
300mA, Ultra-low noise, Small Package **Ultra-Fast CMOS LDO Regulator**

General Description

The LP3990A is designed for portable RF and wireless applications with demanding performance and space requirements. The LP3990A performance is optimized for battery-powered systems to deliver ultra low noise and low quiescent current. The LP3990A also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in hand-held wireless devices. The LP3990A consumes less than 1µA in shutdown mode and has fast turn-on time less than 50µs. The other features include ultra low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection It is available in the 1mm × 1mm X2SON ratio. packages.

Order Information


Features

- Ultra-thin Package
- 2.2V- 5.5V Input Voltage Range
- Low Dropout: 240mV @ 300mA
- 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 3.6V and 5V Fixed
- 300mA Output Current, 450mA Peak Current
- High PSSR:-75dB at 1KHz
- 1uA Standby Current When Shutdown
- Available in 1mm×1mm X2SON Package
- TTL-Logic-Controlled Shutdown Input
- Ultra-Fast Response in Line/Load transient
- Current Limiting and Thermal Shutdown Protection
- Quick start-up (typically 50uS)

Applications

- Portable Media Players/MP3 players
- Cellular and Smart mobile phone
- LCD
- **DSC Sensor**
- Wireless Card

Typical Application Circuit

LP3990A-00

Marking Information

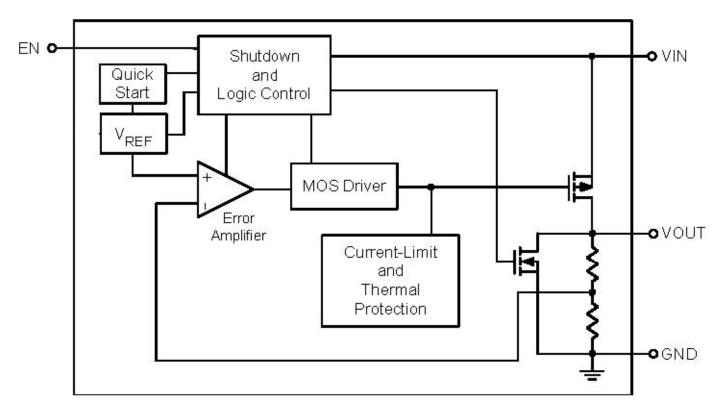
Device	Marking	Package	Shipping	
LP3990A-18QVF	CWX	X2SON	40K/DEEL	
LP3990A-28QVF	HWX	X2SON	12K/REEL	

Device	Marking	Package	Shipping	
LP3990A-33QVF	EWX	X2SON	12K/REEL	
W: W is week code. X: X is series number.				

Functional Pin Description

Package Type	Pin Configurations
1mm×1mm X2SON	VIN EN 4 3 GND 1 2 VOUT GND

Pin Description


Pin	Name	Description Description
1	VOUT	Output Voltage.
2	GND	Ground.
3	EN	Chip Enable (Active High). Note that this pin is high impedance.
4	VIN	Power Input Voltage.

LP3990A-00

May.-2016

Email: marketing@lowpowersemi.com

Function Diagram

Absolute Maximum Ratings

\diamond	Supply Input Voltage EN Pin Voltage	
\diamond	EN Pin Voltage	0.3V to Vin+0.3V
Po	ower Dissipation, PD @ TA = 25°C	
	X2SON	390mW
Pa	ackage Thermal Resistance	
	X2SON, θJA	256°C/W
	Lead Temperature (Soldering, 10 sec.)	260°C
	Storage Temperature Range	−60°C to 165°C
ES	SD Susceptibility	
	HBM (Human Body Mode)	2kV
\diamond	MM(Machine-Mode)	200V
Re	ecommended Operating Conditions	
	Supply Input Voltage	2.2V to 5.5V
\diamond	EN Input Voltage	0V to5.5V
	Operation Junction Temperature Range	−20°C to 125°C
	Operation Ambient Temperature Range	−20°C to 85°C

LP3990A-00

May.-2016

Email: marketing@lowpowersemi.com

Electrical Characteristics

(VIN = VOUT + 1V, CIN = COUT = 1μ F, TA = 25° C, unless otherwise specified)

