STEP-UP DCIDC CONVERTER FOR WHITE LED BACK LIGHT

NO.EA-271-180703

OUTLINE

The R1203x Series are PWM control type step-up DC/DC converter ICs with low supply current.
The R1203x is fully dedicated to drive White LEDs with constant current. Each of these ICs consists of an NMOS FET, an oscillator, a PWM comparator, a voltage reference unit, an error amplifier, a current limit circuit, an under voltage lockout circuit (UVLO), and an over-voltage protection circuit (OVP).

The R1203x can drive white LEDs in constant current with high efficiency by using an inductor, a diode, a resistor and capacitors as external components.

The LEDs current can be set by an external resistance value and can adjust the dimming of LEDs by CE pin according to the signal of PWM. Feedback voltage is 0.2 V , therefore power loss by current setting resistance is small and efficiency is good. Maximum duty cycle is internally fixed, Typ. 91\%. LEDs can be driven from low voltage. Protection circuits are the current limit of Lx peak current, the over voltage limit of output, and the under voltage lockout function.

It is controllable the dimming of LEDs quickly when the PWM signal (between 200 Hz to 300 kHz) input to CE pin. If the CE pin input is "L" in the fixed time (Typ. 0.5 ms), the IC becomes the standby mode and turns OFF LEDs.

FEATURES

```- Supply CurrentTyp. \(500 \mu \mathrm{~A}\)
```

- Standby Current Max. $5 \mu \mathrm{~A}$
- Input Voltage Range 1.8 V to 5.5 V
- Feedback Voltage 0.2 V
- Feedback Voltage Accuracy $\pm 1.0 \%(\pm 10 \mathrm{mV})$
- Temperature-Drift Coefficient of Feedback Voltage $\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

```- Oscillator Frequency.Typ. 1.2 MHz
```

- Maximum Duty Cycle Typ. 91\%
- Switch ON Resistance Typ. 1.35Ω
- UVLO Detector Threshold Typ. 1.6V
- Lx Current Limit Protection Typ. 700 mA
- OVP Detector Threshold Typ. 29.5V
- Switching Control PWM
- LED dimming control by external PWM signal (Frequency 200Hz to 300 kHz)
- Packages DFN1616-6B, SOT-23-6
- Ceramic capacitors are recommended $0.22 \mu \mathrm{~F}$

APPLICATION

- White LED Backlight for portable equipment

R1203x

NO.EA-271-180703

SELECTION GUIDE

The package for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1203L071B-TR	DFN1616-6B	$5,000 \mathrm{pcs}$	Yes	Yes
R1203N071B-TR-FE	SOT-23-6	$3,000 \mathrm{pcs}$	Yes	Yes

BLOCK DIAGRAMS

PIN DESCRIPTIONS

- DFN1616-6B

Pin No	Symbol	Pin Description
1	CE	Chip Enable Pin ("H" Active)
2	VFB $_{\text {FB }}$	Feedback Pin
3	Lx	Switching Pin (Open Drain Output)
4	GND	Ground Pin
5	Vin $^{\text {Vout }}$	Input Pin
6	Output Pin	

*) Tab is GND level. (They are connected to the reverse side of this IC.)
The tab is better to be connected to the GND, but leaving it open is also acceptable.

- SOT-23-6

Pin No	Symbol	Pin Description
1	CE	Chip Enable Pin ("H" Active)
2	Vout	Output Pin
3	VIn	Input Pin
4	Lx	Switching Pin (Open Drain Output)
5	GND	Ground Pin
6	$V_{\text {FB }}$	Feedback Pin

*R1203L(DFN1616-6B) is the non-promotional product of as February 2021.
R1203x
NO.EA-271-180703

ABSOLUTE MAXIMUM RATINGS

(GND=0V)

Symbol	Item		Rating	Unit
Vin	Vin Pin Voltage		-0.3 to 6.5	V
Vce	CE Pin Voltage		-0.3 to $\mathrm{V}_{\text {In }}+0.3$	V
$V_{\text {Fb }}$	Vfb Pin Voltage		-0.3 to $\mathrm{V}^{\text {in }}+0.3$	V
Vout	Vout Pin Voltage		-0.3 to 32	V
VLx	Lx Pin Voltage		-0.3 to 32	V
ILx	Lx Pin Current		1000	mA
PD	Power Dissipation* (JEDEC STD. 51-7 Test Land Pattern)	DFN1616-6B	2400	mW
		SOT-23-6	660	,
Tj	Junction Temperature Range		-40 to 125	${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature Range		-55 to 125	${ }^{\circ} \mathrm{C}$

