Renesns

TIME SLOT INTERCHANGE

IDT7290820 DIGITAL SWITCH
$2,048 \times 2,048$

FEATURES:

- $2,048 \times 2,048$ channel non-blocking switching at $8.192 \mathrm{Mb} / \mathrm{s}$
- Per-channel variable or constant throughput delay
- Automatic identification of ST-BUS $\begin{aligned} & \\ & / G C I \\ & \text { interfaces }\end{aligned}$
- Accept streams of $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}$ or $8.192 \mathrm{Mb} / \mathrm{s}$
- Automatic frame offset delay measurement
- Per-stream frame delay offset programming
- Per-channel high impedance output control
- Per-channel Processor Mode
- Control interface compatible to Intel/Motorola CPUs
- Connection memory block programming
- IEEE-1149.1 (JTAG) Test Port
- Available in 84-pin Plastic Leaded Chip Carrier (PLCC), 100-pin Ball Grid Array (BGA), 100-pin Plastic Quad Flatpack
(PQFP) and 100-pin Thin Quad Flatpack (TQFP)
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 5V Power Supply

DESCRIPTION:

The IDT7290820 is a non-blocking digital switch that has a capacity of $2,048 \times 2,048$ channels at a serial bit rate of $8.192 \mathrm{Mb} / \mathrm{s}, 1,024 \times 1,024$ channels at $4.096 \mathrm{Mb} /$ s and 512×512 channels at $2.048 \mathrm{Mb} / \mathrm{s}$. Some of the mainfeatures are: programmable stream and channel control, Processor Mode, inputoffset delay and high-impedance output control.

Per-stream input delay control is provided for managing large multi-chip switches thattransportboth voice channel and concatenateddatachannels. In addition, input streams can be individually calibrated for inputframe offset.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

NOTES:

1. DNC - Do Not Connect

PLCC: 0.05in. pitch, 1.15in. x 1.15in. (PL84-1, order code: J)
2. IC - Internal Connection, tie to GROUND for normal operation.

PIN CONFIGURATIONS (Continued)

PIN DESCRIPTION

SYMBOL	NAME	1/0	DESCRIPTION
GND	Ground.		Ground Rail.
Vcc	Vcc		+5.0 Volt Power Supply.
TX0-15 ${ }^{(1)}$	TX Output 0 to 15 (Three-state Outputs)	0	Serial data output stream. These streams may have data rates of $2.048,4.096$ or $8.192 \mathrm{Mb} / \mathrm{s}$, depending upon the value programmed at bits DRO-1 in the IMS register.
RX0-15 ${ }^{(1)}$	RX Input 0 to 15	1	Serial data input stream. These streams may have data rates of $2.048,4.096$ or $8.192 \mathrm{Mb} / \mathrm{s}$, depending upon the value programmed at bits DR0-1 in the IMS register.
$\overline{\mathrm{FO}}{ }^{(1)}$	Frame Pulse	I	WhentheWFPS pin is LOW, this input accepts and automatically identifies frame synchronization signals formatted according to ST-BUS ${ }^{\circledR}$ and GCI specifications. When the WFPS pin is HIGH, this pin accepts a negative frame pulse which conforms to WFPS formats.
FE/HCLK ${ }^{(1)}$	Frame Evaluation/ HCLK Clock	I	When the WFPS pin is LOW, this pin is the frame measurement input. When the WFPS pin is HIGH, the HCLK (4.096 MHz clock) is required for frame alignment in the wide frame pulse (WFP) mode.
CLK ${ }^{(1)}$	Clock	I	Serial clock for shifting data in/out on the serial streams (RX/TX 0-15). Depending upon the value programmed at bits DRO-1 in the IMS register, this input accepts a 4.096, 8.192 or 16.384 MHz clock.
TMS	Test Mode Select	I	JTAG signal that controls the state transitions of the TAP controller. This pin is pulled HIGH by an internal pullup when not driven.
TDI	Test Serial Data In	I	JTAG serial test instructions and data are shifted in on this pin. This pin is pulled HIGH by an internal pull-up when not driven.
TDO	Test Serial Data Out	0	JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high-impedance state when JTAG scan is not enabled.
TCK ${ }^{(1)}$	Test Clock	I	Provides the clock to the JTAG test logic. This pin is pulled high by an internal pull-up when not driven.
TRST	Test Reset	I	Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-reset state. This pin is pulled by an internal pull-up when not driven. This pin should be pulsed LOW on power-up, or held LOW, to ensure that the IDT7290820 is in the normal functional mode.
$I^{(1)}$	Internal Connection	I	Connect to GND for normal operation. This pin must be LOW for the IDT7290820 to function normally and to comply with IEEE 1114 (JTAG) boundary scan requirements.
$\overline{\text { RESET }}{ }^{(1)}$	Device Reset (Schmitt Trigger Input)	I	This input (active LOW) puts the IDT7290820 in its reset state that clears the device internal counters, registers and brings TXO-15 and microport data outputs to a high-impedance state. The time constant for a power up reset circuit must be a minimum of five times the rise time of the power supply. In normal operation, the RESET pin must be held LOW for a minimum of 100 ns to reset the device.
WFPS ${ }^{(1)}$	Wide Frame Pulse Select	I	When 1, enables the wide frame pulse (WFP) Frame Alignment interface. When 0 , the device operates in ST-BUS ${ }^{\otimes} / \mathrm{GCl}$ mode.
A0-7 ${ }^{(1)}$	Address 0-7	I	When non-multiplexed CPU bus operation is selected, these lines provide the A0-A7 address lines to the internal memories.
DS/ $\overline{\mathrm{RD}}^{(1)}$	Data Strobe/Read	I	For Motorola multiplexed bus operation, this input is DS. This active HIGH DS input works in conjunction with $\overline{\mathrm{CS}}$ to enable the read and write operations. For Motorola non-multiplexed CPU bus operation, this input is DS. This active LOW input works in conjunction with $\overline{\mathrm{CS}}$ to enable the read and write operations. For Intel multiplexed bus operation, this input is $\overline{R D}$. This active LOW input sets the data bus lines (ADO-7, D8-15) as outputs.
$\mathrm{R} / \overline{\mathrm{W}} / \overline{\mathrm{WR}}^{(1)}$	Read/Write / Write	I	In the cases of Motorola non-multiplexed and multiplexed bus operations, this input is R / \bar{W}. This input controls the direction of the data bus lines (AD0-7, D8-15) during a microprocessor access. For Intel multiplexed bus operation, this input is $\overline{\mathrm{WR}}$. This active LOW input is used with $\overline{\mathrm{RD}}$ to control the data bus (ADO-7) lines as inputs.
$\overline{\overline{\mathrm{CS}}}{ }^{(1)}$	Chip Select	I	Active LOW input used by a microprocessor to activate the microprocessor port of IDT7290820.
AS/ALE ${ }^{(1)}$	Address Strobe or Latch Enable	I	This input is used if multiplexed bus operation is selected via the IM input pin. For Motorola non-multiplexed bus operation, connect this pin to ground. This pin is pulled low by an internal pull-down when not driven.
$1 \mathrm{M}^{(1)}$	CPU Interface Mode	I	When IM is HIGH, the microprocessor port is in the multiplexed mode. When IM is LOW, the microprocessor port is in non-multiplexed mode. This pin is pulled low by an internal pull-down when not driven.
AD0-7 ${ }^{(1)}$	Address/Data Bus 0 to 7	1/0	These pins are the eight least significant data bits of the microprocessor port. In multiplexed mode, these pins are also the input address bits of the microprocessor port.

