# X7R with KONNEKT™ Technology, 25 - 3,000 VDC (Commercial & Automotive Grade)











#### Overview

KEMET's X7R with KONNEKT™ technology surface mount capacitors are designed for applications where higher capacitance and voltage are needed without requiring additional board space. KONNEKT high density packaging technology uses an innovative Transient Liquid Phase Sintering (TLPS) material to create a surface mount multichip solution for high density packaging.

KEMET's X7R dielectric features a 125°C maximum operating temperature and is considered temperature stable. The Electronics Components, Assemblies and Materials Association (EIA) characterizes X7R dielectric as a Class II material. Components of this classification are fixed, ceramic dielectric capacitors suited for bypass and decoupling applications or for frequency

discriminating circuits where Q and stability of capacitance characteristics are not critical. X7R exhibits a predictable change in capacitance with respect to time and voltage, boasting a minimal change in capacitance with reference to ambient temperature. Capacitance change is limited to ±15% from -55°C to +125°C.

In addition to their use in power supplies, these capacitors can be used in industries related to automotive (hybrid), telecommunications, medical, military, aerospace, semiconductors and test/diagnostic equipment.

Automotive Grade devices are also available which meet the demanding Automotive Electronics Council's AEC-Q200 qualification requirements

#### **Benefits**

- Commercial and Automotive Grade (AEC-Q200)
- · Industry-leading CV values
- Capacitance offerings ranging from 2.4 nF 20 μF
- DC voltage ratings from 25 2,000 V
- EIA 1812 and 2220 case sizes
- Operating temperature range of -55°C to +125°C
- Low ESR and ESL
- · Non-polar device, minimizing installation concerns
- · Lead (Pb)-free, RoHS, and REACH compliant
- · Surface mountable using standard MLCC reflow profiles

## **Applications**

- SMPS (Switch Mode Power Supplies)
- · Lighting ballasts, HID lighting
- DC/DC Converters
- Telecom equipment
- Industrial and medical equipment
- Filters
- Snubbers
- DC Blocking
- Bypass





## **Ordering Information**

| С       | 1812                  | С                        | 944                                           | K                        | С                                                                                                                                                                | R          | L                       | С                     | XXXX                                                                         |
|---------|-----------------------|--------------------------|-----------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|-----------------------|------------------------------------------------------------------------------|
| Ceramic | Case Size<br>(L"x W") | Specification/<br>Series | Capacitance<br>Code (pF)                      | Capacitance<br>Tolerance | Rated<br>Voltage (V)                                                                                                                                             | Dielectric | Subclass<br>Designation | Termination<br>Finish | Orientation and<br>Packaging<br>(Suffix/C-Spec)                              |
| С       | 1812<br>2220          | C =<br>Standard          | Two single<br>digits +<br>number of<br>zeros. | K = ±10%<br>M = ±20%     | 3 = 25 V<br>5 = 50 V<br>1 = 100 V<br>2 = 200 V<br>A = 250 V<br>C = 500 V<br>B = 630 V<br>D = 1,000 V<br>F = 1,500 V<br>G = 2,000 V<br>Z = 2,500 V<br>H = 3,000 V | R =<br>X7R | L =<br>KONNEKT          | C =<br>100% matte Sn  | See<br>"Packaging and<br>Orientation<br>C-Spec<br>Ordering<br>Options Table" |

# **Packaging C-Spec Ordering Options Table**

| Packaging Type    | Mounting Orientation <sup>1</sup> | Packaging/Grade<br>Ordering Code (C-Spec) |  |  |  |  |  |
|-------------------|-----------------------------------|-------------------------------------------|--|--|--|--|--|
| Commercial Grade  |                                   |                                           |  |  |  |  |  |
| 7" Reel/Unmarked  |                                   | TU                                        |  |  |  |  |  |
| 13" Reel/Unmarked |                                   | 7210                                      |  |  |  |  |  |
|                   | Automotive Grade                  |                                           |  |  |  |  |  |
| 7" Reel/Unmarked  |                                   | AUTO                                      |  |  |  |  |  |
| 13" Reel/Unmarked |                                   | AUT07210                                  |  |  |  |  |  |

<sup>1</sup> All parts are shipped in standard orientation which refers to the positioning of the KONNEKT capacitors in the Tape and Reel pockets.



#### **Automotive C-Spec Information**

KEMET automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. These products are supported by a Product Change Notification (PCN) and Production Part Approval Process warrant (PPAP).

Automotive products offered through our distribution channel have been assigned an inclusive ordering code C-Spec, "AUTO." This C-Spec was developed in order to better serve small and medium-sized companies that prefer an automotive grade component without the requirement to submit a customer Source Controlled Drawing (SCD) or specification for review by a KEMET engineering specialist. This C-Spec is therefore not intended for use by KEMET OEM automotive customers and are not granted the same "privileges" as other automotive C-Specs. Customer PCN approval and PPAP request levels are limited (see details below.)

