

具有 EEPROM 的多传感器 高精度数字温度测量系统

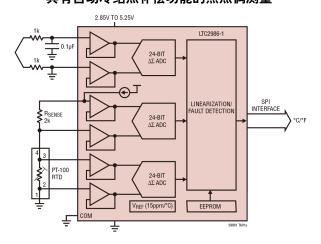
特点

- 可直接对两线、三线或四线式 RTD、热电 偶、热敏电阻和二极管进行数字化处理
- 片内 EEPROM (LTC2986-1) 可存储通道配 置数据和定制系数
- 2.85V 至 5.25V 单电源
- 10 个灵活的输入,允许交换使用不同种类 传感器
- 自动热电偶冷结点补偿
- 用于热电偶、RTD 和热敏电阻的内置标准 系数和用户可编程系数
- 可测量负热电偶电压
- 烧毁、短路和故障的自动检测
- 缓冲输入可提供外部保护
- 可同时实现 50Hz/60Hz 抑制
- 包括 15ppm/°C (最大值) 基准电压源
- 包括特殊的保护模式

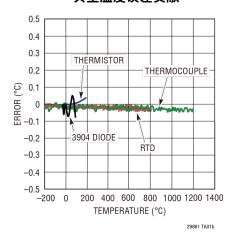
应用

- 直接热电偶测量
- 直接 RTD 测量
- 直接热敏电阻测量
- 定制传感器应用

说明


LTC°2986可测量多种温度传感器并以数字方式输出结果(单位为°C或°F),具有 0.1°C 的精度和 0.001°C 的分辨率。LTC2986 能够测量几乎所有标准(B、E、J、K、N、S、R、T类)热电偶或定制热电偶的温度,可自动补偿冷结点温度并对结果进行线性化。另外,该器件还能利用标准的两线、三线或四线式 RTD、热敏电阻和二极管来测量温度。LTC2986 包括适用于每种温度传感器的激励电流源和故障检测电路。

LTC2986/LTC2986-1 是 20 通道 LTC2983/LTC2984 的 10 通道软件和引脚兼容型版本。其他特点包括在通用多传感器应用中实现简易保护的特殊模式、用于普通 ADC 读数的定制表以及从有源模拟温度传感器的直接温度读数功能。LTC2986-1 是 LTC2986 的 EEPROM版本。


O、LT、LTC、LTM、Linear Technology 和 Linear 徽标是 Linear Technology Corporation 的注册商标。所有其他商标均属各自所有人所有。 正在申请专利

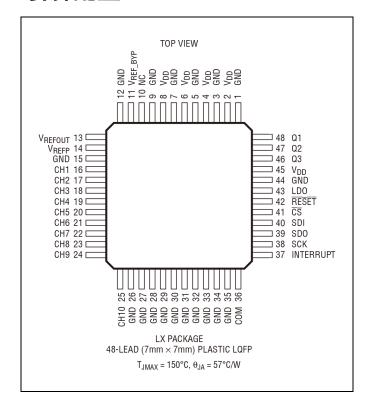
典型应用

具有自动冷结点补偿功能的热点偶测量

典型温度误差贡献

29861fa

LTC2986/LTC2986-1


目录

特点	1
应用	1
典型应用	1
说明	1
绝对最大额定值	3
订购信息	3
引脚配置	3
整体系统电气特性	4
ADC 电气特性	4
基准电压源电气特性	5
数字输入和数字输出	5
LTC2986-1 EEPROM 特性	6
典型性能参数	7
引脚功能	10
框图	11
测试电路	12
时序图	12
概述	13
应用信息	17
EEPROM 概述 (LTC2986-1)	23
EEPROM 读/写验证	23
EEPROM 写操作	23
EEPROM 读操作 (LTC2986-1)	24
热电偶测量	25
二极管测量	28
RTD 测量	32
热敏电阻测量	
全局配置寄存器	60
输入过压保护 - 概述	
有源模拟温度传感器	66
直接 ADC 测量	
2 周期和 3 周期转换模式	75
在多个通道上连续运行转换	75
进入/退出睡眠模式	
MUX 配置延迟	
基准电压源考虑因素	
定制热电偶	
定制 RTD	
定制热敏电阻	
封装说明	
修订历史	
典型应用	
相关器件	90

绝对最大额定值(注释 1、2)