NOTE:

[^0]PIN DESCRIPTION(CONTINUED):

SYMBOL	NAME	I/0	DESCRIPTION
D8-15 ${ }^{(1)}$	Data Bus 8-15	1/0	These pins are the eight most significant data bits of the microprocessor port.
$\overline{\mathrm{DTA}}^{(1)}$	Data Transfer Acknowledgment	0	This active LOW output signal indicates that a data bus transfer is complete. When the bus cycle ends, this pin drives HIGH and then goes high-impedance, allowing for faster bus cycles with a weaker pull-up resistor. A pull-up resistor is required to hold a HIGH level when the pin is in high-impedance.
$\mathrm{CCO}^{(1)}$	Control Output	0	This is a $4.096,8.192$ or $16.384 \mathrm{Mb} / \mathrm{s}$ output containing $512,1,024$ or 2.048 bits per frame respectively. The level of each bit is determined by the CCO bit in the connection memory. See External Drive Control Section.
ODE ${ }^{(1)}$	Output Drive Enable	I	This is the output enable control for the TX0 to TX15 serial outputs. When ODE input is LOW and the OSB bit of the IMS register is LOW, TXO-15 are in a high-impedance state. If this input is HIGH, the TXO-15 output drivers are enabled. However, each channel may still be put into a high-impedance state by using the per channel control bit in the connection memory.

NOTE:

1. These pins are 5 V tolerant.

FUNCTIONAL DESCRIPTION

The IDT7290820 is capable of switchingupto $2,048 \times 2,048,64 \mathrm{Kbit} / \mathrm{PPCM}$ or $\mathrm{N} x 64 \mathrm{Kbit} / \mathrm{s}$ channel data. The device maintains frame integrity in data applications and minimum throughput delay for voice applications on a per channelbasis.

The serial input streams of the IDT7290820 can have a bit rate of 2.048, 4.096 or $8.192 \mathrm{Mb} /$ s and are arranged in $125 \mu \mathrm{~s}$ wide frames, which contain 32,64 or 128 channels respectively. The data rates oninputand outputstreams are identical.

InProcessor Mode, the microprocessorcanaccess input and outputtimeslotsonaperchannel basis allowingfortransfer of control andstatusinformation. The IDT7290820 automatically identifies the polarity of the frame synchronization input signal and configures the serial streams to either ST-BUS ${ }^{\circledR}$ or GCl formats.

With the variety of different microprocessor interfaces, IDT7290820 has provided an Input Mode pin (IM) to help integrate the device into different microprocessorbased environments: Non-multiplexedorMultiplexed. These interfaces provide compatibility with multiplexed and Motorolanon-multiplexed buses. The device canalso resolvedifferentcontrol signals eliminating the use of glue logic necessary to convert the signals ($\mathrm{R} / \overline{\mathrm{W}} / \overline{\mathrm{NR}}, \mathrm{DS} / \overline{\mathrm{RD}}, \mathrm{AS} / \mathrm{ALE}$).

Theframeoffsetcalibrationfunctionallowsuserstomeasuretheframeoffset delay using a frame evaluation pin (FE). The input offset delay can be programmedfor individual streams using internal frameinputoffsetregisters, see Table 11.

The internal loopback allows the TX output datato be looped around to the RXinputs for diagnostic purposes.

A functional Block Diagram of the IDT7290820 is shown in Figure 1.

DATA ANDCONNECTION MEMORY

The received serial data is converted to paralle format by internal serial-to-parallel converters and stored sequentially in the data memory. The 8 KHz input frame pulse(두i) is used to generate channel and frame boundaries of the input serial data. Depending on the interface mode select (IMS) register, the usable data memory may be as large as 2,048 bytes.

Datato be output on the serial streams(TX0-15) may come from eitherthe data memory or connection memory. For data output from data memory (connection mode), addresses in the connection memory are used. For data tobeoutputfrom connection memory, the connection memory control bits must set the particular TX outputin Processor Mode. Onetime-slotbefore the data is to be output, data from either connection memory or data memory is read internally. This allows enoughtime for memory access and parallel-to-serial conversion.

CONNECTION AND PROCESSOR MODES

IntheConnectionMode, the addresses of the input source data for all output channels are stored in the connection memory. The connection memory is mapped in such a way thateach location corresponds to an outputchannel on the outputstreams. Fordetails onthe use of the source address data (CAB and SAB bits), see Table 13 and Table 14. Once the source address bits are programmed by the microprocessor, the contents of the data memory at the selected address are transferred to the parallel-to-serial converters and then ontoa TX output stream.

By having the each location in the connection memory specify an input channel, multiple outputs can specify the same input address. This can be a powerful tool used for broadcasting data.

In Processor Mode, the microprocessor writes data to the connection memory. Each location inthe connection memory corresponds to a particular output stream and channel number and is transferred directly to the parallel-toserial converter one time-slot before it is to be output. This data will be output ontheTXstreams ineveryframe until the dataischangedby the microprocessor.

As the IDT7290820 canbe used in a wide variety of applications, the device also has memory locations to control the outputs based on operating mode. Specifically, the IDT7290820 provides five per-channel control bits for the following functions: processor orconnection mode, constantorvariabledelay, enables/three-state the TX output drivers and enables/disable the loopback function. In addition, one of thesebits allows the user to control the CCO output.

Ifanoutputchannel is settoahigh-impedancestatethroughtheconnection memory, the TX output will be in a high-impedance state for the duration ofthat channel. In addition to the per-channel control, all channels on the ST-BUS ${ }^{\circledR}$ outputs canbe placed in a highimpedance state by eitherpulling theODE input pin low or programming the Output Stand-By (OSB) bit in the interface mode selection register. This action overrides the per-channel programming in the connection memorybits.

The connection memory data can be accessed via the microprocessor interface. The addressing of the devices internal registers, data and connection memories is performed throughthe address inputpins and the Memory Select (MS) bit of the control register. For details on device addressing, see Software Control and Control Register bits description (Table 4, 6 and 7).

SERIAL DATA INTERFACE TIMING

The masterclock frequency mustalways be twice the data rate. For serial data rates of $2.048,4.096$ or $8.192 \mathrm{Mb} / \mathrm{s}$, the masterclock (CLK) must be either at $4.096,8.192$ or 16.384 MHz respectively. The input and output stream data rates will always be identical.