#### **Product Change Notification (PCN)**

The KEMET product change notification system is used to communicate primarily the following types of changes:

- Product/process changes that affect product form, fit, function, and/or reliability
- · Changes in manufacturing site
- Product obsolescence

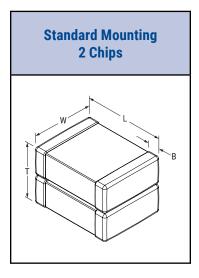
| KEMET Automotive            | Customer Notifica                | tion Due To:  | Days Prior To    |  |
|-----------------------------|----------------------------------|---------------|------------------|--|
| C-Spec                      | Process/Product change           | Obsolescence* | Implementation   |  |
| KEMET assigned <sup>1</sup> | Yes (with approval and sign off) | Yes           | 180 days minimum |  |
| AUT0                        | Yes (without approval)           | Yes           | 90 days minimum  |  |

<sup>&</sup>lt;sup>1</sup> KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

#### **Production Part Approval Process (PPAP)**

The purpose of the Production Part Approval Process is:

- To ensure that supplier can meet the manufacturability and quality requirements for the purchased parts.
- To provide the evidence that all customer engineering design records and specification requirements are properly understood and fulfilled by the manufacturing organization.
- To demonstrate that the established manufacturing process has the potential to produce the part.


| <b>KEMET Automotive</b>     |   | PPAP (Product Part Approval Process) Level |   |   |   |  |  |  |  |
|-----------------------------|---|--------------------------------------------|---|---|---|--|--|--|--|
| C-Spec                      | 1 | 2                                          | 3 | 4 | 5 |  |  |  |  |
| KEMET assigned <sup>1</sup> | • | •                                          | • | • | • |  |  |  |  |
| AUT0                        |   |                                            | 0 |   |   |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

- Part number specific PPAP available
- Product family PPAP only



# **Dimensions - Millimeters (Inches)**



| Number of Chips | Mounting      | EIA<br>SIZE<br>CODE | METRIC<br>SIZE<br>CODE | L<br>LENGTH                   | W<br>WIDTH                   | T<br>THICKNESS | B<br>BANDWIDTH                | Mounting<br>Technique |
|-----------------|---------------|---------------------|------------------------|-------------------------------|------------------------------|----------------|-------------------------------|-----------------------|
| 2               | Ottomologia   | 1812                | 4532                   | 4.50 (0.177)<br>±0.30 (0.012) | 3.2 (0.126)<br>±0.3 (0.012)  | See Table 1A   | 0.60 (0.024)<br>±0.35 (0.014) | Solder Reflow         |
| 2               | Standard<br>2 |                     | 5750                   | 5.70 (0.224)<br>±0.40 (0.016) | 5.00 (0.197)<br>±0.40 (0.016 | for Thickness  | 0.60 (0.024)<br>±0.35 (0.014  | Only                  |



# **Table 1A - 1812 Product Ordering Codes, Ratings, and Package Quantities**

|                                   |             |             |         | Number      |                               | Typical                           | Tape & Red        | el Quantity        |
|-----------------------------------|-------------|-------------|---------|-------------|-------------------------------|-----------------------------------|-------------------|--------------------|
| KEMET Part<br>Number <sup>1</sup> | Capacitance | Cap<br>Code | Voltage | of<br>Chips | Thickness<br>mm (inch)        | Average<br>Piece<br>Weight<br>(g) | 7" Tape &<br>Reel | 13" Tape &<br>Reel |
| C1812C206(a)3RLC(b)               | 20 μF       | 206         | 25 V    |             | 3.30 (0.130)<br>±0.40 (0.16)  | 0.25                              | 500               | 2,000              |
| C1812C945(a)5RLC(b)               | 9.4 μF      | 945         | 50 V    |             | 3.30 (0.130)<br>±0.40 (0.16)  | 0.25                              | 500               | 2,000              |
| C1812C665(a)1RLC(b)               | 6.6 µF      | 665         | 100 V   |             | 3.90 (0.153)<br>±0.40 (0.16)  | 0.28                              | 275               | 1,050              |
| C1812C944(a)2RLC(b)               | 0.94 μF     | 944         | 200 V   |             | 3.50 (0.138)<br>±0.30 (0.12)  | 0.25                              | 500               | 2,000              |
| C1812C944(a)ARLC(b)               | 0.94 μF     | 944         | 250 V   |             | 3.50 (0.138)<br>±0.30 (0.12)  | 0.25                              | 500               | 2,000              |
| C1812C664(a)CRLC(b)               | 0.66 μF     | 664         | 500 V   | 2           | 4.30 (0.169)<br>±0.20 (0.008) | 0.30                              | 250               | 1,000              |
| C1812C304(a)BRLC(b)               | 0.3 μF      | 304         | 630 V   | 2           | 3.50 (0.138)<br>±0.40 (0.16)  | 0.25                              | 500               | 2,000              |
| C1812C204(a)DRLC(b)               | 0.2 μF      | 204         | 1,000 V |             | 3.50 (0.138)<br>±0.30 (0.12)  | 0.25                              | 500               | 2,000              |
| C1812C663(a)FRLC(b)               | 0.066 μF    | 663         | 1,500 V |             | 5.10 (0.201)<br>±0.40 (0.16)  | 0.35                              | 200               | 900                |
| C1812C203(a)GRLC(b)               | 0.044 μF    | 203         | 2,000 V |             | 5.10 (0.201)<br>±0.40 (0.016) | 0.35                              | 200               | 900                |
| C1812C942(a)ZRLC(b)               | 0.0094 μF   | 942         | 2,500 V |             | 5.10 (0.201)<br>±0.40 (0.016) | 0.35                              | 200               | 900                |
| C1812C242(a)HRLC(b)               | 0.0024 μF   | 242         | 3,000 V |             | 5.10 (0.201)<br>±0.40 (0.016) | 0.35                              | 200               | 900                |