电源电压 (V _{DD})
模拟输入引脚 (CH1 至
CH10、COM)0.3V 至 (V _{DD} + 0.3V)
输入电流 (CH1 至 CH10、COM)±15mA
数字输入(CS、SDI、
SCK、 $\overline{\text{RESET}}$)0.3V 至 $(V_{DD} + 0.3V)$
数字输出
(SDO、中断)0.3V 至 (V _{DD} + 0.3V)
V_{REFP}
Q1, Q2, Q3, LDO, V _{REFOUT} ,
V _{REF_BYP} (注释 18)
基准电压源短路持续时间未定
工作温度范围
LTC2986C0°C 至 70°C
LTC2986I40°C 至 85°C
LTC2986H40°C 至 125°C

引脚配置

订购信息 http://www.analog.com/cn/product/LTC2986#orderinfo

无铅表面处理	托盘	器件标识*	封装说明	温度范围
LTC2986CLX#PBF	LTC2986CLX#PBF	LTC2986LX	48 引脚 (7mm x 7mm) LQFP	0°C 至 70°C
LTC2986ILX#PBF	LTC2986ILX#PBF	LTC2986LX	48 引脚 (7mm x 7mm) LQFP	-40°C 至 85°C
LTC2986HLX#PBF	LTC2986HLX#PBF	LTC2986LX	48 引脚 (7mm x 7mm) LQFP	-40℃ 至 125℃
LTC2986CLX-1#PBF	LTC2986CLX-1#PBF	LTC2986LX-1	48 引脚 (7mm x 7mm) LQFP	0℃ 至 70℃
LTC2986ILX-1#PBF	LTC2986ILX-1#PBF	LTC2986LX-1	48 引脚 (7mm x 7mm) LQFP	-40°C 至 85°C
LTC2986HLX-1#PBF	LTC2986HLX-1#PBF	LTC2986LX-1	48 引脚 (7mm x 7mm) LQFP	-40℃ 至 125℃

有关具有更宽额定工作温度范围的器件,请咨询 LTC 市场部门。*温度等级通过运输容器上的标签识别。

有关无铅器件标识的更多信息,请访问: http://www.analog.com/cn/leadfree/

整体系统电气特性 ● 表示规格适用于整个工作温度范围,其他规格的适用温度为 TA = 25℃。

参数	条件		最小值	典型值	最大值	单位
电源电压		•	2.85		5.25	V
电源电流		•		15	20	mA
睡眠电流		•		25	60	μΑ
输入范围	所有模拟输入通道	•	-0.05		V _{DD} - 0.3	V
输出速率	2 个转换周期模式 (注释 6、9)	•	150	164	170	ms
输出速率	3 个转换周期模式 (注释 6、9)	•	225	246	255	ms
输入共模抑制	50Hz/60Hz (注释 4)	•	120			dB
输入正常模式抑制	60Hz (注释 4、7)	•	120			dB
输入正常模式抑制	50Hz (注释 4、8)	•	120			dB
输入正常模式抑制	50Hz/60Hz (注释 4、6、9)	•	75			dB
上电复位阈值				2.25		V
模拟上电	(注释 11)	•			100	ms
数字初始化	(注释 12)	•			100	ms

ADC 电气特性 ● 表示规格适用于整个工作温度范围,其他规格的适用温度为 T_A = 25℃。

参数	条件		最小值	典型值	最大值	单位
分辨率 (无失码)	$-V_{REFOUT/2} \le V_{IN} \le +V_{REFOUT/2}$	•	24			位
积分非线性	V _{IN(CM)} = 1.25V (注释 15)	•		2	30	V _{REF} 的 ppm
失调误差		•		0.5	2	μV
失调误差漂移	(注释 4)	•		10	20	nV/°C
正满量程误差	(注释 3、15)	•			100	V _{REF} 的 ppm
正满量程漂移	(注释 3、15)	•		0.1	0.5	V _{REF} /°C 的 ppm
输入漏电流	(注释 19)	•			1	nA
	H 级	•			10	nA
负满量程误差	(注释 3、15)	•			100	V _{REF} 的 ppm
负满量程漂移	(注释 3、15)	•		0.1	0.5	V _{REF} /°C 的 ppm
折合到输入端噪声	(注释 5)	•		0.8	1.5	$\mu V_{\scriptscriptstyle RMS}$
	H 级	•			2.0	μV_{RMS}
共模输入范围		•	-0.05		$V_{DD} - 0.3$	V
RTD 激励电流	(注释 16)	•	-25	表 33	25	%
RTD 激励电流匹配	连续校准	•	ADC 噪声电平误差			
热敏电阻激励电流	(注释 16)	•	-37.5	表 57	37.5	%