The IDT7290820 providestwo different interface timing modes ST-BUS®/ GCl and WFP (wide frame pulse). If the WFPS pin is high, the IDT7290820 is in the wide frame pulse (WFP) frame alignment mode.

In ST-BUS $\oplus / G C I$ mode, the input 8 KHz frame pulse can be in either ST-BUS ${ }^{\oplus}$ or GCI format. The IDT7290820 automatically detects the presence of an inputframe pulse and identifies it as eitherST-BUS ${ }^{\oplus}$ orGCl. InST-BUS ${ }^{\oplus}$ format, every secondfallingedge ofthe masterclockmarksabitboundary and the data is clocked in on the rising edge of CLK, three quarters of the way into the bitcell, see Figure 7. In GCl format, every second rising edge of the master clock marks the bit boundary and data is clocked in on the falling edge of CLK at three quarters of the way into the bit cell, see Figure 8.

WIDE FRAME PULSE (WFP) FRAME ALIGNMENT TIMING

When the device is in WFP frame alignmentmode, the CLKinputmustbe at 16.384 MHz , the FE/HCLK input is 4.096 MHz and the 8 KHz frame pulse is inST-BUS ${ }^{\circledR}$ format. ThetimingrelationshipbetweenCLK, HCLK andtheframe pulse is shown in Figure 9.

WhenWFPS pinishigh, the frame alignmentevaluationfeature is disabled. However, the frameinputoffsetregistersmaystill be programmedto compensate for the varying frame delays on the serial input streams.

SWITCHING CONFIGURATIONS

The IDT7290820 can operate at different speeds. To configure the maximum non-blocking switching data rate, the two DR bits in the IMS register are used. Following are the possible configurations:

2.048 Mb/s Serial Links (DR0=0, DR1=0)

When the $2.048 \mathrm{Mb} / \mathrm{s}$ data rate is selected, the device is configured with 16-input/16-outputdatastreamseachhaving $32,64 \mathrm{Kbit} /$ schannels each. This mode requires a CLK of 4.096 MHz and allows a maximum non-blocking capacity of 512×512 channels.

$4.096 \mathrm{Mb} / \mathrm{s}$ Serial Links (DR0=1, DR1=0)

When the $4.096 \mathrm{Mb} / \mathrm{s}$ data rate is selected, the device is configured with 16-input/16-outputdatastreamseachhaving $64,64 \mathrm{Kbit} /$ schannels each. This mode requires a CLK of 8.192 MHz and allows a maximum non-blocking capacity of $1,024 \times 1,024$ channels.

8.192 Mb/s Serial Links (DR0 $=0, D R 1=1$)

When the $8.192 \mathrm{Mb} / \mathrm{s}$ data rate is selected, the device is configured with 16 -input/16-outputdatastreams each having $128,64 \mathrm{Kbit} /$ schannels each. This mode requires a CLK of 16.384 MHz and allows a maximum non-blocking capacity of $2,048 \times 2,048$ channels.

Table 1 summarizes the switching configurations and the relationship between different serial data rates and the master clock frequencies.

INPUT FRAME OFFSET SELECTION

Inputframe offsetselection allows the channel alignment of individual input streamstobeoffsetwithrespecttotheoutputstreamchannelalignment(i.e. $\overline{\mathrm{FOi}})$. Although all input data comes in at the same speed, delays can be caused by variable path serial backplanes and variable path lengths which may be implemented inlarge centralized and distributed switching systems. Because datais oftendelayed, this feature is useful in compensatingforthe skewbetween clocks.

Each inputstream can have its own delay offset value by programming the frame inputoffsetregisters (FOR). The maximumallowable skewis +4.5 master clock(CLK) periods forward with resolution of $1 / 2$ clock period. The outputframe offsetcannotbeoffsetoradjusted. SeeFigure5, Table 11 and 12 fordelay offset programming.

SERIAL INPUT FRAME ALIGNMENT EVALUATION

The IDT7290820 provides the frame evaluation (FE) input to determine different datainput delays with respect to the frame pulse $\overline{F 0 i}$.

A measurement cycle is started by setting the start frame evaluation(SFE) bitlow for atleast one frame. When the SFE bit in the IMS register is changed

TABLE 1 - SWITCHING CONFIGURATION

Serial Interface Data Rate	Master Clock Required (MHz)	Matrix Channel Capacity
$2.048 \mathrm{Mb} / \mathrm{s}$	4.096	512×512
$4.096 \mathrm{Mb} / \mathrm{s}$	8.192	$1,024 \times 1,024$
$8.192 \mathrm{Mb} / \mathrm{s}$	16.384	$2,048 \times 2,048$

from low to high, the evaluation starts. Two frames later, the complete frame evaluation (CFE) bit of the frame alignment register (FAR) changes from low to high to signal that a valid offset measurement is ready to be read from bits 0 to 11 of the FAR register. The SFE bit must be set to zero before a new measurementcyclestarted.

InST-BUS ${ }^{\circledR}$ mode, the falling edge of the frame measurement signal (FE) is evaluated against the falling edge oftheST-BUS ${ }^{\circledR}$ frame pulse. In GCImode, the risingedge of FE is evaluatedagainstthe risingedge ofthe GCI framepulse. See Table 10 \& Figure 4 for the description of the frame alignment register.

This feature is not available when the WFP Frame Alignment mode is enabled (i.e., when the WFPS pin is connected to VCC).

MEMORY BLOCK PROGRAMMING

The IDT7290820 provides users with the capability of initializing the entire connection memoryblockintwo frames. To setbits 11 to 15 of every connection memorylocation, firstprogramthe desired pattern inbits 5 to 9 ofthe IMS register.

The block programming mode is enabled by setting the memory block program (MBP) bit of the control register high. When the block programming enable (BPE) bit of the IMS register is setto high, the block programming data will be loaded into the bits 11 to 15 of every connection memory location. The other connection memory bits (bit0 to bit 10) are loaded with zeros. When the memory block programming is complete, the device resets the BPE bitto zero.

LOOPBACK CONTROL

Theloopback control (LPBK) bitofeach connectionmemory locationallows the TXoutput datato be looped backed internally tothe RXinputfor diagnostic purposes.

If the LPBK bit is high, the associated TX output channel data is internally looped back to the RX inputchannel (i.e., data from TX n channel m routes to the RX n channel m internally); if the LPBK bit is low, the loopback feature is disabled. For proper per-channel loopback operation, the contents of frame delay offset registers mustbe setto zero.

DELAY THROUGH THE IDT7290820

The switching of informationfromthe inputserial streams to the outputserial streams results in a throughput delay. The device can be programmed to performtime-slotinterchangefunctions with differentthroughputdelay capabilities onthe per-channel basis. Forvoice applications, variablethroughputdelay is bestasitensuresminimum delaybetween inputand outputdata. In wideband data applications, constantthroughputdelay is bestas the frame integrity of the information is maintained throughthe switch.