Parameter		Symbol	Test Conditions	Min	Тур.	Max	Units	
Output Voltage Accuracy		ΔVOUT	IOUT = 1mA	-3		+3	%	
Output Loading Current		ILOAD	VEN=VIN,VIN>2.5V		300		mA	
Curre	nt Limit	ILIM	RLOAD = 1Ω	350	450		mA	
Quiesce	nt Current	IQ	VEN ≥ 1.2V, IOUT = 0mA		50		μΑ	
Dropout Voltage		VDDOD	IOUT = 200mA, VOUT > 2.8V		160	200	\	
		VDROP	IOUT = 300mA, VOUT > 2.8V		240	300	mV	
Line Regulation		ΔVLINE	VIN = (VOUT + 1V) to 5.5V, IOUT = $1mA$			0.2	%	
Load Regulation		ΔLOAD	1mA < IOUT < 200mA			2	%	
Standby Current		ISTBY	VEN = GND, Shutdown		1		μΑ	
EN Input Bias Current		IIBSD	VEN = GND or VIN		2		μΑ	
EN Threshold	Logic-Low Voltage	VIL	VIN = 3V to 5.5V, Shutdown			0.4	V	
	Logic-High Voltage	VIH	VIN = 3V to 5.5V, Start-Up	1.4			V	
Output Noise Voltage		owPow	10Hz to 100kHz, IOUT = 200mA, COUT = 1µF	導	100		uVRMS	
Power Supply f = 1kHz		PSRR	$C_{OUT} = 1\mu F$,		-75		dB	
Rejection Rat	e f = 10kHz		I _{OUT} = 10mA		-68		UD	
Thermal Shutdown Temperature		TSD			150		°C	

Applications Information

Like any low-dropout regulator, the external capacitors used with the LP3990A must be carefully selected for regulator stability and performance. Using a capacitor whose value is > $1\mu F$ on the LP3990A input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The LP3990A is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least 1 μ F with ESR is > 25 $m\Omega$ on the LP3990A output ensures stability. The LP3990A still works well with output capacitor of other types due to the wide stable ESR range. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located not more than 0.5 inch from the VOUT pin of the LP3990A and returned to a clean analog ground.

Start-up Function Enable Function

The LP3990A features an LDO regulator enable/disable function. To assure the LDO regulator will switch on, the EN turn on control level must be greater than 1.4 volts. The LDO regulator will go into the shutdown mode when the voltage on the EN pin falls below 0.4 volts. For to protecting the system, the LP3990A have a quick-discharge function. If the enable function is not needed in a specific application, it may be tied to VIN to keep the LDO regulator in a continuously on state.

Thermal Considerations

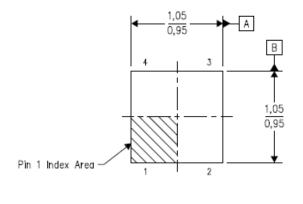
Thermal protection limits power dissipation in LP3990A. When the operation junction temperature exceeds 150°C, the OTP circuit starts the thermal shutdown function turn the pass element off. The pass element turns on again after the junction temperature cools by 25°C. For continue operation, do not exceed absolute maximum operation junction temperature 125°C.

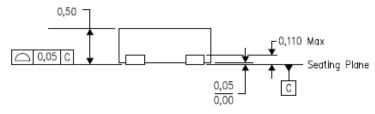
The power dissipation definition in device is:

$$PD = (VIN-VOUT) \times IOUT + VIN \times IQ$$

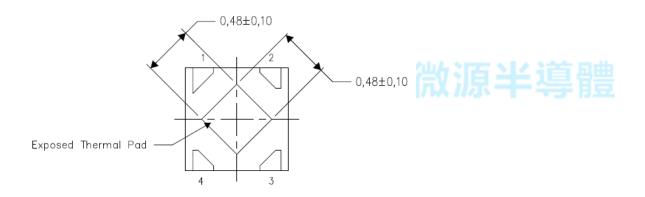
The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient.

The maximum power dissipation can be calculated by following formula:


 $PD(MAX) = (TJ(MAX) - TA)/\theta JA$


LP3990A-00

May.-2016


-2016 Email: marketing@lowpowersemi.com

Packaging Information

Bottom View

Exposed Thermal Pad Dimensions