<sup>1</sup> Complete part number requires additional characters in the numbered positions provided in order to indicate capacitance tolerance and grade. For each numbered position, available options are as follows:

<sup>(</sup>a) Capacitance tolerance character "K" or "M."

<sup>(</sup>b) Product Grade: "TU" for Commercial or "AUTO" for Automotive



#### Table 1B - 2220 Product Ordering Codes, Ratings, and Package Quantities

|                                   |             |             |         | Number      |                              | Typical                           | Tape & Red        | Tape & Reel Quantity |  |
|-----------------------------------|-------------|-------------|---------|-------------|------------------------------|-----------------------------------|-------------------|----------------------|--|
| KEMET Part<br>Number <sup>1</sup> | Capacitance | Cap<br>Code | Voltage | of<br>Chips | Thickness<br>mm (inch)       | Average<br>Piece<br>Weight<br>(g) | 7" Tape &<br>Reel | 13" Tape &<br>Reel   |  |
| C2220C206(a)5RLC(b)               | 20 μF       | 206         | 50 V    |             | 4.90 (0.193)<br>±0.30 (0.11) | 0.78                              | 225               | 900                  |  |
| C2220C205(a)1RLC(b)               | 2 μF        | 205         | 100 V   |             | 3.1 (0.122)<br>±0.30 (0.11)  | 0.47                              | 500               | 1,925                |  |
| C2220C205(a)2RLC(b)               | 2 μF        | 205         | 200 V   |             | 3.1 (0.122)<br>±0.30 (0.11)  | 0.47                              | 500               | 1,925                |  |
| C2220C205(a)ARLC(b)               | 2 μF        | 205         | 250 V   |             | 3.1 (0.122)<br>±0.30 (0.11)  | 0.47                              | 500               | 1,925                |  |
| C2220C944(a)CRLC(b)               | 0.94 μF     | 944         | 500 V   |             | 5.1 (0.200)<br>±0.40 (0.016) | 0.81                              | 300               | 1,250                |  |
| C2220C664(a)BRLC(b)               | 0.66 μF     | 664         | 630 V   | 2           | 5.1 (0.200)<br>±0.40 (0.016) | 0.80                              | 300               | 1,250                |  |
| C2220C244(a)DRLC(b)               | 0.24 μF     | 244         | 1,000 V |             | 5.1 (0.200)<br>±0.40 (0.016) | 0.80                              | 300               | 1,250                |  |
| C2220C164(a)FRLC(b)               | 0.16 μF     | 164         | 1,500 V |             | 5.1 (0.200)<br>±0.40 (0.016) | 0.79                              | 300               | 1,250                |  |
| C2220C443(a)GRLC(b)               | 0.044 μF    | 443         | 2,000 V |             | 5.1 (0.200)<br>±0.40 (0.016) | 0.80                              | 300               | 1,250                |  |
| C2220C303(a)ZRLC(b)               | 0.030 μF    | 303         | 2,500 V |             | 5.1 (0.200)<br>±0.40 (0.016) | 0.80                              | 300               | 1,250                |  |
| C2220C303(a)HRLC(b)               | 0.030 μF    | 303         | 3,000 V |             | 5.1 (0.200)<br>±0.40 (0.016) | 0.80                              | 300               | 1,250                |  |

<sup>1</sup> Complete part number requires additional characters in the numbered positions provided in order to indicate capacitance tolerance and grade. For each numbered position, available options are as follows:

<sup>(</sup>a) Capacitance tolerance character "K" or "M."