The delay through the device varies according to the type of throughput delay selected in the $\overline{\mathrm{V}} / \mathrm{C}$ bit of the connection memory.

VARIABLE DELAY MODE (V̄/C BIT = 0)

Inthis mode, the delay is dependentonly on the combination of source and destination channels and is independent of input and output streams. The minimum delay achievable in the IDT7290820 is three time-slots. If the input channel datais switched tothe sameoutputchannel (channeln, framep), it will beoutputinthefollowing frame (channeln, framep+1). The same istrueifinput channel n is switched to output channel $n+1$ or $n+2$. If the input channel n is switched to output channel $n+3, n+4, \ldots$, , the new output data will appear in the same frame. Table 2 shows the possible delays for the IDT7290820 in the variable delay mode.

CONSTANT DELAY MODE (V̄/C BIT = 1)

Inthis mode, frame integrity is maintained in all switching configurations by making use of a multiple data memory buffer. Inputchannel data is written into the data memory buffers during frame n will be read out during frame $n+2$. In the IDT7290820, the minimum throughput delay achievable in the constant delay mode will be one frame. For example, in $2.048 \mathrm{Mb} /$ s mode, when input time-slot31 is switchedto outputtime-slot0. The maximum delay of 94 time-slots ofdelay occurs whentime-slot0in aframe is switchedtotime-slot31 intheframe. See Table 3.

MICROPROCESSOR INTERFACE

The IDT7290820 provides a parallel microprocessor interface for multiplexed or non-multiplexed bus structures. This interface is compatible with Motorolanon-multiplexed andmultiplexed buses.

Ifthe IM pin is low a Motorola non-multiplexed bus should be connected to the device. If the IM pinishigh, the device monitors the AS/ALE and DS/RD to determine what mode the IDT7290820 should operate in.

If $D S / \overline{R D}$ is low at the rising edge of AS/ALE, then the mode 1 multiplexed timing is selected. IfDS/RD is high at the rising edge of AS/ALE, then the mode 2 multiplexed bus timing is selected.

For multiplexed operation, the required signals are the 8-bit data and address (AD0-AD7), 8-bit Data (D8-D15), Address strobe/Address latch enable(AS/ALE), Datastrobe/Read (DS/信), Read/Write/Write (R/W/ $\overline{\mathrm{WR}}$), Chip select ($\overline{\mathrm{CS}}$) and Data transfer acknowledge ($\overline{\mathrm{DTA}})$. See Figure 12 and Figure 13formultiplexed parallel microporttiming.

For the Motorola non-multiplexed bus, the required signals are the 16-bit data bus (AD0-AD7, D8-D15), 8-bit address bus (A0-A7) and 4 control lines ($\overline{\mathrm{CS}}, \mathrm{DS}, \mathrm{R} / \overline{\mathrm{W}}$ and $\overline{\mathrm{DTA}}$). See Figure 14 and 15 forMotorola non-multiplexed microportiming.

The IDT7290820 microport provides access to the internal registers, connection and data memories. All locations provide read/write access except for the data memory and the frame alignment register which are read only.

MEMORYMAPPING

The address bus on the microprocessor interface selects the internal registers and memories of the IDT7290820.

If the A7 address input is low, then A6 through A0 are used to address the interface mode selection(IMS), control (CR), framealignment(FAR) andframe input offset(FOR) registers (Table 4). Ifthe A7 is high, then A6 through A0 are used to select 32, 64, or 128 locations corresponding to data rate of the ST-BUS®. The address input lines and the stream address bits (STA) of the control register allow access to the entire data and connection memories. The control and IMS registers together control all the major functions of the device, see Figure 3.

As explained inthe Serial Data Interface Timing and SwitchingConfigurations sections, after system power-up, the IMS register should be programmed immediately toestablishthe desired switching configuration.

The datain the control register consists of the memory block programming bit (MBP), the memory selectbit (MS) and the stream address bits (STA). As explained in the Memory Block Programming section, the MBP bit allows the
entire connection memory blockto be programmed. The memory selectbitis used to designate the connection memory or the data Memory. The stream addressbitsselectinternalmemorysubsections correspondingto inputoroutput serial streams.

The data in the IMS register consists of block programming bits (BPDOBPD4), block programming enable bit(BPE), output stand by bit(OSB), start frame evaluation bit (SFE) and data rate selection bits (DR0-1). The block programming and the block programming enable bits allows users to program theentire connectionmemory (see Memory BlockProgramming section). Ifthe ODE pin is low, the OSB bit enables (if high) or disables (if low) all ST-BUS ${ }^{\circledR}$ outputdrivers. IftheODE pin is high, the contents of the OSB bitis ignored and all TX output drivers are enabled.

CONNECTION MEMORY CONTROL

The CCO pin is a $4.096,8.192$ or $16.384 \mathrm{Mb} /$ s output, which carries 512 , 1,024 or 2,048 bits, respectively. Thecontents oftheCCObit of eachconnection memory location are output on the CCO pin once every frame. The contents of theCCObits of the connectionmemory aretransmitted sequentially ontothe CCO pin and are synchronous with the data rates on the other serial streams.

The CCO bit is output one channel before the corresponding channel on the serial streams. For example, in $2.048 \mathrm{Mb} / \mathrm{s}$ mode (32 channels perframe), the contents of theCCO bitin position 0 (TX0, CH 0) of the connection memory is output on the first clock cycle of channel 31 through CCO pin. The contents of theCCO bitin position 32 (TX1, CH0) of the connection memory is outputon the second clock cycle of channel 31 via CCO pin.

IftheODEpin orthe OSB bitis high, the OE bit of each connection memory location controls the output drivers-enables (if high) or disables (if low). See Table 5 for detail.

The processor channel(PC) bit of the connection memory selects between ProcessorMode and ConnectionMode. Ifhigh, the contents of the connection memory areoutput onthe TX streams. Iflow, the stream address bit(SAB) and the channel address bit (CAB) of the connection memory defines the source information(stream andchannel) ofthetime-slotthatwill beswitchedtotheoutput from datamemory.

The \bar{V} / C (Variable/ConstantDelay) bitineach connection memory location allows the per-channel selection between variable and constant throughput delaymodes.

If the LPBK bit is high, the associated TX output channel data is internally looped back tothe RXinputchannel (i.e., RXnchannelm data comesfromthe TX n channel m). If the LPBK bit is low, the loopback feature is disabled. For proper per-channelloopback operation, the contents of the frame delay offset registers mustbe settozero.

INITIALIZATION OF THE IDT7290820

After power up, the state of the connection memory is unknown. As such, the outputs should beputinhighimpedance by holdingtheODElow. Whilethe ODE is low, the microprocessor can initialize the device, program the active paths, and disable unused outputs by programming the OE bit in connection memory. Once the device is configured, the ODE pin (or OSB bit depending on initialization) can be switched.

The Control Register is only accessed when A7-A0 are all zeroed. When $A 7=1$, up to 128 bytes are randomly accessable via A0-A6 at any one instant. Of which stream these bytes (channels) are accessed is determined by the state of CRb3-CRb0.