基准电压源电气特性 ● 表示规格适用于整个工作温度范围,其他规格的适用温度为 TA = 25℃。

参数	条件		最小值	典型值	最大值	单位
输出电压	V _{REFOUT} (注释 10)		2.49		2.51	V
输出电压温度系数	I 级、H 级	•		3	15	ppm/°C
输出电压温度系数	C 级	•		3	20	ppm/°C
电压调整率		•			10	ppm/V
负载调整率	$I_{OUT(SOURCE)} = 100 \mu A$	•			5	mV/mA
	$I_{OUT(SINK)} = 100 \mu A$	•			5	mV/mA
输出电压噪声	$0.1Hz \le f \le 10Hz$			4		μV_{P-P}
	$10Hz \le f \le 1kHz$			4.5		μV_{P-P}
输出短路电流	V _{REFOUT} 短路至 GND			40		mA
	V _{REFOUT} 短路至 V _{DD}			30		mA
开启时间	0.1% 建立,C _{LOAD} = 1μF			115		μs
输出电压长期漂移 (注释 13)				60		ppm/√kHr
迟滞 (注释 14)	ΔT=0°C 至 70°C		30		ppm	
	ΔT=-40°C 至 85°C			70		ppm

数字输入和数字输出 ● 表示规格适用于整个工作温度范围, 其他规格的适用温度为 TA = 25℃。

符号	参数	条件		最小值	典型值	最大值	单位
	外部 SCK 频率范围		•	0		2	MHz
	外部 SCK 低电平周期		•	250			ns
	外部 SCK 高电平周期		•	250			ns
t ₁	CS ↓ 到 SDO 有效时间		•	0		200	ns
t ₂	CS ↑ 到 SDO 高阻抗时间		•	0		200	ns
t ₃	CS ↓ 到 SCK ↑ 时间		•	100			ns
t ₄	SCK↓ 到 SDO 有效时间		•			225	ns
t ₅	SCK↓ 后 SDO 保持时间		•	10			ns
t ₆	SCK↑ 前 SDI 建立时间		•	100			ns
t ₇	SCK↑ 后 SDI 保持时间		•	100			ns
	高电平输入电压	CS、SDI、SCK、RESET	•	V _{DD} - 0.5			V
	低电平输入电压	CS、SDI、SCK、RESET	•			0.5	V
	数字输入电流	CS、SDI、SCK、RESET	•	-10		10	μΑ
	数字输入电容	CS、SDI、SCK、RESET			10		pF
-	低电平输出电压 (SDO、中断)	$I_{O} = -800 \mu A$	•			0.4	V
-	高电平输出电压 (SDO、中断)	I _o = 1.6mA	•	V _{DD} - 0.5			V
	高阻抗输出漏电流 (SDO)		•	-10		10	μΑ

LTC2986-1 EEPROM 特性 ●表示规格适用于整个工作温度范围,其他规格的适用条件为 TA = 25℃。

这些规格仅适用于 LTC2986-1, LTC2986 不包含 EEPROM。

符号	参数	条件		最小值	典型值	最大值	单位
	保存期限	注释 4 和 17	•	10			年
	耐久性	注释 4	•	10000			周期
	编程时间	从 RAM 到 EEPROM 的完整传输时间	•			2600	ms
	读取时间	从 EEPROM 到 RAM 的完整传输时间	•			20	ms