<sup>(</sup>b) Product Grade: "TU" for Commercial or "AUTO" for Automotive



# Performance and Reliability: Test Methods and Conditions (Commercial Only)

| Test                                                  | Reference         | Test Condition                                                                                                                                                                                                      | Limits           |                      |                                  |                                                                       |                                       |  |
|-------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|----------------------------------|-----------------------------------------------------------------------|---------------------------------------|--|
| Visual and<br>Mechanical                              | KEMET<br>Internal | No defects that may affect performance (10X)                                                                                                                                                                        |                  | D                    | imensions acc                    | ording KEMET S                                                        | pec Sheet                             |  |
| Capacitance<br>(Cap)                                  | KEMET<br>Internal | C ≤ 10 μF 1 kHz ±50 Hz and 1.0 ±0.2 $V_{rms}$<br>C > 10 μF 120 Hz ±10 Hz and 0.5 ±0.1 $V_{rms}$<br>Capacitance measurements (including tolerance) are indexed to a referee time of 1,000 hours                      | Within Tolerance |                      |                                  |                                                                       |                                       |  |
|                                                       |                   | 0.410.05                                                                                                                                                                                                            |                  |                      | Withi                            | n Specification                                                       |                                       |  |
| Dissipation                                           | KEMET             | $C \le 10 \mu F$ Frequency: 1 kHz ±50 Hz Voltage: 1.0 ±0.2 $V_{rms}$ , 0.5 ±0.2 $V_{rms}$                                                                                                                           |                  | EIA Caso<br>Size     |                                  | Capacitance                                                           | Dissipation Factor (Maximum %)        |  |
| Factor (DF) Internal                                  |                   | C > 10 μF<br>Frequency: 120 Hz ±10 Hz                                                                                                                                                                               |                  | 1812                 |                                  | < 20 μF                                                               | 2.5                                   |  |
|                                                       |                   | Voltage: 0.5 ±0.1 V <sub>rms</sub>                                                                                                                                                                                  | -                | 2220                 | ALL                              | 20 μF<br>ALL                                                          | 2.5                                   |  |
|                                                       |                   |                                                                                                                                                                                                                     |                  | 2220                 |                                  | ALL                                                                   | 2.3                                   |  |
|                                                       |                   |                                                                                                                                                                                                                     | To o             | obtain I             | R limit, divide N                | n Specification<br>1Ω-μF value by t                                   | he capacitance and of the two limits. |  |
|                                                       |                   | Apply rated voltage for 120 seconds at 25°C                                                                                                                                                                         |                  | EIA Rated DC Voltage |                                  | IR Limit                                                              |                                       |  |
| Insulation                                            | KEMET<br>Internal |                                                                                                                                                                                                                     |                  |                      | 25 – 100 V                       | 500 megaohm n                                                         | nicrofarads or 10 GΩ                  |  |
| Resistance (IR)                                       |                   |                                                                                                                                                                                                                     |                  | 1812                 | 200 - 250 V                      | -                                                                     | nicrofarads or 100 GΩ                 |  |
|                                                       |                   |                                                                                                                                                                                                                     |                  |                      | 500 - 1,000 V<br>1,500 - 3,000 V | 100 megaohm microfarads or 10 GΩ  1,000 megaohm microfarads or 100 GΩ |                                       |  |
|                                                       |                   |                                                                                                                                                                                                                     |                  |                      | 50 – 100 V                       |                                                                       | nicrofarads or 10 GΩ                  |  |
|                                                       |                   |                                                                                                                                                                                                                     |                  | 2220                 | 200 – 250 V                      | 1,000 megaohm microfarads or 100 GΩ                                   |                                       |  |
|                                                       |                   |                                                                                                                                                                                                                     |                  |                      | 500 - 630 V                      | 100 megaohm microfarads or 10 GΩ                                      |                                       |  |
|                                                       |                   |                                                                                                                                                                                                                     |                  |                      | 1,000 - 3,000 V                  | 1,000 megaohm n                                                       | nicrofarads or 100 GΩ                 |  |
| Temperature Coefficient of Capacitance Internal (TCC) |                   | C ≤ 10µF Frequency: 1 kHz ±50 Hz Voltage*: 1.0 ±0.2 V <sub>rms</sub> C > 10µF Frequency: 120 Hz ±10 Hz Voltage: 0.5 ±0.1 V <sub>rms</sub> * See part number specification sheet for voltage  Step  Temperature (°C) |                  |                      |                                  | tance ±15% over<br>°C to +125°C                                       | r                                     |  |
| (100)                                                 |                   | 1 +25°C 2 -55°C 3 +25°C (Reference) 4 +125°C                                                                                                                                                                        |                  |                      |                                  |                                                                       |                                       |  |