TABLE 2-VARIABLE THROUGHPUT DELAY VALUE

Input Rate	$\begin{array}{c}\text { Delay for Variable Throughput Delay Mode } \\ (m-\text { output channel number) } \\ (n-\text { input channel number) }\end{array}$		
	$m<n$	$m=n, n+1, n+2$	$m>n+2$

TABLE 3-CONSTANT THROUGHPUT DELAY VALUE

Input Rate	Delay for Constant Throughput Delay Mode $(\mathbf{m}-$ output channel number) $(\mathbf{n}-$ input channel number $)$
$2.048 \mathrm{Mb} / \mathrm{s}$	$32+(32-\mathrm{n})+\mathrm{m}$ time-slots
$4.096 \mathrm{Mb} / \mathrm{s}$	$64+(64-\mathrm{n})+\mathrm{m}$ time-slots
$8.192 \mathrm{Mb} / \mathrm{s}$	$128+(128-\mathrm{n})+\mathrm{m}$ time-slots

TABLE 4 -INTERNAL REGISTER AND ADDRESS MEMORY MAPPING

$A 7^{(1)}$	A6	A5	A4	A3	A2	A1	A0	Location	
0	0	0	0	0	0	0	0	Control R	
0	0	0	0	0	0	0	1	Interface	
0	0	0	0	0	0	1	0	Frame Ali	
0	0	0	0	0	0	1	1	Frame Inp	
0	0	0	0	0	1	0	0	Frame Inpu	
0	0	0	0	0	1	0	1	Frame Inp	
0	0	0	0	0	1	1	0	Frame Inp	
1	0	0	0	0	0	0	0	Ch0	
1	0	0	0	0	0	0	1	Ch1	
1	0	0	
1	0	0	1	1	1	1	0	Ch30	
1	0	0	1	1	1	1	1	Ch31	(Note 2)
1	0	1	0	0	0	0	0	Ch32	
1	0	1	0	0	0	0	1	Ch33	
1	0	1						.	
1	0	1	1	1	1	1	0	Ch62	
1	0	1	1	1	1	1	1	Ch63	(Note 3)
1	1	0	0	0	0	0	0	Ch64	
1	1	0	0	0	0	0	1	Ch65	
1	1	0					.		
1	1	1	1	1	1	1	0	Ch126	
1	1	1	1	1	1	1	1	Ch127	(Note 4)
Notes:									
1. BitA 2. Cha 3. Cha 4. Cha	must	are are are are	when	and	ectio	mory	ons.	must belo	

TABLE 5-OUTPUT HIGH IMPEDANCE CONTROL

OE bit in Connection Memory	ODE pin	OSB bit in IMS Register	TX Output Driver Status
0	Don'tCare	Don'tCare	Per Channel High-Impedance
1	0	0	High-Impedance
1	0	1	Enable
1	1	1	Enable
1	1	0	Enable

TABLE 6-CONTROL REGISTER (CR) BITS

TABLE 7 -VALID ADDRESS LINES FOR DIFFERENT BIT RATES

Input/Output Data Rate	Valid Address Lines
$2.048 \mathrm{Mb} / \mathrm{s}$	$\mathrm{A} 4, \mathrm{~A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0$
$4.096 \mathrm{Mb} / \mathrm{s}$	$\mathrm{A} 5, \mathrm{~A} 4, \mathrm{~A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0$
$8.192 \mathrm{Mb} / \mathrm{s}$	$\mathrm{A} 6, \mathrm{~A} 5, \mathrm{~A} 4, \mathrm{~A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0$

TABLE 8 -INTERFACE MODE SELECTION (IMS) REGISTER BITS

TABLE 9 -SERIAL DATA RATE SELECTION (16 INPUT x 16 OUTPUT)

DR1	DR0	Data Rate Selected	Master Clock Required
0	0	$2.048 \mathrm{Mb} / \mathrm{s}$	4.096 MHz
0	1	$4.096 \mathrm{Mb} / \mathrm{s}$	8.192 MHz
1	0	$8.192 \mathrm{Mb} / \mathrm{s}$	16.384 MHz
1	1	Reserved	Reserved

TABLE 10-FRAME ALIGNMENT REGISTER (FAR) BITS

(FD[10:0] = 06H)
(FD11 = 0, sample at CLK LOW phase)

(FD[10:0] = 09н)
(FD11 = 1, sample at CLK HIGH phase)

Figure 4. Example for Frame Alignment Measurement

TABLE 11 -FRAME INPUT OFFSET REGISTER (FOR) BITS

NOTE:

1. n denotes an input stream number from 0 to 15 .

TABLE 12-OFFSET BITS (OFn2, OFn1, OFn0, DLEn) \& FRAME DELAY BITS (FD11, FD2-0)

InputStream Offset	MeasurementResultfrom Frame Delay Bits				Corresponding OffsetBits			
	FD11	FD2	FD1	FD0	OFn2	OFn1	OFn0	DLEn
Noclock periodshift(Default)	1	0	0	0	0	0	0	0
+0.5 clock period shift	0	0	0	0	0	0	0	1
+1.0 clock period shift	1	0	0	1	0	0	1	0
+ 1.5 clock period shift	0	0	0	1	0	0	1	1
+2.0 clock period shift	1	0	1	0	0	1	0	0
+2.5 clock period shift	0	0	1	0	0	1	0	1
+3.0 clock period shift	1	0	1	1	0	1	1	0
+3.5 clock period shift	0	0	1	1	0	1	1	1
+4.0 clock period shift	1	1	0	0	1	0	0	0
+4.5 clock period shift	0	1	0	0	1	0	0	1

Figure 5. Examples for Input Offset Delay Timing

TABLE 13-CONNECTION MEMORY BITS

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LPBK	$\overline{\mathrm{V}} / \mathrm{C}$	PC	CCO	OE	SAB3	SAB2	SAB1	SAB0	CAB6	CAB5	CAB4	CAB3	CAB2	CAB1	CABO
Bit		Nam			Description										
15	$\begin{aligned} & \text { LPBK } \\ & \text { (Per Ch } \end{aligned}$	nel L	back)		When 1 , the RX n channel m data comes from the TX n channel m. For proper per channel loopback operations, set the delay offset register bits OFn[2:0] to zero for the streams which are in the loopback mode.										
14	$\overline{\mathrm{V}} / \mathrm{C}$ (Variab Throug				This bit is used to select between the variable (LOW) and constant delay (HIGH) mode on a per-channel basis.										
13	PC (Proce	rCha			When 1, the contents of the connection memory are output on the corresponding output channel and stream. Only the lower byte (bit 7-bit 0) will be output to the TX output pins. When 0, the contents of the connection memory are the data memory address of the switched input channel and stream.										
12	CCO (Contro	hann	Output)		This bit is output on the CCO pin one channel early. The CCO bit for stream 0 is output first.										
11	OE (Outpu	nable			This bit enables the TX output drivers on a per-channel basis. When 1, the output driver functions normally. When 0 , the output driver is in a high-impedance state.										
10-8, $7^{(1)}$	SAB3-0 (Source	tream	ddress		The binary value is the number of the data stream for the source of the connection.										
$6-0^{(1)}$	CAB6-0 (Source Channel Address Bits)				The binary value is the number of the channel for the source of the connection.										