注释 1: 应力超出上述绝对最大额定值可能会导致器件永久性 损坏。在任何绝对最大额定值条件下长期工作会影响器件的可 靠性和使用寿命。

注释 2: 所有电压值均相对于 GND。

注释 3: 满量程 ADC 误差。测量不包括基准电压源误差。

注释 4: 通过设计保证, 未经测试。

注释 5: 折合到输入端噪声包括内部校准操作的贡献因素。

注释 6: MUX 配置延迟 = 默认值 1ms。

注释 7: 全局配置设置为 60Hz 抑制。

注释 8: 全局配置设置为 50Hz 抑制。

注释 9: 全局配置默认为 50Hz/60Hz 抑制。

注释 10: V_{REF} 的确切值存储在 LTC2986 中,用于所有测量计算。温度系数可通过输出电压的最大变化值除以额定温度范围来测量。

注释 11: 模拟上电。在此期间不可访问命令状态寄存器。

注释 12: 数字初始化。在模拟上电结束时开始。命令状态寄存器在数字初始化开始时为 0x80, 结束时为 0x40。

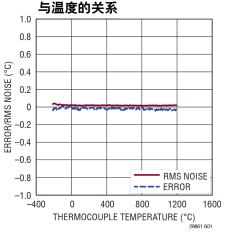
注释 13: 长期稳定性通常具有对数特征,因此,1000 小时后的变化值往往比之前的小很多。第 2 个 1000 小时的总漂移通常不到第 1 个 1000 小时的三分之一,并且随着时间的推移,漂移持续减小。线路板组装期间产生的 IC 和电路板材料之间的差异应力也会影响长期稳定性。

注释 14: 输出电压迟滞是由封装应力产生的,该应力取决于 IC 先前是处于更高还是更低的温度。输出电压总是在 25℃ 下进行测量,但是在连续测量前,IC 在高温或低温极限值间 循环。迟滞测量三个高温循环或低温循环下的最大输出变化平均值。对于存储在受控良好的温度(工作温度的 20℃ 或30℃ 范围内)条件下的仪器来说,迟滞通常不是主要的误差源。典型迟滞是从 25℃ 到低温再到 25℃ 或从 25℃ 到高温再到 25℃ (预先设定的一个热循环)下的最差情况。

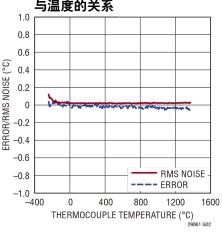
注释 15: 差分输入范围为 ±V_{REF}/2。

注释 16: RTD 和热敏电阻测量采用比率计量方式。因此,电流源激励变化不会影响绝对精度。选择一个激励电流,使采用标称激励电流驱动时,最大传感器或 R_{SENSE} 电阻值产生的压降为 1V 或更低。扩展的 ADC 输入范围可以适应激励电流的变化,并且比率计算将抵消激励电流的绝对值影响。

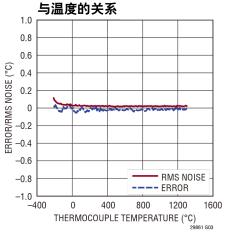
注释 17: 保证多达 1000 个编程周期的 10 年数据保存期限。

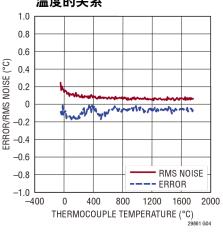

注释 18: 不要在这些引脚上施加电压或电流源。只能将它们连接到容性负载。否则,会造成永久性损坏。

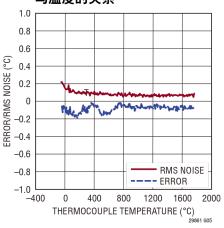
注释 19: 输入漏电流的测量条件为 $V_{IN} = -10 \text{mV}$ 和 $V_{IN} = 2.5 \text{V}$ 。