*) Refer to POWER DISSIPATION for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarilyexceeded absolute maximum ratings maycause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating	Unit
Vin	Input Voltage	1.8 to 5.5	V
Ta	Operating Temperature Range	-40 to 85	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.
*R1203L(DFN1616-6B) is the non-promotional product of as February 2021.
R1203x
NO.EA-271-180703

ELECTRICAL CHARACTERISTICS

- R1203x
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Symbol	Item	Conditions	Min.	Typ.	Max.	Unit
ldo	Supply Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {fb }}=0 \mathrm{~V}$, LX at no load		0.5	1.0	mA
Istandby	Standby Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=0 \mathrm{~V}$		1.0	5.0	$\mu \mathrm{A}$
Vuvloi	UVLO Detector Threshold	VIn falling	1.5	1.6	1.7	V
Vuvloz	UVLO Released Voltage	Vin rising		$\begin{gathered} \hline \text { Vuvloi } \\ +0.1 \end{gathered}$	1.8	V
Vсен	CE Input Voltage "H"	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	1.5			V
Vcel	CE Input Voltage "L"	$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$			0.5	V
Rce	CE Pull Down Resistance	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$	600	1200	2200	k Ω
$V_{\text {FB }}$	$V_{\text {Fb }}$ Voltage Accuracy	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ce }}=3.6 \mathrm{~V}$	0.19	0.20	0.21	V
$\begin{gathered} \Delta \mathrm{V}_{\mathrm{FB}} / \\ \Delta \mathrm{Ta} \end{gathered}$	$V_{\text {FB }}$ Voltage Temperature Coefficient	$\mathrm{V}_{\text {In }}=\mathrm{V}_{\text {ce }}=3.6 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$		± 150		${ }_{1^{\circ} \mathrm{C}}^{\mathrm{ppm}}$
Ifb	$V_{\text {FB }}$ Input Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$ or V_{IN}	-0.1		0.1	$\mu \mathrm{A}$
Ron	Switch ON Resistance	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{ILx}=100 \mathrm{~mA}$		1.35		Ω
ILxleak	Switch Leakage Current	V Lx $=30 \mathrm{~V}$		0	3.0	$\mu \mathrm{A}$
ILxlim	Switch Current Limit	$\mathrm{V}_{\text {in }}=3.6 \mathrm{~V}$	400	700	1000	mA
fosc	Oscillator Frequency	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {FB }}=0 \mathrm{~V}$	1.0	1.2	1.4	MHz
Maxduty	Maximum Duty Cycle	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {FB }}=0 \mathrm{~V}$	86	91		\%
Vovp1	OVP Detector Threshold	$\mathrm{V}_{\text {In }}=3.6 \mathrm{~V}$, Vout rising	28.7	29.5	30.3	V
Δ Vovp1/ $\Delta \mathrm{Ta}$	Vovp1 Voltage Temperature Coefficient	$\mathrm{V}_{\text {In }}=\mathrm{V}_{\text {ce }}=3.6 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$		± 150		$\underset{1^{\circ} \mathrm{C}}{\mathrm{p} p m}$
Vovp2	OVP Released Voltage	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {оut }}$ falling		$\begin{aligned} & \hline \text { Vovp1 } \\ & -1.55 \end{aligned}$		V

R1203x

NO.EA-271-180703

THEORY OF OPERATION

Operation of Step-Up DC/DC Converter and Output Current

 <Basic Circuit>
<Current through L>

There are two operation modes of the step-up PWM control-DC/DC converter. That is the continuous mode and discontinuous mode by the continuousness inductor.

When the transistor turns ON, the voltage of inductor L becomes equal to Vin voltage. The increase value of inductor current (i1) will be

$$
\Delta \mathrm{i} 1=\mathrm{V}_{\mathrm{IN}} \times \operatorname{ton} / \mathrm{L} . .
$$

Formula 1

As the step-up circuit, during the OFF time (when the transistor turns OFF) the voltage is continually supply from the power supply. The decrease value of inductor current (i2) will be

$$
\Delta i 2=(\text { Vout }- \text { Vin }) \times \text { topen } / L
$$

Formula 2

At the PWM control-method, the inductor current become continuously when topen=toff, the DC/DC converter operate as the continuous mode.

In the continuous mode, the variation of current of i1 and i2 is same at regular condition.

