.002	inches					
RMCP0805	3.50 ± 0.05	0.75 ± 0.20	0.75 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05	mm					
RMCF1206	0.138 ± 0.002	0.030 ± 0.008	0.030 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.079 ± 0.002	inches					
RMCP1206	3.50 ± 0.05	0.75 ± 0.20	0.75 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05	mm					
RMCF1210	0.138 ± 0.002	0.030 ± 0.008	0.030 ± 0.004	0.157 ± 0.004	0.157 ± 0.004	0.079 ± 0.002	inches					
RMCP1210	3.50 ± 0.05	0.75 ± 0.20	0.75 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05	mm					

Taping Specifications - 2010, 2512



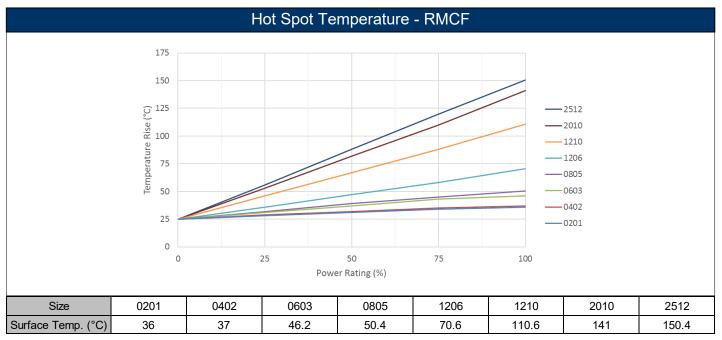
Type/Code	7" Reel	Typical Full Reel		Tape	А		в		W			Е			
Type/Code	Quantity	We	eight (g)	Width	~					vv		L		1	
RMCF2010	4000	102 1	183.1 ± 18.0		0.217 ± 0	.012	0.110 ±	0.008	0.472	± 0.008	0.069	± 0.00	4 0.217	± 0.002	inches
RMCP2010	4000	105.	± 10.0	12.00	5.50 ± 0	.30	2.80 ±	0.20	12.00	± 0.20	1.75	± 0.10	5.50	± 0.05	mm
RMCF2512	4000	255.2	3 ± 25.0	0.472	0.264 ± 0	.008	0.134 ±	0.008	0.472	± 0.008	0.069	± 0.00	4 0.217	± 0.002	inches
RMCP2512	4000	200.0	5 ± 25.0	12.00	6.70 ± 0	.20	3.40 ±	0.20	12.00	± 0.20	1.75	± 0.10	5.50	± 0.05	mm
Type/Code	T1		T2		Р		F	> 0		P1	l	Jnit			
RMCF2010	0.041 ± 0	800.0	0.009 ± 0	0.006	0.157 ± 0.	004	0.157	± 0.004	4 0.0)79 ± 0.0	02 in	ches			
RMCP2010	1.05 ± (0.20	0.23 ± 0	0.15	4.00 ± 0.	10	4.00	± 0.10	2.	$.00 \pm 0.0$	5	mm			
RMCF2512	0.041 ± 0	800.0	0.009 ± 0	0.006	0.157 ± 0.	004	0.157	± 0.004	4 0.0)79 ± 0.0	02 in	ches			
RMCP2512	1.05 ± (0.20	0.23 ± 0).15	4.00 ± 0.	10	4.00	± 0.10	2.	$.00 \pm 0.0$	5	mm			

Note: Plastic carrier tape used for 2010 and 2512 sizes.

General Purpose Thick Film Standard Power and High-Power Chip Resistor

Resistive Product Solutions

The data provided are for reference only. They are typical performance for this product but are not guaranteed. The actual pulse handling of each individual resistor may vary depending on a variety of factors including resistance tolerance and resistance value. Stackpole Electronics, Inc. assumes no liability for the use of this information. Customers should validate the performance of these products in their applications. Contact Stackpole marketing to discuss specific pulse application requirements.


Temperature Measurement of Resistor Surface

Description: The resistor surface generated temperature variation after applied rated voltage. Products and power:

Size	0201	0402	0603	0805	1206	1210	2010	2512
R-V	15K	40.2K	57.6K	180K	182K	100K	100K	75K
Rated Power (W)	1/20	1/16	1/10	1/8	1/4	1/2	3.4	1
Max Rated Voltage (V)	25	50	75	150	200	200	200	200

Test method: Measure component surface temperature directly after the temperature stabilizes.

Test result: As per table below:

Rev Date: 3/24/2021

This specification may be changed at any time without prior notice Please confirm technical specifications before you order and/or use.

Stackpole Electronics, Inc.

Resistive Product Solutions

and High-Power Chip Resistor

The thermal resistance of the RMCP will be similar to the RMCF. For example, the RMCF2512 and the RMCP2512 will have similar surface temperatures at 1W; the RMCP is designed to withstand higher temperatures associated with high power levels.