NOTE:

1. If bit $13(\mathrm{PC})$ of the corresponding connection memory location is 1 (device in processor mode), then these entire 8 bits ($\mathrm{SABO}, \mathrm{CAB6}-\mathrm{CAB}$) are output on the output channel and stream associated with this location.

TABLE 14-CAB BIT PROGRAMMING FOR DIFFERENT DATA RATES

Data Rate	CAB Bits Used to Determine the Source Channel of the Connection
$2.048 \mathrm{Mb} / \mathrm{s}$	CAB4 to CAB0 (32 channel/inputstream)
$4.096 \mathrm{Mb} / \mathrm{s}$	CAB5 to CAB0 (64 channel/inputstream)
$8.192 \mathrm{Mb} / \mathrm{s}$	CAB6 toCAB0 (128 channel/inputstream)

JTAG SUPPORT

TheIDT7290820JTAG interface conforms tothe Boundary-Scanstandard IEEE-1149.1. This standard specifies a design-for-testability technique called Boundary-Scan Test (BST). The operation of the boundary-scan circuitry is controlled by an external test access port (TAP) Controller.

TEST ACCESS PORT (TAP)

The Test Access Port (TAP) provides access to the test functions of the IDT7290820. It consists of three input pins and one output pin.
-Test Clock Input (TCK)
TCK provides the clock for the test logic. The TCK does not interfere with anyon-chip clockandthus remainindependent. TheTCKpermits shifting oftest data into or out of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with the on-chip logic.
-Test Mode Select Input (TMS)
The logic signals received at the TMS input are interpreted by the TAP Controller to control the test operations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is internally pulled to Vcc when it is not driven from an external source.
-Test Data Input (TDI)
Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses. This pin is internally pulled to Vcc when it is not driven from an external source.
-TestDataOutput(TDO)
Depending on the sequence previously applied to the TMS input, the contents of either the instruction register or data register are serially shifted out towards the TDO. The data out of the TDO is clocked on the fallingedge of the TCKpulses. When no datais shifted throughthe boundary scan cells, the TDO driver is set to a high impedance state.

- Test Reset (TRST)

Reset the JTAG scan structure. This pin is internally pulled to VCC.

INSTRUCTION REGISTER

In accordance withthe IEEE 1149.1 standard, the IDT7290820 uses public instructions. The IDT7290820 JTAG Interface contains a two-bit instruction register. Instructions are serially loaded intothe instruction registerfromthe TDI whentheTAPControlleris in its shifted-IR state. Subsequently, the instructions are decoded to achieve two basic functions: to select the test data register that may operate while the instruction is current, and to define the serial test data register path, which is used to shift data between TDI and TDO during data register scanning. See Table below for instruction decoding.

Value	Instruction	Function
11	Bypass	SelectByPass Register
10	Sample/Period	SelectBoundry ScanRegister
01	Sample/Period	SelectBoundry ScanRegister
00	EXTEST	SelectBoundry ScanRegister

JTAG Instruction Register Decoding

TESTDATA REGISTER

As specified in IEEE 1149.1, the IDT7290820JTAG Interface contains two testdata registers:
-The Boundary-Scan register
The Boundary-Scan register consists of a series of Boundary-Scan cells arranged to form a scan path around the boundary of the IDT7290820 core logic.
-The Bypass Register
The Bypass register is a single stage shift register that provides a one-bit path from TDI to its TDO. The IDT7290820 boundary scan register contains 118 bits. Bit 0 in Table 15 Boundary Scan Register is the first bit clocked out. All three-state enable bits are active high.

TABLE 15-BOUNDARY SCAN REGISTER BITS

Device Pin	Boundary Scan Bit 0 to bit 117		
	Three-State Control	Output Scan Cell	Input Scan Cell
TX7	0	1	
TX6	2	3	
TX5	4	5	
TX4	6	7	
TX3	8	9	
TX2	10	11	
TX1	12	13	
TX0	14	15	
ODE			16
CCO	17	18	
$\overline{\text { DTA }}$		19	
D15	20	21	22
D14	23	24	25
D13	26	27	28
D12	29	30	31
D11	32	33	34
D10	35	36	37
D9	38	39	40
D8	41	42	43
AD7	44	45	46
AD6	47	48	49
AD5	50	51	52
AD4	53	54	55
AD3	56	57	58
AD2	59	60	61
AD1	62	63	64
AD0	65	66	67
IM			68
AD/ALE			69
$\overline{C S}$			70
$\mathrm{R} / \overline{\mathrm{W}} / \overline{\mathrm{WR}}$			71
DS/RD			72
A7			73
A6			74
A5			75

Device Pin	Boundary Scan Bit 0 to bit 117		
	Three-State Control	Output Scan Cell	Input Scan Cell
A4			76
A3			77
A2			78
A1			79
A0			80
WFPS			81
$\overline{\text { RESET }}$			82
CLK			83
FE/HCLK			84
$\overline{\mathrm{F} 0}$			85
RX15			86
RX14			87
RX13			88
RX12			89
RX11			90
RX10			91
RX9			92
RX8			93
RX7			94
RX6			95
RX5			96
RX4			97
RX3			98
RX2			99
RX1			100
RX0			101
TX15	102	103	
TX14	104	105	
TX13	106	107	
TX12	108	109	
TX11	110	111	
TX10	112	113	
TX9	114	115	
TX8	116	117	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Min.	Max.	Unit
VcC	Supply Voltage		6.0	V
Vi	VoltageonDigital Inputs	$\mathrm{GND}-0.3$	$\mathrm{Vcc}+0.3$	V
IO	CurrentatDigital Outputs		20	mA
TS	Storage Temperature	-65	+125	${ }^{\circ} \mathrm{C}$
PD	Package PowerDissapation	-	2	W

NOTE:

1. Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

RECOMMENDED DC OPERATING

 CONDITIONS| Symbol | Parameter | Min. | Typ. | Max. | Units |
| :---: | :--- | :---: | :---: | :---: | :---: |
| VCC | Positive Supply | 4.75 | - | 5.25 | V |
| VIH | Input HIGH Voltage | 2.4 | - | VCC | V |
| VIL | InputLOWVoltage | GND | - | 0.4 | V |
| Top | OperatingTemperature
 Commercial | -40 | - | +85 | ${ }^{\circ} \mathrm{C}$ |

NOTE:

