Kelvin Termination Metal Alloy Current Sensing Resistor

Features:

- Metal element current sensing resistor
- Power rating to 3W
- Operation temperature range is -55°C ~ +170°C
- Tolerance available in ± 0.5% to ± 5%
- Insulation resistance over 100M Ω
- Maximum working voltage (V) is (P*R)^{1/2}
- RoHS compliant, lead free and halogen free

	E	lectrical Specificatio	ns	
Turne / Code	Power Rating (W) TOP (new /00)		Ohmic Range (Ω) and Tolerance
Type / Code	@ 70°C	@ 70°C TCR (ppm/°C)	0.5%	1%, 2%, 5%
CSSK0612	1	± 200		0.0005 - 0.003
C33K0012	I	± 150	-	0.0031 - 0.005
CSSK3637	3	± 50	0.001 - 0.003	0.0005 - 0.003

Mechanical Specifications										
W B A										
Type / Code	Type / Code L W H T A B Unit									
CSSK0612 0.065 ± 0.008 0.120 ± 0.010 0.026 ± 0.008 0.016 ± 0.010 0.020 ± 0.005 0.020 ± 0.005 inches 1.65 ± 0.20 3.05 ± 0.25 0.65 ± 0.20 0.40 ± 0.25 0.51 ± 0.13 0.51 ± 0.13 mm										
CSSK3637	0.360 ± 0.010 9.14 ± 0.25	0.378 ± 0.010 9.60 ± 0.25	0.029 ± 0.010 0.73 ± 0.25	0.091 ± 0.010 2.30 ± 0.25	0.059 ± 0.010 1.50 ± 0.25	0.047 ± 0.010 1.20 ± 0.25	inches mm			

Performance Characteristics							
Test	Test Method	Test Sp	Test Condition				
Test	rest Method	CSSK0612	CSSK3637				
Temperature Coefficient of	IEC60115-1-4.8	As per specification		+25℃ ~ +125℃			
Resistance	JIS-C5201-4.8	As per s	Decilication	+23°C ~ +123°C			
Load Life	IEC60115-1-4.25.1 JIS-C5201-4.25.1	$\label{eq:relation} \Delta \; R/R1 \leq \pm (2\% + 0.0005 \; \Omega)$	$\label{eq:relation} \Delta \; R/R 1 \leq \pm (1\% + 0.0005 \; \Omega)$	1000 hours at rated power, 70°C, 1.5 hours "ON", 0.5 hour "OFF".			
Short Time Overload	IEC60115-1-4.13 JIS-C5201-4.13	$\Delta \text{ R/R1} \leq \pm (0.8)$	∆ R/R1 ≤ ±(0.5% + 0.0005 Ω)				
Moisture no Load	IEC60115-1-4.24.2.1a JIS-C5201-4.24.2.1a	∆ R/R1 ≤ ±(0.5% + 0.0005 Ω)		85°C, 85% RH, 1000 hours			
Biased Humidity	MIL-STD-202 Method 103	$\Delta R/R1 \leq \pm (0.5)$	5% + 0.0005 Ω)	1000 hours; 85°C/85% R.H., 10% of operating power. Measurement at 24 ± 4 hours after test conclusion.			
CSSK0612 Temperature Cycle	IEC60115-1-4.19 JIS-C5201-4.19	< ± 1%	-	-55°C and +155°C, 300 cycle, 15 minutes per extreme condition.			
CSSK3637 Temperature Cycle	JESD22 Method JA-104	∆ R/R1 ≤ ±(0.5% + 0.0005 Ω)		1000 cycles (-55°C to + 155°C). Measurement at 24 ± 4 hours after test conclusion. 30 minutes maximum dwell time at each temperature extreme.			
Resistance to Soldering Heat	IEC60115-1-4.18 JIS-C5201-4.18	$\Delta \text{ R/R1} \leq \pm (0.8)$	5% + 0.0005 Ω)	260°C ± 5°C for 10 ± 1 seconds 2 cycles			

Stackpole Electronics, Inc.

Resistive Product Solutions

This specification may be changed at any time without prior notice. Please confirm technical specifications before you order and/or use.