# Performance and Reliability: Test Methods and Conditions (Commercial Only) cont.

| Test                                                         | Reference               | Test Condition                                                                                                                                                           | Limits                                                                                                                            |
|--------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Dielectric<br>Withstanding<br>Voltage<br>(DWV)               | KEMET<br>Internal       | Rated DC Voltage (% of Rated)       < 500                                                                                                                                | Cap: Initial Limit<br>DF: Initial Limit<br>IR: Initial Limit<br>Withstand test voltage without<br>insulation breakdown or damage. |
| Aging Rate<br>(Maximum %<br>Capacitance<br>Loss/Decade Hour) | KEMET<br>Internal       | Capacitance measurements (including tolerance) are indexed to a referee time of 1,000 hours.  Please refer to a part number specific datasheet for referee time details. | 3% Loss/Decade Hour                                                                                                               |
| Terminal<br>Strength                                         | KEMET<br>Internal       | Shear stress test per specific case size, Time: 60±1 seconds  Case Size Force  1812 2220 18N                                                                             | No evidence of mechanical<br>damage                                                                                               |
| Board<br>Flex                                                | AEC-Q200-005            | Standard Termination system 2.0 mm Test time: 60± 5 seconds Ramp time: 1 mm/second  (Unit: mm)                                                                           | No evidence of mechanical<br>damage                                                                                               |
| Solderability                                                | KEMET<br>Custom Test    | 1. Board shear – SAC305 solder. Shear force of 1.8 kg (minimum)<br>2. Wetting balance – IEC 60068–2–69                                                                   | Visual Inspection.<br>95% coverage on termination.<br>No leaching                                                                 |
| Temperature<br>Cycling                                       | JESD22<br>Method JA-104 | 1,000 cycles (-55°C to +125°C)<br>2 – 3 cycles per hour<br>Soak Time 1 or 5 minutes                                                                                      | Measurement at 24 hours ±4<br>hours after test conclusion.<br>Cap: Initial Limit<br>DF: Initial Limit<br>IR: Initial Limit        |



# Performance and Reliability: Test Methods and Conditions (Commercial Only) cont.

| Test                                       | Reference                 | Test Condition                                                                                                             | Limits                                                                                                                                                                          |
|--------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biased<br>Humidity                         | MIL-STD-202<br>Method 103 | Load Humidity:<br>1,000 hours 85°C/85% RH and 200 VDC maximum.<br>Low Volt Humidity:<br>1,000 hours 85°C/85% RH and 1.5 V. | Measurement at 24 hours ±4 hours after test conclusion. Within Post Environmental Limits Cap: ±20% shift IR: 10% of Initial Limit    DF Limits   Maximum (%)     Initial   Post |
| Moisture<br>Resistance                     | MIL-STD-202<br>Method 106 | Number of cycles required 10, 24 hours per cycle.<br>Steps 7a and 7b not required.                                         | Measurement at 24 hours ±4 hours after test conclusion. Within Post Environmental Limits Cap: ±20% shift IR: 10% of Initial Limit    DF Limits   Maximum (%)     Initial   Post |
| Thermal Shock                              | MIL-STD-202<br>Method 107 | Number of cycles required 5, (-55°C to 125°C)<br>Dwell time 15 minutes.                                                    | Cap: Initial Limit<br>DF: Initial Limit<br>IR: Initial Limit                                                                                                                    |
| High<br>Temperature<br>Life<br>MIL-STD-202 |                           | 1,000 hours at 125°C with 1.0 X rated voltage applied                                                                      | Within Post Environmental Limits Cap: ±20% shift IR: 10% of Initial Limit  DF Limits                                                                                            |
| Storage Life                               | Method 108                | 1,000 hours at 125°C, Unpowered                                                                                            | Maximum (%)           Initial         Post           2.5         3.0           3.5         5.0                                                                                  |

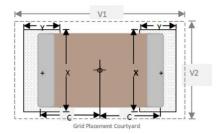


## Performance and Reliability: Test Methods and Conditions (Commercial Only) cont.

| Test                      | Reference                 | Test Condition                                                                                                          | Limits                                                                                          |
|---------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Vibration                 | MIL-STD-202<br>Method 204 | 5 g's for 20 minutes, 12 cycles each of 3 orientations.<br>Test from 10 – 2,000 Hz                                      | Cap: Initial Limit<br>DF: Initial Limit<br>IR: Initial Limit                                    |
| Mechanical<br>Shock       | MIL-STD-202<br>Method 213 | 1,500 g's 0.5 ms Half-sine,<br>Velocity Change 15.4 feet/second<br>(Condition F)                                        | Cap: Initial Limit<br>DF: Initial Limit<br>IR: Initial Limit                                    |
| Resistance to<br>Solvents | MIL-STD-202<br>Method 215 | Add Aqueous wash chemical OKEMCLEAN<br>(A 6% concentrated Oakite cleaner) or equivalent.<br>Do not use banned solvents. | Visual Inspection 10X<br>Readable marking,<br>no decoloration or stains.<br>No physical damage. |

## **Environmental Compliance**





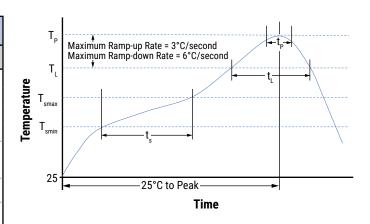



Lead (Pb)-free, RoHS, and REACH compliant without exemptions.

