Dec. 2015 - Rev. 1.3

ORDERING INFORMATION

DEVICE	PKG					
LM2950-XX	TO-92 (Bulk)					
LM2950TA-XX	TO-92 (Tape)					
LM2951D-XX	SOP-8					

(XX= 1.5, 1.8, 2.8, 2.85, 3.0, 3.3, 5.0V, Adjustable)

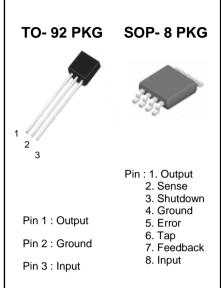
100mA LOW DROPOUT VOLTAGE REGULATORS

FEATURES

- High accuracy output voltage
- Guaranteed 100 mA output
- Very low quiescent current
- Extremely tight load and line regulation
- Very low temperature coefficient
- Current and thermal limiting
- Low dropout voltage
- Need only 1uF for stability
- Error flag warns of output dropout
- Logi-control electronic shutdown
- Output programmable from 1.24 to 29V
- Moisture Sensitivity Level 3

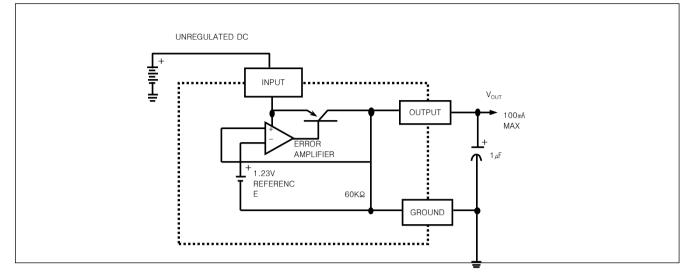
Applications

- High-efficiency linear regulator, voltage reference
- Battery powered systems
- Portable consumer equipment
- Portable / Parm, Desktop / Notebook computers
- Portable Instrumentation, cordless telephones
- Automotive Electronics, Radio control systems
- SMPS Post-Regulator, Avionics

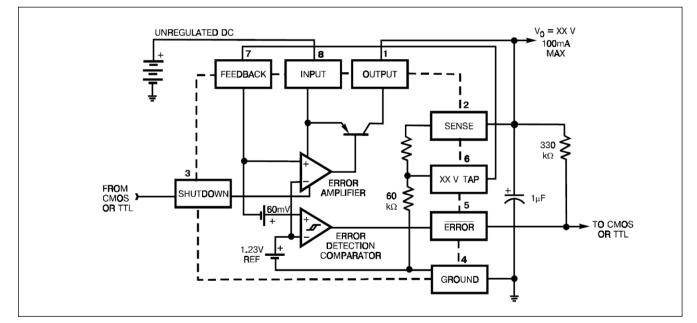

DESCRIPTION

The LM2950/1 is a low power voltage regulator. This device excellent choice for use in battery powered application such as cordless telephone, radio control systems, and portable computers.

The LM2950/1 features very low quiescent current (75^{µA} Typ.) and very low drop output voltage (Typ. 400^{mV} at light load and 380^{mV} at 100^{mA}).


This includes a tight initial tolerance of 0.5% Typ., extremely good load and line regulation of 0.05% Typ., and very low output temperature coefficient, making the LM2950/1 useful as a low-power voltage reference. The error flag output feature is used as power-on reset for warn of a low output voltage, due to following batteries on input. Other feature is the logic-compatible shutdown input which enable the regulator to be switched on and off. The LM2950/1 is available in 8-pin plastic packages. The regulator output voltage may be pin-strapped for a -XX volt or programmed from 1.24 volt to 29 volts with external pair of resistors. The LM2950/1 is offered in 3-pin to-92 package compatible with other fixed regulator.