Part Marking Specifications

1% Marking The nominal resistance is marked on the surface of the overcoating with the use of 4 digit markings. 0201 and 0402 are not marked.

5% Marking The nominal resistance is marked on the surface of the overcoating with the use of 3 digit markings. 0201 and 0402 are not marked.

For shared E24/E96 values, 1% tolerance product may be marked with three digit marking instead of the standard four digit marking for all other E96 values. All E24 values available in 1% tolerance are also marked with three digit marking.

Mark Instructions for 0603 1% Chip Resistors (per EIA-J)

A two-digit number is assigned to each standard R-Value (E96) as shown in the chart below. This is followed by one alpha character which is used as a multiplier. Each letter "Y" - "F" represents a specific multiplier as follows:

Y = 0.1	X = 1	A = 10	B = 100
C = 1000	D(d) = 10000	E = 100000	F = 1000000

EXAMPLE:

Chip Marking	Explanation	Value
01B	01 means 10.0 and B = 100	10.0 x 100 = 1 K ohm
25C	25 means 17.8 and C = 1,000	17.8 x 1,000 = 17.8 K ohm
93D	93 means 90.9 and D = 10,000	90.9 x 10,000 = 909 K ohm

					E	96					
1%	#	1%	#	1%	#	1%	#	1%	#	1%	#
10.0	01	14.7	17	21.5	33	31.6	49	46.4	65	68.1	81
10.2	02	15.0	18	22.1	34	32.4	50	47.5	66	69.8	82
10.5	03	15.4	19	22.6	35	33.2	51	48.7	67	71.5	83
10.7	04	15.8	20	23.2	36	34.0	52	49.9	68	73.2	84
11.0	05	16.2	21	23.7	37	34.8	53	51.1	69	75.0	85
11.3	06	16.5	22	24.3	38	35.7	54	52.3	70	76.8	86
11.5	07	16.9	23	24.9	39	36.5	55	53.6	71	78.7	87
11.8	08	17.4	24	25.5	40	37.4	56	54.9	72	80.6	88
12.1	09	17.8	25	26.1	41	38.3	57	56.2	73	82.5	89
12.4	10	18.2	26	26.7	42	39.2	58	57.6	74	84.5	90
12.7	11	18.7	27	27.4	43	40.2	59	59.0	75	86.6	91
13.0	12	19.1	28	28.0	44	41.2	60	60.4	76	88.7	92
13.3	13	19.6	29	28.7	45	42.2	61	61.9	77	90.9	93
13.7	14	20.0	30	29.4	46	43.2	62	63.4	78	93.1	94
14.0	15	20.5	31	30.1	47	44.2	63	64.9	79	95.3	95
14.3	16	21.0	32	30.9	48	45.3	64	66.5	80	97.6	96

This specification may be changed at any time without prior notice Please confirm technical specifications before you order and/or use.

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

	RoHS Compliance Status										
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)					
RMCF	General Purpose Thick Film Surface Mount Chip Resistor	SMD	YES ⁽¹⁾	100% Matte Sn over Ni	Jan-04 (Japan) Jan-05 (Taiwan, China)	04/01 05/01					
RMCP	General Purpose High Power Thick Film Chip Resistor	SMD	YES ⁽¹⁾	100% Matte Sn over Ni	Always	Always					

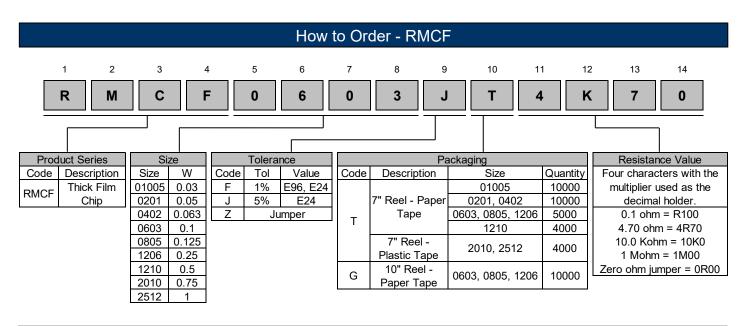
Note (1): RoHS Compliant by means of exemption 7c-I.

"Conflict Metals" Commitment

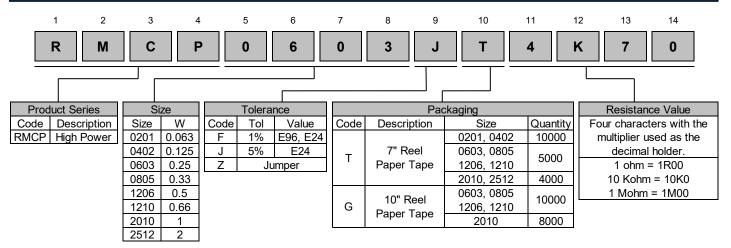
We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.


Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.


Stackpole Electronics, Inc.

and High-Power Chip Resistor

Resistive Product Solutions

How to Order - RMCP