# Land Pattern Design Recommendations per IPC-7351 (mm)

| Chip<br>Number | Orientation | EIA SIZE<br>CODE | METRIC<br>SIZE CODE | Median (Nominal) Land<br>Protrusion |      | d    |            |      |
|----------------|-------------|------------------|---------------------|-------------------------------------|------|------|------------|------|
|                |             |                  |                     | С                                   | Y    | Х    | <b>V</b> 1 | V2   |
| 2              | Standard    | 1812             | 4532                | 2.05                                | 1.40 | 3.50 | 6.00       | 4.00 |
| 2              | Standard    | 2220             | 5750                | 2.65                                | 1.50 | 5.40 | 7.30       | 5.90 |






## **Soldering Process**

#### **Recommended Reflow Soldering Profile**

KEMET's KONNEKT family of high density surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with convection and IR reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions.

| Profile Feature                                                  | Termination Finish |  |  |  |
|------------------------------------------------------------------|--------------------|--|--|--|
| Trome readure                                                    | 100% matte Sn      |  |  |  |
| Preheat/Soak                                                     |                    |  |  |  |
| Temperature Minimum (T <sub>Smin</sub> )                         | 150°C              |  |  |  |
| Temperature Maximum (T <sub>Smax</sub> )                         | 200°C              |  |  |  |
| Time $(t_s)$ from $T_{Smin}$ to $T_{Smax}$                       | 60 - 120 seconds   |  |  |  |
| Ramp-Up Rate (T <sub>L</sub> to T <sub>p</sub> )                 | 3°C/second maximum |  |  |  |
| Liquidous Temperature (T <sub>L</sub> )                          | 217°C              |  |  |  |
| Time Above Liquidous (t <sub>L</sub> )                           | 60 - 150 seconds   |  |  |  |
| Peak Temperature (T <sub>p</sub> )                               | 260°C              |  |  |  |
| Time Within 5°C of Maximum Peak<br>Temperature (t <sub>p</sub> ) | 30 seconds maximum |  |  |  |
| Ramp-Down Rate (T <sub>P</sub> to T <sub>L</sub> )               | 6°C/second maximum |  |  |  |
| Time 25°C to Peak Temperature                                    | 8 minutes maximum  |  |  |  |

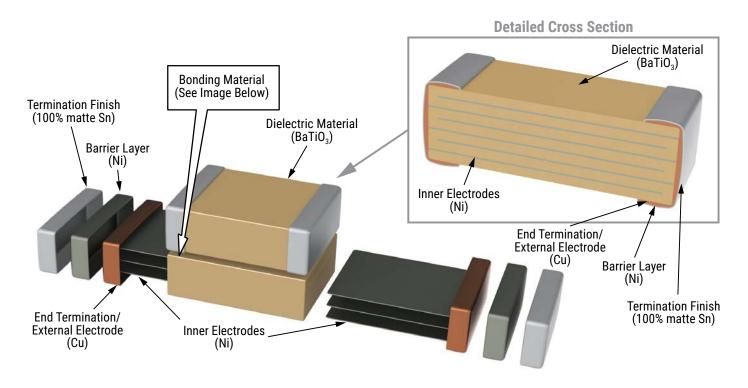


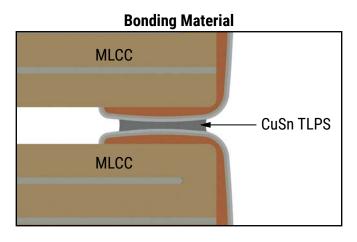
Note: All temperatures refer to the center of the package, measured on the capacitor body surface that is facing up during assembly reflow.

#### **Hand Soldering and Removal of KONNEKT Capacitors**

The preferred method of attachment for KEMET's KONNEKT Capacitors is IR or convection reflow where temperature, time and air flow are well controlled.

However, it is understood that the manual attachment of KONNEKT capacitors is necessary for prototype and lab testing. In these instances, care must be taken not to introduce excessive temperature gradients in the KONNEKT part type that may lead to cracking in the ceramic or separation of the TLPS material.


Please see KEMET's KONNEKT Soldering Guidelines here.




#### **Storage & Handling**

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature – reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. In addition, temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years upon receipt.

#### Construction







#### **Tape & Reel Packaging Information**

KEMET offers X7R with KONNEKT technology capacitors packaged in 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 1B for details on reeling quantities for KONNEKT KC-LINK capacitors.