HTC



BLOCK DIAGRAM AND TYPICAL APPLICATIONS (LM2950)

BLOCK DIAGRAM AND TYPICAL APPLICATIONS (LM2951)

ABSOLUTE MAXIMUM RATINGS

POWER DISSIPATION	INTERNALLY LIMITED
Lead Temperature (Soldering, 5 seconds)	260 °C
Storage Temperature Range	-65 ℃ to +150 ℃
Operating Junction Temperature Range	-55 ℃ to +150 ℃
Input Supply Voltage	-0.3 to +30V
Feedback Input Voltage	-1.5 to +30V
Shutdown Input Voltage	-0.3 to +30V
Error Comparator Output	-0.3 to +30V

Dec. 2015 - Rev. 1.3

ELECTRICAL CHARACTERISTICS (at T_a=25℃, V_{IN}=15V, unles otherwise specified)

METER	CONDITIONS (Note 2)	MIN	TYP	MAX	UNITS
Output Voltage	-25℃ ≤T _J ≤85℃	0.985 V ₀	V ₀ V ₀	1.015 V ₀	V
	Full Operating Temperature	0.980 V ₀		1.020 V ₀	
Output Voltage	$100 \mu A \le I_L \le 100 \text{mA}, T_J \le T_{JMAX}$	0.976 V ₀		1.024 V ₀	
Output Voltage Temperature Coefficient	(Note 1)		50	150	ppm/ ℃
Line Regulation (Note 3)	V_0 +1V \leq V _{IN} \leq 30V		0.04	0.4	%
Load Regulation (Note 3)	$100\mu^{A} \le I_{L} \le 100^{mA}$		0.1	0.3	%
Dropout Voltage (Note 4)	I _L =100#A		50	80	- mV
	I _L =100 ^{mA}		380	450	

ELECTRICAL CHARACTERISTICS (at T_a=25℃, V_{IN}=15V, unles otherwise specified)

PARAMETER	CONDITIONS (Note 2)	MIN	TYP	MAX	UNITS
Ground Current	I _L =100#A		75	120	μA
	IL=100mA		8	12	mA
Dropout Ground Current	V _{IN} =V ₀ -0.5V, I _L =100/ ^{µA}		110	170	μA
Current Limit	V _{OUT} =0		160	250	mA
Thermal Regulation			0.05	0.2	%/W
Output Noise, 10Hz to 100kHz	C _L =1, ^µ F		430		- μVrms
	CL=200/4F		160		
	C _L =3.3 <i>μ</i> F		100		
	(Bypass=0.01 ^µ F pins 7 to 1				
Error Comparator					
Output Leakage Current	V _{OH} =30V		0.01	1.0	μA
Output Low Voltage	V _{IN} =4.5V, I _{OL} =400 ^{µA}		150	250	mV
Upper Threshold Voltage	(Note 6)	40	60		
Lower Threshold Voltage	(Note 6)		75	15	
Hysteresis	(Note 6)		15		
Shutdown Input					
Input Logic Voltage	Low (Regulator ON)		1.3	0.7	- V
	High (Regulator OFF)	2			
Shutdown Pin Input Current	V _S =2.4V		30	50	- <i>μ</i> Α
	V _S =30V		450	600	
Regulator Output Current Shutdown	(Note 7)				
	V _{OUT} =5.0V		3	10	
	3.3V≤V _{OUT} <5.0V			20	
	2.0V≤V _{OUT} <3.3V			30	

Note 1 : Output or reference voltage temperature coefficients defined as the worst case voltage change divided by the total temperature range.

- Note 2 : Unless otherwise specified all limits guaranteed for T J = 25 °C, $V_{IN} = V_0 + 1V$, $I_L = 100 \mu$ and $C_L = 1 \mu$ F. Additional condition for the 8-pin versions are feedback tied to -XX V tap and output tied to output Sense (V OUT=XX V) and VSHOUTDOWN $\leq 0.8V$
- Note 3 : Regulations is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.
- Note 4 : Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measurec at 1V differential. At very low values of programmed output voltage, the minimum input supply voltage(2.3V over temperature) must be taken into account.

Note 5 : $VREF \leq VOUT \leq (VIN-1V)$, 2.3V $\leq VIN \leq 30V$, 100 μ A $\leq IL \leq 100$ mA, TJ $\leq TJMAX$

Note 6 : Comparator thresholds are expressed in terms of a voltage differential at the feedback terminal below the nominal reference voltage measured at VouT+1V input. To express these thresholds in terms of output voltage changed, multiply by the error amplifier gain = V ouT/VREF = (R1+R2)/R2. For example, at a programmed output voltage of 5V, the error output is guaranteed to go low when the output drops by 95 mV x 5V / 1.235V = 384 mV. Thresholds remain constant as a percent V ouT as VouT i varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.

Note 7 : VSHUTDOWN≥2V, VIN≤30V, VOUT=0, Feed-back pin tied to -XX V Tap.