1. Voltages are with respectto ground unless other wise stated.

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristics		Min.	Typ.	Max.	Units
IcC ${ }^{(1)}$	Supply Current	@ $2.048 \mathrm{Mb} / \mathrm{s}$ @ $4.096 \mathrm{Mb} / \mathrm{s}$ @ $8.192 \mathrm{Mb} / \mathrm{s}$	-	$\begin{aligned} & 16 \\ & 26 \\ & 50 \end{aligned}$	$\begin{aligned} & 25 \\ & 40 \\ & 75 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
VIH	Input HIGH Voltage		2.0	-	-	V
VoL	InputLOWVoltage		-	-	0.8	V
IIL ${ }^{(2)}$	InputLeakage(inputpins)		-	-	15	$\mu \mathrm{A}$
IBL	InputLeakage(//Opins)		-	-	50	$\mu \mathrm{A}$
Cl	Input PinCapacitance		-	-	10	pF
loz	Hign-impedanceLeakage		-	-	5	$\mu \mathrm{A}$
Vor	Output HIGH Voltage		2.4	-	-	V
VoL	OutputLOW Voltage		-	-	0.4	V
Co	OutputPinCapacitance		-	-	10	pF

NOTE:

1. Outputs Unloaded.
2. For TDI, TMS, TCK, TRST, AS/ALE and IM pins, the maximum leakage current is $50 \mu \mathrm{~A}$.

S1 is open circuitexceptwhen testing output levels or high impedance states.
S2 is switched to Vcc or GND when testing outputlevels orhighimpedance states.

5713 drw09

Figure 6. Output Load

AC ELECTRICAL CHARACTERISTICS - FRAME PULSE AND CLK

Symbol	Characteristics		Min.	Typ.	Max.	Units
tFPW	Frame Pulse Width (ST-BUS® ${ }^{\text {® }}$, GCI) -	$\begin{aligned} & \text { Bit rate }=2.048 \mathrm{Mb} / \mathrm{s} \\ & \text { Bit rate }=4.096 \mathrm{Mb} / \mathrm{s} \\ & \text { Bit rate }=8.192 \mathrm{Mb} / \mathrm{s} \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \\ & 26 \end{aligned}$	-	$\begin{aligned} & 295 \\ & 145 \\ & 80 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
tFPS	Frame Pulse Setup time before CLK falling (ST-BUS ${ }^{\text {® }}$ or GCl)		10	-	-	ns
tFPH	Frame Pulse Hold Time from CLK falling (ST-BUS® ${ }^{\text {® }}$ GCI)		16	-	-	ns
tCP	CLK Period-	$\begin{aligned} & \text { Bit rate }=2.048 \mathrm{Mb} / \mathrm{s} \\ & \text { Bit rate }=4.096 \mathrm{Mb} / \mathrm{s} \\ & \text { Bit rate }=8.192 \mathrm{Mb} / \mathrm{s} \end{aligned}$	$\begin{array}{r} \hline 190 \\ 110 \\ 55 \\ \hline \end{array}$	-	$\begin{aligned} & 300 \\ & 150 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
tCH	CLK Pulse Width HIGH -	$\begin{aligned} & \text { Bit rate }=2.048 \mathrm{Mb} / \mathrm{s} \\ & \text { Bit rate }=4.096 \mathrm{Mb} / \mathrm{s} \\ & \text { Bit rate }=8.192 \mathrm{Mb} / \mathrm{s} \end{aligned}$	$\begin{aligned} & 85 \\ & 50 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 75 \\ & 40 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
tcl	CLK Pulse Width LOW -	$\begin{aligned} & \text { Bit rate }=2.048 \mathrm{Mb} / \mathrm{s} \\ & \text { Bit rate }=4.096 \mathrm{Mb} / \mathrm{s} \\ & \text { Bit rate }=8.192 \mathrm{Mb} / \mathrm{s} \end{aligned}$	$\begin{aligned} & 85 \\ & 50 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 75 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
tr, tt	Clock Rise/Fall Time		-	-	10	ns
tHFPW	Wide Frame Pulse Width—	Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$	195	-	295	ns
tHFPS	Frame Pulse Setup Time before HCLK falling		10	-	150	ns
tHFPH	Frame Pulse Hold Time from HCLK falling		20	-	150	ns
tHCP	HCLK (4.096 MHz) Period -	Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$	190	-	300	ns
H-CH	HCLK (4.096 MHz) Pulse Width HIGH -	Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$	85	-	150	ns
HHCL	HCLK (4.096 MHz) Pulse Width LOW -	Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$	85	-	150	ns
thr, thf	HCLK Rise/Fall Time		-	-	10	ns
tDIF	Delay between falling edge of HCLK and falling edge of CLK		-10	-	10	ns

AC ELECTRICAL CHARACTERISTICS - SERIAL STREAMS ${ }^{(1)}$

Symbol	Characteristics	Min.	Typ.	Max.	Unit	Test Conditions
tSIS	RX Setup Time	0	-	-	ns	
tSIH	RX Hold Time	20	-	-	ns	
tsod	TX Delay - Active to Active	-	-	39	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
		-	-	58	ns	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$
tDZ	TX Delay - Active to High-Z	-	-	37	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$
tZD	TX Delay -High-Z to Active	-	-	37	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$
toDe	Output Driver Enable (ODE) Delay	-	-	37	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$
tXCD	CCO Output Delay	-	-	48	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
		-	-	58	ns	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$

NOTE:

1. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.

NOTE:

1. $2.048 \mathrm{Mb} / \mathrm{s}$ mode, last channel $=\mathrm{ch} 31$,
$4.096 \mathrm{Mb} / \mathrm{s}$ mode, last channel $=$ ch 63 ,
8.192 Mb/s mode, last channel = ch 127.

Figure 7. ST-BUS ${ }^{\circledR}$ Timing for $2.048 \mathrm{Mb} / \mathrm{s}$ and High Speed Serial Interface at $4.096 \mathrm{Mb} / \mathrm{s}$ or $8.192 \mathrm{Mb} / \mathrm{s}$, when WFPS pin $=0$.

NOTE:

1. $2.048 \mathrm{Mb} / \mathrm{s}$ mode, last channel $=$ ch 31 , $4.096 \mathrm{Mb} / \mathrm{s}$ mode, last channel $=$ ch 63 , 8.192 Mb/s mode, last channel $=$ ch 127.

Figure 8. GCI Timing at $2.048 \mathrm{Mb} / \mathrm{s}$ and High Speed Serial Interface at $4.096 \mathrm{Mb} / \mathrm{s}$ or $8.192 \mathrm{Mb} / \mathrm{s}$, when WFPS pin $=0$

NOTE:

1. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.