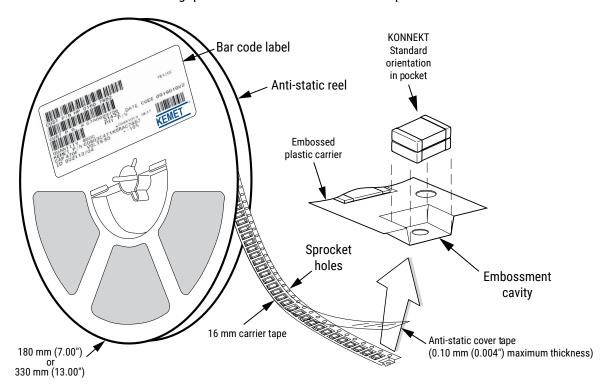
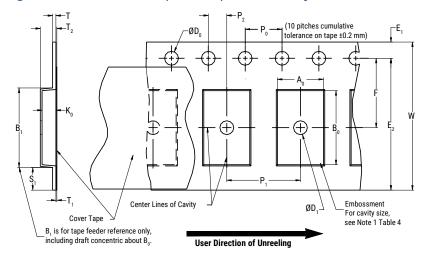



Table 4 - Carrier Tape Configuration, Embossed Plastic (mm)


| EIA Case Size | Number of<br>Chips |                                |                               | <b>Embossed Plastic</b>              |          |  |
|---------------|--------------------|--------------------------------|-------------------------------|--------------------------------------|----------|--|
|               |                    | Chip Thickness                 | Tape Size<br>(W) <sup>1</sup> | 7" Reel                              | 13" Reel |  |
|               |                    |                                | (**)                          | Pitch (P <sub>1</sub> ) <sup>2</sup> |          |  |
| KONNEKT 1812  | 2                  | ≤ 3.5 mm                       | 16                            | 8                                    | 8        |  |
|               |                    | > 3.5 mm                       | 16                            | 12                                   | 12       |  |
| KONNEKT 2220  | 2                  | ≤ 3.5 mm<br>>5.0 mm & ≤ 5.3 mm | 16                            | 8                                    | 8        |  |
| KUNNEK I ZZZU |                    | > 3.5 mm ≤ 5.0                 | 10                            | 12                                   | 12       |  |

<sup>1.</sup> Refer to Figures 1 and 2 for W and  $P_1$  carrier tape reference locations.

<sup>2.</sup> Refer to Tables 4 and 5 for tolerance specifications.



#### Figure 1 - Embossed (Plastic) Carrier Tape Dimensions



## **Table 5 - Embossed (Plastic) Carrier Tape Dimensions**

Metric will govern

| Constant Dimensions — Millimeters (Inches) |                     |                        |                       |                |                |             |                        |         |                |
|--------------------------------------------|---------------------|------------------------|-----------------------|----------------|----------------|-------------|------------------------|---------|----------------|
| Tape                                       | n                   | D <sub>1</sub> Minimum | Е                     | D              | D              | R Reference | S <sub>1</sub> Minimum | Т       | T <sub>1</sub> |
| Size                                       | D <sub>0</sub>      | Note 1                 | <b>E</b> <sub>1</sub> | r <sub>0</sub> | r <sub>2</sub> | Note 2      | Note 3                 | Maximum | Maximum        |
| 16 mm                                      | 1.5 +0.10/-0.0      | 1.5                    | 1.75±0.10             | 4.0±0.10       | 2.0±0.05       | 30          | 0.600                  | 0.600   | 0.100          |
| 16 mm                                      | (0.059 +0.004/-0.0) | (0.059)                | (0.069±0.004)         | (0.157±0.004)  | (0.079±0.002)  | (1.181)     | (0.024)                | (0.024) | (0.004)        |

|              | Variable Dimensions — Millimeters (Inches) |              |                                     |                                  |                           |                           |                                                         |                           |                 |                                                 |
|--------------|--------------------------------------------|--------------|-------------------------------------|----------------------------------|---------------------------|---------------------------|---------------------------------------------------------|---------------------------|-----------------|-------------------------------------------------|
| Case<br>Size | Number<br>of Chips                         | Tape<br>Size | Pitch                               | B <sub>1</sub> Maximum<br>Note 4 | E <sub>2</sub><br>Minimum | F                         | P <sub>1</sub>                                          | T <sub>2</sub><br>Maximum | W<br>Maximum    | A <sub>0</sub> ,B <sub>0</sub> & K <sub>0</sub> |
| 1812         | 2                                          | 16 mm        | Triple<br>(12mm)<br>Double<br>(8mm) | 7.9<br>(0.311)<br>7.5<br>(0.295) | 14.25<br>(0.561)          | 7.5±0.05<br>(0.138±0.002) | 12.0±0.10<br>(0.472±0.004)<br>8.0±0.10<br>(0.315±0.004) | 4.6<br>(0.181)            | 16.3<br>(0.642) | Note 5                                          |
| 2220         | 2                                          | 16 mm        | Triple<br>(12mm)<br>Double<br>(8mm) | 8.5<br>(0.335)<br>9.2<br>(0.363) | 14.25<br>(0.561)          | 7.5±0.05<br>(0.138±0.002) | 12.0±0.10<br>(0.472±0.004)<br>8.0±0.10<br>(0.315±0.004) | 5.9<br>(0.232)            | 16.3<br>(0.642) | Note 5                                          |

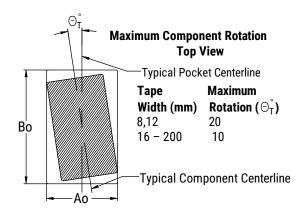
<sup>1.</sup> The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.