The duty at continuous mode will be

$$
\text { duty }(\%)=\text { ton } /(\text { ton }+ \text { toff })=(\text { Vout - Vin }) / \text { Vour..Formula } 4
$$

The average of inductor current at $\mathrm{tf}=$ toff will be

$$
\begin{aligned}
& \mathrm{IL}(\text { Ave. })=\mathrm{V}_{\mathrm{IN}} \times \operatorname{ton} /(2 \times \mathrm{L}) . \\
& \text {.Formula } 5
\end{aligned}
$$

If the input voltage $=$ output voltage, the lout will be

If the lout value is large than above the calculated value (Formula 6), it will become the continuous mode, at this status, the peak current (ILmax) of inductor will be

$$
\begin{aligned}
& \text { ILmax }=\text { lout } \times \text { Vout } / \mathrm{V} \text { IN }+\mathrm{V}_{\text {IN }} \times \operatorname{ton} /(2 \times \mathrm{L}) \\
& \text { ILmax }=\text { lout } \times \text { Vout } / \mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {IN }} \times \mathrm{T} \times(\text { Vout }-\mathrm{V} \text { In }) /\left(2 \times \mathrm{L} \times \mathrm{V}_{\text {out }}\right) . \\
& \text {.Formula } 7 \\
& \text { Formula } 8
\end{aligned}
$$

The peak current value is larger than the lout value. In case of this, selecting the condition of the input and the output and the external components by considering of ILmax value.
The explanation above is based on the ideal calculation, and the loss caused by Lxswitch and the external components are not included.
The actual maximum output current will be between 50% and 80% by the above calculations. Especially, when the IL is large or $V_{\text {IN }}$ is low, the loss of $V_{\text {IN }}$ is generated with on resistance of the switch. Moreover, it is necessary to consider Vf of the diode (approximately 0.8 V) about $\mathrm{V}_{\text {out }}$.

- Soft-Start

The output of the error amplifier starts from 0 V and the inrush current is suppressed when starting by the CE pin " H " input. Moreover, the inrush current can be suppressed by gradually enlarging Duty of the PWM signal to the CE pin.

R1203x

NO.EA-271-180703

APPLICATION INFORMATION

- Typical Applications

- Selection of Inductors

The peak current of the inductor at normal mode can be estimated as the next formula when the efficiency is 80%.

```
ILmax=1.25 x lout X Vout / Vin + 0.5 x Vin X (Vout - Vin) / (L x Vout X fosc)
```

In the case of start-up or dimming control by CE pin, inductor transient current flows, and the peak current of it must be equal or less than the current limit of the IC. The peak current should not beyond the rated current of the inductor. The recommended inductance value is $10-22 \mu \mathrm{H}$.

Table 1 Peak current value in each condition

Condition				
Vin (V)	Vout (V)	lout (mA)	$\mathrm{L}(\mu \mathrm{H})$	ILmax (mA)
3	14	20	10	215
3	14	20	22	160
3	21	20	10	280
3	21	20	22	225

Table 2 Recommended inductors

L $(\mu \mathrm{H})$	Part No.	Rated Current (mA)	Size (mm)
10	LQH32CN100K53	450	$3.2 \times 2.5 \times 1.55$
10	LQH2MC100K02	225	$2.0 \times 1.6 \times 0.9$
10	VLF3010A-100	490	$2.8 \times 2.6 \times 0.9$
10	VLS252010-100	520	$2.5 \times 2.0 \times 1.0$
22	LQH32CN220K53	250	$3.2 \times 2.5 \times 1.55$
22	LQH2MC220K02	185	$2.0 \times 1.6 \times 0.9$
22	VLF3010A-220	330	$2.8 \times 2.6 \times 0.9$

- Selection of Capacitors

Set $1 \mu \mathrm{~F}$ or more value bypass capacitor C 1 between Vin pin and GND pin as close as possible.
Set $0.22 \mu \mathrm{~F}$ or more capacitor C2 between Vout and GND pin.
Note the Vout that depends on LED used, and select the rating of Vout or more.

- Selection of SBD (Schottky Barrier Diode)

Select the diode with low V_{F} such as Schottky type with low reverse current I_{R}, and with low capacitance.
Table 3 Recommended components

	Rated voltage (V)	Part No.
C1	6.3	CM105B105K06
C2	25	GRM21BR11E224
	50	GRM21BR71H224
D1	30	CRS10I30A
	30	RSX051VA-30

- LED Current Setting

When CE pin input is "H" (Duty=100\%), LED current can be set with feedback resistor (R1)

$$
l_{\text {LED }}=V_{\text {FB }} / \mathrm{R} 1
$$

- LED Dimming Control

The LED brightness can be controlled by inputting the PWM signal to the CE pin. If the CE pin input is "L" in the fixed time (Typ. 0.5 ms), the IC becomes the standby mode and turns OFF LEDs.
The current of LEDs when the CE pin is "H" input (Duty=100\%) is shown by the above expression. The current of LEDs can be controlled by Duty of the PWM signal of the input CE pin. The current of LEDs when High-Duty of the CE input is Hduty reaches the value as calculatable following formula.

$$
\text { lemD }=\text { Hduty } \times \mathrm{V}_{\mathrm{FB}} / \mathrm{R} 1
$$

The frequency of the PWM signal is using the range between 200 Hz to 300 kHz .
When controlling the LED brightness by the PWM signal of 20 kHz or less; The increasing or decreasing of the inductor current might be make a sounds in the hearable sound wave area. In that case, please use the PWM signal in the high frequency area.