Figure 9. WFP Bus Timing for High Speed Serial Interface ($8.192 \mathrm{Mb} / \mathrm{s}$), when WFPS pin $=1$

Figure 10. Serial Output and External Control
Figure 11. Output Driver Enable (ODE)

AC ELECTRICAL CHARACTERISTICS - MULTIPLEXED BUS TIMING (INTEL)

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
taLW	ALE Pulse Width	20	-	-	ns	
tads	Address Setup from ALE falling	10	-	-	ns	
tadH	Address Hold from ALE falling	10	-	-	ns	
taLRD	$\overline{\mathrm{RD}}$ Active after ALE falling	10	-	-	ns	
DDR	Data Setup from $\overline{\text { DTA }}$ LOW on Read	10	-	-	ns	$\mathrm{CL}=150 \mathrm{pF}$
tCSRW	$\overline{\mathrm{CS}}$ Hold after $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$	0	-	-	ns	
tRW	$\overline{\mathrm{RD}}$ Pulse Width (Fast Read)	-	80	-	ns	
tCSR	$\overline{\mathrm{CS}}$ Setup from $\overline{\mathrm{RD}}$	0	-	-	ns	
tDHR ${ }^{(1)}$	Data Holdafter $\overline{\mathrm{RD}}$	10	-	75	ns	$C \mathrm{~L}=150 \mathrm{pF}, \mathrm{RL}=1 \mathrm{~K}$
twn	WRPulse Width (FastWrite)	45	-	-	ns	
talwr	WR Delay after ALE falling	3	-	-	ns	
tcsw		0	-	-	ns	
tDSW	DataSetup from $\overline{W R}$ (FastWrite)	20	-	-	ns	
tswd	Valid Data Delay on Write (Slow Write)	-	-	122	ns	
DHW	Data Hold after $\overline{W R}$ Inactive	5	-	-	ns	
takD	Acknowledgment Delay: Reading/Writing Registers Reading/Writing Memory- @ $2.048 \mathrm{Mb} / \mathrm{s}$ $4.096 \mathrm{Mb} / \mathrm{s}$ $8.192 \mathrm{Mb} / \mathrm{s}$			$\begin{gathered} 50 / 60 \\ 760 / 780 \\ 400 / 420 \\ 220 / 240 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \hline \end{aligned}$	$\begin{aligned} & C L=150 \mathrm{pF} \\ & C L=150 \mathrm{pF} \\ & C L=150 \mathrm{pF} \\ & C L=150 \mathrm{pF} \end{aligned}$
takH ${ }^{(1)}$	AcknowledgmentHold Time	-	45	80	ns	$C L=150 \mathrm{pF}, \mathrm{RL}=1 \mathrm{~K}$

NOTE:

1. High Impedance is measured by pulling to the appropriate rail with R_{V}, with timing corrected to cancel time taken to discharge C_{L}.

Figure 12. Multiplexed Bus Timing (Intel Mode)

AC ELECTRICAL CHARACTERISTICS - MULTIPLEXED BUS TIMING (MOTOROLA)

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
tASW	ALE Pulse Width	80	-	-	ns	
tads	Address Setup from AS falling	10	-	-	ns	
tadH	Address Hold from AS falling	10	-	-	ns	
DDR	Data Setup from DTA LOW on Read	10	-	-	ns	$C L=150 \mathrm{pF}$
tCSH	$\overline{\text { CS }}$ Hold after DS falling	0	-	-	ns	
tcss	$\overline{\mathrm{CS}}$ Setup from DS rising	0	-	-	ns	
tDHW	DataHoldafterWrite	10	-	-	ns	
tows	Data Setup from DS-Write (FastWrite)	25	-	-	ns	
tswd	Valid Data Delay on Write (Slow Write)	-	-	122	ns	
trws	R / \bar{W} Setup from DS Rising	60	-	-	ns	
tRWH	R / \bar{W} Hold from DS Rising	10	-	-	ns	
tDHR ${ }^{(1)}$	Data Hold after Read	10	50	75	ns	$C L=150 \mathrm{pF}, \mathrm{RL}=1 \mathrm{~K}$
tDSH	DS Delay after AS falling	10	-	-	ns	
takD	AcknowledgmentDelay: Reading/WritingRegisters Reading/Writing Memory- @ $2.048 \mathrm{Mb} / \mathrm{s}$ @ $4.096 \mathrm{Mb} / \mathrm{s}$ @ $8.192 \mathrm{Mb} / \mathrm{s}$			$\begin{gathered} 55 / 60 \\ 760 / 780 \\ 400 / 420 \\ 220 / 240 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & C L=150 \mathrm{pF} \\ & C L=150 \mathrm{pF} \\ & C L=150 \mathrm{pF} \\ & C L=150 \mathrm{pF} \end{aligned}$
takH ${ }^{(1)}$	Acknowledgment Hold Time	-	45	80	ns	$C L=150 p F, R L=1 \mathrm{~K}$

NOTE:

1. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.

Figure 13. Multiplexed Bus Timing (Motorola Mode)

AC ELECTRICALCHARACTERISTICS-MOTOROLA NON-MULTIPLEXED BUS MODE

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
tcss	CS Setup from DS falling	0	-	-	ns	
tRWS	R/W Setup from DS falling	10	-	-	ns	
tADS	Address Setup from DSfalling	2	-	-	ns	
tCSH	CS Hold after DS rising	0	-	-	ns	
trwh	R/W Hold after DS Rising	5	-	-	ns	
taDH	Address Hold after DS Rising	5	-	-	ns	
DDR	Data Setup from DTALOW on Read	0	-	-	ns	$\mathrm{CL}=150 \mathrm{pF}$
セHR	Data Hold on Read	10	50	75	ns	$C L=150 \mathrm{pF}, \mathrm{RL}=1 \mathrm{~K}$
tDSW	Data Setup onWrite (FastWrite)	20	-	-	ns	
tswD	Valid Data Delay on Write (Slow Write)	-	-	122	ns	
DHW	Data Hold on Write	8	-	-	ns	
takD	Acknowledgment Delay: Reading/WritingRegisters Reading/Writing Memory- @ $2.048 \mathrm{Mb} / \mathrm{s}$ $\quad 4.096 \mathrm{Mb} / \mathrm{s}$ @ $8.192 \mathrm{Mb} / \mathrm{s}$			$\begin{gathered} 55 / 60 \\ 760 / 780 \\ 400 / 420 \\ 220 / 240 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & C L=150 \mathrm{pF} \\ & C L=150 \mathrm{pF} \\ & C L=150 \mathrm{pF} \\ & C L=150 \mathrm{pF} \end{aligned}$
takH ${ }^{(1)}$	AcknowledgmentHold Time	-	45	80	ns	$C L=150 \mathrm{pF}, \mathrm{RL}=1 \mathrm{~K}$

NOTE:

1. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.

Figure 14. Motorola Non-Multiplexed Asyncronous Bus Timing

Figure 15. Motorola Non-Multiplexed Syncronous Bus Timing

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

5/23/2000
pgs.1, 3, 18 and 25.
pgs.1, 2, 3, 6, 13 and 25.
pgs. 3 and 13.
pgs. 7, 12, 18, 21, 22, 23, 24 and 25.
pg. 1, 16 and 18.
pgs. 4, 5, 12 and 25.

03/02/09 pg. 26 Removed "IDT" from ordering part number. 07/10/14 pg. 27 Removed Leaded devices

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

[^0]: 1. These pins are 5 V tolerant.
