Thin-Film RF/Microwave Inductor Technology

Accu-L[®] Series

L0201 Tight Tolerance RF Inductor

ACCU-L® TECHNOLOGY

The L0201 SMD Tuning Inductor is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

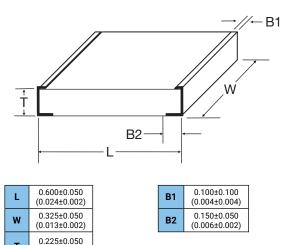
APPLICATIONS

- Mobile Communications
- Satellite TV Receivers
- GPS
- · Vehicle Location Systems
- Wireless LAN's
- Filters
- Matching Networks

HOW TO ORDER

P/N Example: L02013R3BHSTR

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

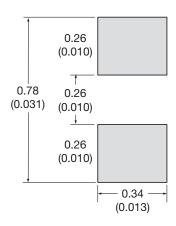

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

DIMENSIONS: millimeters (inches)

(TOP View)

т

(0.009±0.002)


TERMINATION

KOH COMPLIANT

Nickel/Lead Free solder coating compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

Recommended Pad Layout Dimensions

mm (inches)

Thin-Film RF/Microwave Inductor Technology Accu-L[®] Series L0201 Tight Tolerance RF Inductor

ELECTRICAL SPECIFICATIONS

	450MHz	900MHz	1900MHz	2400MHz		_		
L(nH)	Tolerance A=±0.05nH , B=±0.1nH, C=±0.2nH, D=±0.5nH	Q (min)	Q (Typ)	Q (Typ)	Q (Typ)	SRF min. (GHz)	R _{DC} max. (Ω)	и _{рс} max. (mA)
0.33	±0.05nH , ± 0.1nH , ± 0.2nH	13	24	36	39	35	0.1	550
0.39	±0.05nH , ± 0.1nH , ± 0.2nH	11	23	34	38	33	0.1	550
0.47	±0.05nH , ± 0.1nH , ± 0.2nH	10	18	26	30	32	0.1	550
0.56	±0.05nH , ± 0.1nH , ± 0.2nH	9	16	24	27	31	0.1	500
0.68	±0.05nH , ± 0.1nH , ± 0.2nH	8	19	28	32	30	0.2	500
0.82	±0.05nH , ± 0.1nH , ± 0.2nH	8	19	28	32	28	0.2	400
1.0	±0.05nH , ± 0.1nH , ± 0.2nH	7	16	26	30	26	0.2	400
1.2	±0.05nH , ± 0.1nH , ± 0.2nH	7	16	26	30	24	0.3	300
1.5	± 0.1nH , ± 0.2nH , ± 0.5nH	7	16	26	30	23	0.5	250
1.8	± 0.1nH , ± 0.2nH , ± 0.5nH	7	15	25	29	20	0.5	250
2.2	± 0.1nH , ± 0.2nH , ± 0.5nH	7	15	22	24	18	0.6	200
2.7	± 0.1nH , ± 0.2nH , ± 0.5nH	7	15	22	24	14	0.7	180
3.3	± 0.1nH , ± 0.2nH , ± 0.5nH	7	15	22	24	13	1.0	150

All intermediate Inductance values within the indicated range are available.