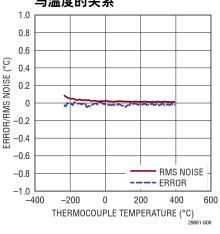


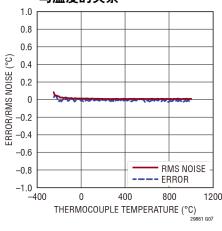
典型性能参数

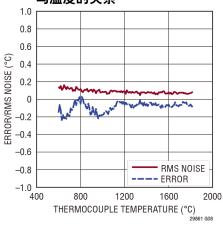

」 类热电偶误差和 RMS 噪声 与温度的关系

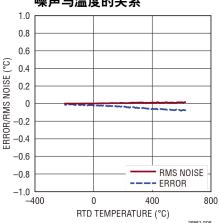

K 类热电偶误差和 RMS 噪声 与温度的关系


N 类热电偶误差和 RMS 噪声与温度的关系

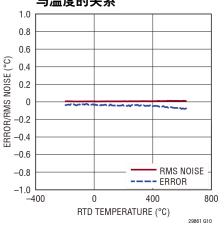

R 类热电偶误差和 RMS 噪声与 温度的关系

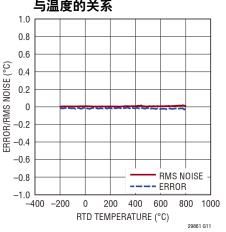

S 类热电偶误差和 RMS 噪声 与温度的关系


T 类热电偶误差和 RMS 噪声 与温度的关系


E 类热电偶误差和 RMS 噪声 与温度的关系

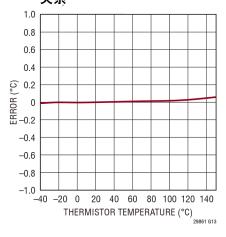
B 类热电偶误差和 RMS 噪声 与温度的关系

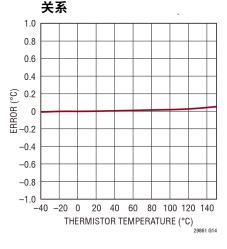

RTD PT-1000 误差和 RMS 噪声与温度的关系

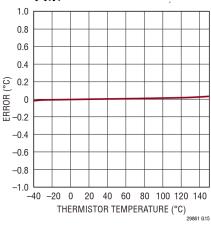


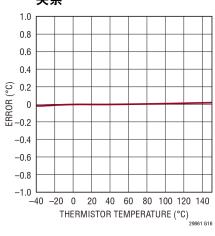
典型性能参数

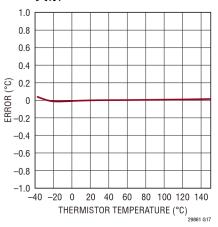
RTD PT-200 误差和 RMS 噪声 与温度的关系

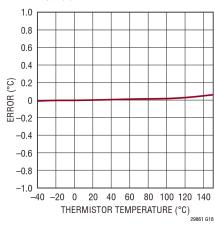

RTD PT-100 误差和 RMS 噪声 与温度的关系


RTD NI-120 RTD 误差和 RMS 噪声与温度的关系


2.252k 热敏电阻误差与温度的 关系

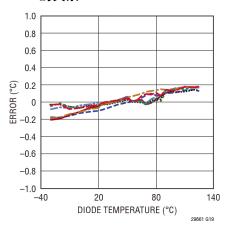

3k 热敏电阻误差与温度的


5k 热敏电阻误差与温度的 关系

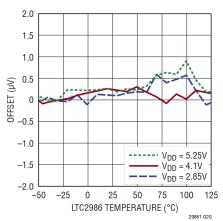

10k 热敏电阻误差与温度的 关系

30k 热敏电阻误差与温度的 关系

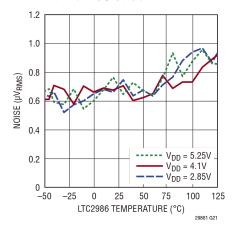
YSI-400 热敏电阻误差与温度 的关系

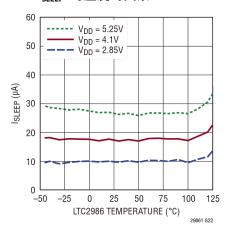


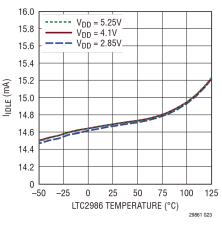
VEAD.

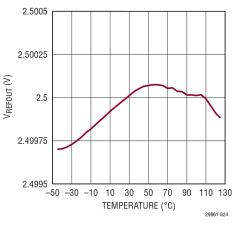

29861fa

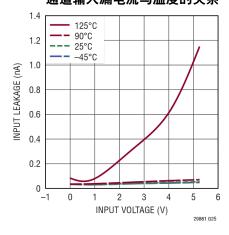
典型性能参数

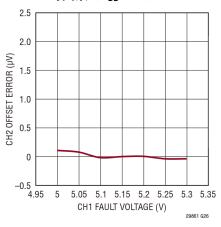

二极管误差和可重复性与温度 的关系

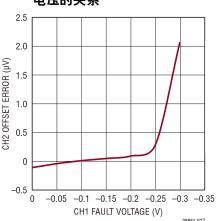

失调与温度的关系


噪声与温度的关系


I_{SLEEP} 与温度的关系


单次转换电流与温度的关系


V_{REFOUT} 与温度的关系


通道输入漏电流与温度的关系

相邻通道失调误差与输入故障电 压的关系 (V_{DD} = 5V)