Dimming control by CE pin input

R1203x

NO.EA-271-180703

TECHNICAL NOTES

- Current Path on PCB

The current paths in an application circuit are shown in Fig. 1 and 2.
A current flows through the paths shown in Fig. 1 at the time of MOSFET-ON, and shown in Fig. 2 at the time of MOSFET-OFF. In the paths pointed with red arrows in Fig. 2, current flows just in MOSFET-ON period or just in MOSFET-OFF period. Parasitic impedance/inductance and the capacitance of these paths influence stability of the system and cause noise outbreak. So please minimize this side effect. In addition, please shorten the wiring of other current paths shown in Fig. 1 and 2 except for the paths of LED load.

- Layout Guide for PCB

- Please shorten the wiring of the input capacitor (C1) between Vin pin and GND pin of IC. The GND pin should be connected to the strong GND plane.
- The area of $L x$ land pattern should be smaller.
- The wiring between Lx pin and inductor and diode should be short and please put output capacitor (C2) close to the cathode of diode.
- Please make the GND side of output capacitor (C2) close to the GND pin of IC.

Fig. 1 MOSFET-ON

Fig. 2 MOSFET-OFF

- PCB Layout
- PKG: DFN1616-6B pin

R1203L Typical Board Layout

Top Layer	Back Layer

- PKG: SOT-23-6pin

R1203N Typical Board Layout

[^0]
R1203x

NO.EA-271-180703

TYPICAL CHARACTERISTICS

1) Efficiency vs. Output Current Characteristics

2) PWM Dimming Duty Cycle vs. Output Current (R1=10 $)$

3) Output Current Ripple during PWM Dimming

$\mathrm{f}=10 \mathrm{kHz}$

4) VFB Voltage vs. Temperature

6) Oscillator Frequencyvs. Temperature

5) Supply Current vs. Temperature

7) Maxduty vs. Temperature

R1203x

NO.EA-271-180703
8) UVLO Output Voltage vs. Temperature

10) Switch ON Resistance vs. Temperature

12) OVP Operating Output Voltage Waveform

9) OVP Voltage vs. Temperature

11) Lx Current Limit vs. Temperature

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

Item	Measurement Conditions (JEDEC STD. 51-7)
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	1st Layer: Less than 95% of 50 mm Square
Through-holes	2nd, 3rd, 4th Layers: Approx. 100% of 50 mm Square

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	2400 mW
Thermal Resistance ($\theta \mathrm{ja}$)	$\theta \mathrm{ja}=41^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter ($\psi \mathrm{jt})$	$\psi \mathrm{jt}=11^{\circ} \mathrm{C} / \mathrm{W}$

$\theta \mathrm{ja}$: Junction-to-ambient thermal resistance.
$\psi j \mathrm{j}:$ Junction-to-top of package thermal characterization parameter.

DFN1616-6B Package Dimensions (Unit: mm)

[^1]The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

Item	Measurement Conditions (JEDEC STD. 51-7)
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	1st Layer: Less than 95% of 50 mm Square
Through-holes	2nd, 3rd, 4th Layers: Approx. 100% of 50 mm Square

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	660 mW
Thermal Resistance ($\theta \mathrm{ja}$)	$\theta \mathrm{ja}=150^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter ($\psi \mathrm{j} \mathrm{t})$	$\psi \mathrm{jt}=51^{\circ} \mathrm{C} / \mathrm{W}$

өja: Junction-to-ambient thermal resistance.
ψj t: Junction-to-top of package thermal characterization parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

Unit : mm

SOT-23-6 Package Dimensions

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

Official website
https://www.n-redc.co.jp/en/
Contact us
https://www.n-redc.co.jp/en/buy/

[^0]: U1- indicates the position of No. 1 pin.

[^1]: * The tab on the bottom of the package shown by blue circle is a substrate potential (GND). It is recommended that this tab be connected to the ground plane pin on the board but it is possible to leave the tab floating.