CSSK Series

Kelvin Termination Metal Alloy Current Sensing Resistor

Stackpole Electronics, Inc. Resistive Product Solutions

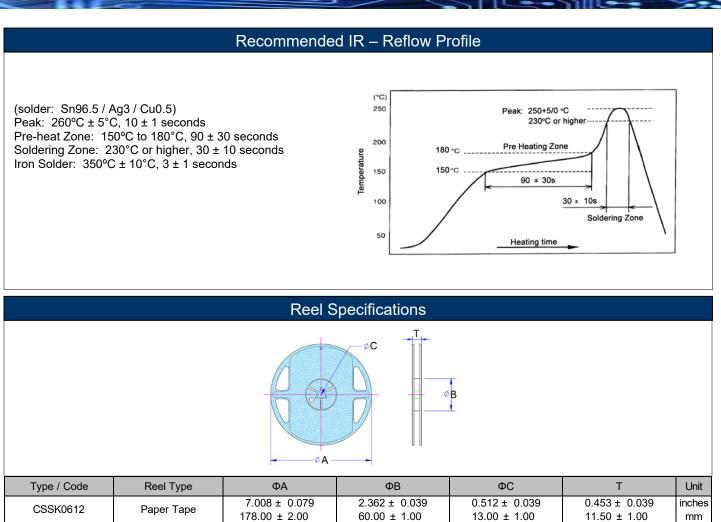
Performance Characteristics (cont.)								
Test	Test Method	Test Sp	Test Condition					
		CSSK0612	CSSK3637					
Soldorobility	IEC60115-1-4.17	At least 95% of surface area o	f electrode shall be covered with	245°C ± 5°C, 2 ± 0.5 seconds				
Solderability	JIS-C5201-4.17	new	solder.	$245^{\circ}C \pm 5^{\circ}C$, 2 ± 0.5 seconds				
Link Townsonthing Francisco	IEC60115-1-4.23.2			17000 1000 hours				
High Temperature Exposure	JIS-C5201-4.23.2	$\Delta R/R1 \leq \pm (2\% + 0.0005 \ \Omega)$	$\Delta R/R1 \leq \pm (1\% + 0.0005 \ \Omega)$	170ºC, 1000 hours				
L	IEC60115-1-4.23.4			5500 4000 have				
Low Temperature Storage	JIS-C5201-4.23.4	< ± 0.5% -		-55ºC, 1000 hours				
Dielectric Withstanding	JIS-C5201-1 4.7	No breakage.		Applied 500VAC for 1 minute.				
Voltage	310-03201-1 4.7	140 816	eakaye.					
Core Body Strength	JIS-C5201-1 4.15	$\Delta \text{ R/R1} \le \pm (0.5\% + 0.0005 \Omega)$		Central part pressurizing force: 5N,				
Core Body Strength	313-03201-1 4.13		$\Delta 10 \text{ KT} \cong \pm (0.5\% \pm 0.0005 \Omega)$					
Terminal Strength	AEC-Q200-006	∆ R/R1 ≤ ±(0.5% + 0.0005 Ω)		$A P/P1 < \pm (0.5\% \pm 0.0005 O)$ Pressurizing force 1		Pressurizing force 17.7N for 60		
Terminal Strength	ALC-Q200-000			seconds				
	MIL-STD 202			T=24 hours / cycle, 10 cycles.				
Moisture Resistance	Method 106	∆ R/R1 ≤ ±(0.5% + 0.0005 Ω) Steps 7a & 7b not requ						
				Unpowered.				
Substrate Bending	IEC60115-1-4.33	A P/P1 < +(0)	5% + 0.0005 Ω)	Bending once 2mm for 10 seconds				
Substrate Bending	JIS-5201-4.33	$\Delta R/RT \cong \pm (0.3)$	570 · 0.0003 22j	bending once zmill for 10 seconds				
Insulation Resistance	IEC60115-1-4.6	> 100M Ω		100VDC for 1 minute				
msulation Resistance	JIS-5201-4.6		-					

Operating temperature range is -55°C to +170°C

Storage temperature: $25^{\circ}C \pm 5^{\circ}C$, Humidity: $60\% \pm 20\%$

Power Derating Curve: -55°C 70°C 100 т Percent Rated Power (%) 80 T. 60 I. T. 40 Т 20 170°C I I 0 20 40 120 140 160 60 80 100 180 0 -60 Ambient Temperature (°C)

Recommended Pad Layouts										
$ \begin{array}{c} L \\ \downarrow \\ \downarrow \\ F \uparrow \\ \hline \\ C \uparrow \\ \hline \\$										
Type / Code	А	В	С	L	F	Unit				
CSSK0612	0.091 2.30	0.039 1.00	0.031 0.80	0.028 0.70	0.016 0.40	inches mm				
CSSK3637	0.312 7.92	0.130 3.30	0.078 1.98	0.157 4.00	0.024 0.60	inches mm				


Rev Date: 3/4/2021

This specification may be changed at any time without prior notice. Please confirm technical specifications before you order and/or use.