相邻通道失调误差与输入故障 电压的关系

引脚功能

GND(引脚 1、3、5、7、9、12、15、26-35、44): 地。通过低阻抗连接将每个引脚连接到公共接地层。所有 18 个引脚都必须接地才能正常工作。

 V_{DD} (引**脚 2、4、6、8、45)**: 模拟电源。将所有 5 个引脚连接在一起,并使用 0.1μ F 和 10μ F 的电容尽可能靠近器件旁路至地。

V_{REF_BYP} (**引脚 11**): 内部基准电压源。这是内部电源引脚,请勿在此引脚上加载外部电路。使用 0.1μF 电容去耦至 GND。

 V_{REFOUT} (引**脚 13**): 基准电压源输出电压。短路 至 V_{REFP} 。必须使用最小 $1\mu F$ 电容接地。请勿 在此引脚上加载外部电路。

V_{REFP} (引脚 14):正基准电压输入。连接至 V_{REFOUT}。

CH1 至 CH10 (引脚 16 至引脚 25): 模拟输入。可以编程为单端、差分或比率操作。这些引脚上的电压可以是 GND – 50mV 和 V_{DD} – 0.3V 之间的任意值。未使用的引脚可以接地或浮空。

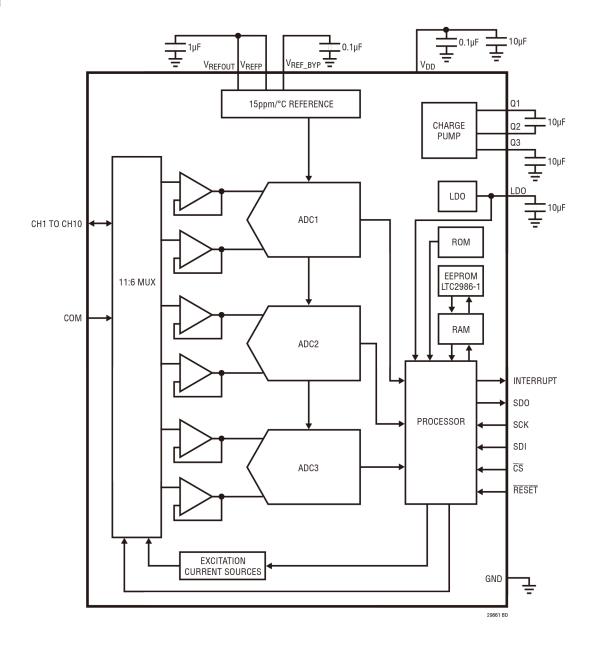
COM (引脚 36): 模拟输入。所有单端配置的 共用负输入。此引脚上的电压可以是 GND – 50 mV 和 V_{DD} – 0.3 V 之间的任意值。它通常接 地用于温度测量。

中断 (引脚 37): 当器件在启动期间或转换周期过程中正忙时,此引脚输出一个低电平。它在启动状态或转换周期结束时则变为高电平。

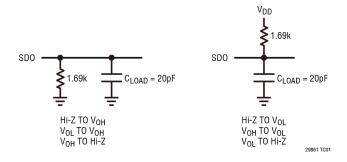
SCK (引脚 38): 串行时钟引脚。在 SCK 下降沿从器件移位输出数据,并由器件在上升沿锁存。

SDO (引脚 39): 串行数据输出。在数据输出状态期间,此引脚用作串行数据输出。当片选引脚为高电平时,SDO 引脚处于高阻态。

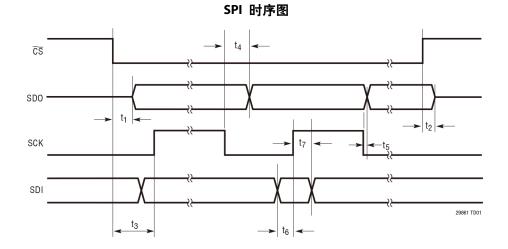
SDI (引脚 40): 串行数据输入。用于对器件进行编程。在 SCK 上升沿锁存数据。


CS(引脚 41): 低电平有效片选。此引脚为低电平时,使能数字输入/输出。此引脚为高电平时,将 SDO 置于高阻态。CS 上的下降沿标志 SPI 事务处理开始,上升沿则标志处理结束。