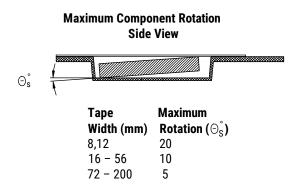
- 2. The tape with or without components shall pass around R without damage (see Figure 6).
- 3. If S<sub>1</sub> < 1.0 mm, there may not be enough area for cover tape to be properly applied. See EIA Document 481, Paragraph 4.3 (b).
- 4.  $B_1$  dimension is a reference dimension for tape feeder clearance only.
- 5. The cavity defined by  $A_{o}$ ,  $B_{o}$  and  $K_{o}$  shall surround the component with sufficient clearance that:
- (a) the component does not protrude above the top surface of the carrier tape.
- (b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
- (c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3).
- (d) lateral movement of the component is restricted to 0.5 mm maximum for 8 mm and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4).
- (e) For KPS product,  $A_0$  and  $B_0$  are measured on a plane 0.3 mm above the bottom of the pocket.
- (f) see Addendum in EIA Document 481 for standards relating to more precise taping requirements.



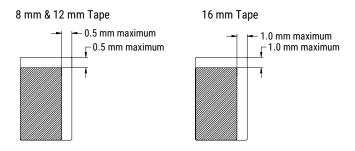
## **Packaging Information Performance Notes**

1. Cover Tape Break Force: 1.0 kg minimum.


2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

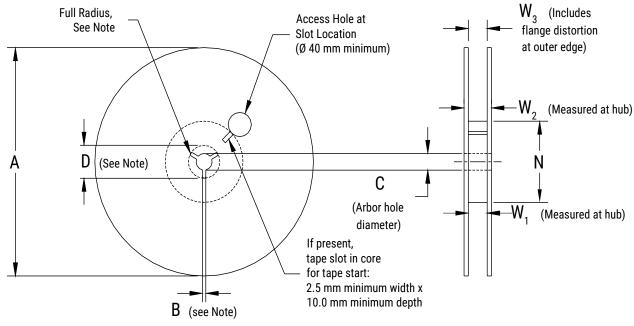

| Tape Width | Peel Strength                    |  |  |
|------------|----------------------------------|--|--|
| 16 mm      | 0.1 to 1.3 newton (10 to 130 gf) |  |  |

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300±10 mm/minute.


**3. Labeling:** Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624*.

#### Figure 2 - Maximum Component Rotation






## Figure 3 - Maximum Lateral Movement





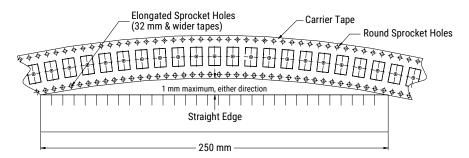
**Figure 5 - Reel Dimensions** 



Note: Drive spokes optional; if used, dimensions B and D shall apply.

#### **Table 6 - Reel Dimensions**

Metric will govern


| Constant Dimensions — Millimeters (Inches) |                                                               |                                       |                                        |                                                   |  |  |  |
|--------------------------------------------|---------------------------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------------------|--|--|--|
| Tape Size                                  | A                                                             | D Minimum                             |                                        |                                                   |  |  |  |
| 16 mm                                      | 178±0.20<br>(7.008±0.008)<br>or<br>330±0.20<br>(13.000±0.008) | 1.5<br>(0.059)                        | 13.0 +0.5/-0.2<br>(0.521 +0.02/-0.008) | 20.2<br>(0.795)                                   |  |  |  |
| Variable Dimensions — Millimeters (Inches) |                                                               |                                       |                                        |                                                   |  |  |  |
| Tape Size                                  | N Minimum<br>See Note 2, Tables 2-3                           | W <sub>1</sub>                        | W <sub>2</sub> Maximum                 | W <sub>3</sub>                                    |  |  |  |
| 16 mm                                      | 50<br>(1.969)                                                 | 16.4 +2.0/-0.0<br>(0.646 +0.078/-0.0) | 22.4<br>(0.882)                        | Shall accommodate tape width without interference |  |  |  |



#### Figure 6 - Tape Leader & Trailer Dimensions



#### Figure 7 - Maximum Camber





#### **KEMET Electronics Corporation Sales Offices**

For a complete list of our global sales offices, please visit www.kemet.com/sales.

#### **Disclaimer**

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.