CSSK Series

Kelvin Termination Metal Alloy Current Sensing Resistor

Stackpole Electronics, Inc. Resistive Product Solutions

		110.00 1 1		1.00	.00 2 0.00	11.10 2 1.00				
Taping Specifications – CSSK0612										
$W = \begin{bmatrix} P_{0} \\ F_{1} $										
Type / Code	W	Р	E	F	P2	D	Unit			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
CSSK0612										
	0.039 ± 0.004 1.00 ± 0.10	0.157 ± 0.004 4.00 ± 0.10	0.070 ± 0.004 1.77 ± 0.10	0.134 ± 0.004 3.40 ± 0.10	0.041 ± 0.004 1.04 ± 0.10	0.009 ± 0.002 0.22 ± 0.05	inches mm			

2.362 ± 0.039

 60.00 ± 1.00

 0.531 ± 0.020

 13.50 ± 0.50

7.008 ± 0.079

 178.00 ± 2.00

Rev Date: 3/4/2021

CSSK3637

This specification may be changed at any time without prior notice. Please confirm technical specifications before you order and/or use.

Embossed Plastic

0.685 ± 0.039

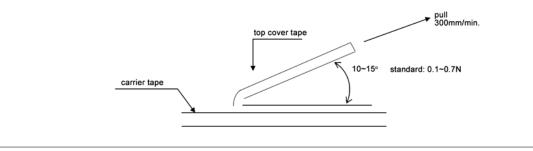
 17.40 ± 1.00

inches

mm

CSSK Series

Kelvin Termination Metal Alloy Current Sensing Resistor


Stackpole Electronics, Inc.

Resistive Product Solutions

Taping Specifications – CSSK3637									
A = P = 0 D 1 = T = T $Carrier T = T$ $M = 0 P = 0$									
Type / Code	W	Р	E	F	D	D1	Unit		
	0.630 ± 0.008 16.00 ± 0.20	0.472 ± 0.004 12.00 ± 0.10	0.069 ± 0.004 1.75 ± 0.10	0.295 ± 0.004 7.50 ± 0.10	0.059 +0.004/-0 1.50 +0.1 / -0	0.059 ± 0.004 1.50 ± 0.10	inches mm		
CSSK3637	G	H	A	B	T1	T	Unit		
	0.157 ± 0.004 4.00 ± 0.10	0.079 ± 0.004 2.00 ± 0.10	0.378 ± 0.004 9.60 ± 0.10	0.390 ± 0.004 9.90 ± 0.10	0.051 ± 0.004 1.30 ± 0.10	0.010 ± 0.002 0.25 ± 0.05	inches mm		

Peeling Strength of Top Cover Tape

Test condition: 0.1 to 0.7N at a peel-off speed of 300 mm/min.

RoHS Compliance

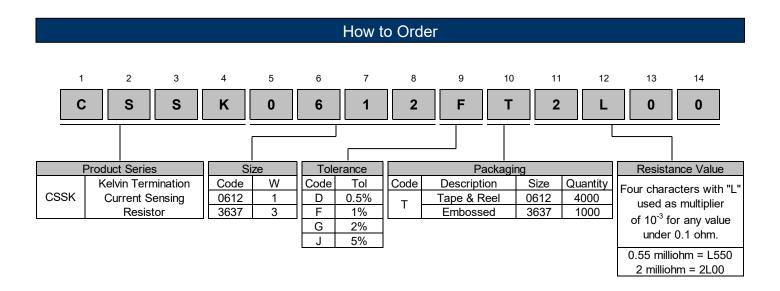
Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

	RoHS Compliance Status										
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)					
CSSK	Kelvin Termination Current Sensing Resistors	SMD	YES	100% Matte Sn over Ni	Always	Always					

4

Resistive Product Solutions

"Conflict Metals" Commitment


We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