RESET(**引脚 42**): 低电平有效复位。此引脚为低电平时,强制器件进入复位状态。一旦此引脚返回高电平,器件则开始执行其启动序列。


LDO (引脚 43):2.5V LDO 输出。使用 10μF 电容旁路至 GND。这是内部电源引脚,请勿在此引脚上加载外部电路。

Q3、Q2、Q1 (引脚 46、47、48): 用于 -200mV 集成式电荷泵的外部旁路引脚。在 Q1 和 Q2 之间靠近两个引脚处连接一个 10μF X7R 电容。在 Q3 和地之间连接一个 10μF X7R 电容。这 些是内部电源引脚,请勿进行其他连接。


框图

测试电路

时序图

LTC2986 可使用最常见的传感器(热电偶、 RTD、热敏电阻、有源模拟温度传感器和二极 管)进行温度测量。它具备确定每类传感器温 度必需的所有有源电路、开关、测量算法和数 学转换。

热电偶可以测量从低至 -265℃ 到高达 1800℃ 以上的温度。热电偶根据测量端(热电 偶温度) 与电路板上的电气连接(冷结点温度) 之间的温差产生电压。为了确定热电偶温度, 需要精确测量冷结点温度;这称为冷结点补偿。 通常通过在冷结点处放置单独的(非热电偶) 温度传感器来确定冷结点温度。LTC2986 允许 将二极管、有源模拟温度传感器、RTD 和热敏 电阻用作冷结点传感器。为了将热电偶输出的 电压转换为温度结果, 必须求解高阶多项式方 程 (最高 14 阶)。LTC2986 内置了几乎所有标 准热电偶 (J、K、N、E、R、S、T 和 B 类) 多 项式。另外, 必须针对冷结点温度求解逆多项 式。LTC2986 可同时测量热电偶输出和冷结点 温度,并执行所有必需的计算,以报告热电偶 温度 (单位为 °C 或 °F)。它直接对相对于单 个接地基准电压源的正电压和负电压(低于地 电压 50mV) 进行数字化处理, 整合了传感器 烧毁检测,并允许外部保护/抗混叠电路,无需 缓冲电路。

二极管是便利的低成本传感器元件,通常用于测量热电偶应用中的冷结点温度。二极管通常用于测量 -60°C 至 130°C 的温度,适用于大多数冷结点应用。二极管产生的输出电压是温度和激励电流的函数。当在两个不同的激励电流水平下获得两个二极管输出电压的差值时,

该结果 (ΔV_{BE}) 与温度成正比。LTC2986 可准确地产生激励电流,测量二极管电压,并计算温度 (单位为 °C 或 °F)。

RTD 和热敏电阻是阻值会随温度改变的电阻。 RTD 可以在很宽的温度范围内测量温度,从低 至 -200℃ 到高达 850℃, 而热敏电阻通常在 -40℃ 至 150℃ 的温度范围内工作。为了进行 这两种器件的测量,需要将一个精密检测电阻 与传感器串联。对网络施加一个激励电流并进 行比率测量。RTD/热敏电阻的阻值(单位为 Ω) 可以通过该比率确定。利用这个阻值,通过表 查找(适用 RTD)或求解 Steinhart-Hart 公 式(适用热敏电阻)来确定传感器元件的温度。 LTC2986 自动生成激励电流,同时测量检测电 阻和热敏电阻/RTD 的电压, 计算传感器电阻 并以 °C 为单位报告结果。LTC2986 可以对大 多数 RTD 类型 (PT-10、PT-50、PT-100、 PT-200、PT-500、PT-1000 和 NI-120) 进行数 字化处理, 内置多种曲线系数 (美国、欧洲、 日本和 ITS-90), 可支持二线、三线和四线式 配置。它还包括用于计算标准的 2.252k、3k、 5k、10k 和 30k 热敏电阻温度的系数。它可以 配置为在多个 RTD/热敏电阻之间共用同一个 检测电阻,并旋转激励电流源以消除寄生热效 应。除了内置线性化系数外, LTC2986 针对 RTD 和热敏电阻提供了插入定制系数的方法。

LTC2986 內置测量有源模拟输出温度传感器的功能。这些传感器的输出电压是温度的函数。电压和温度之间的关系可以存储在 LTC2986中。这些传感器可用作独立温度传感器,也可用作热电偶测量的冷结点补偿。

表 1 显示了与特定温度检测器件相关的系统精度和噪声的估算值。系统精度和峰峰值噪声包括 ADC、内部放大器、激励电流源和集成基准电压源的影响。精度和噪声是根据保证的最大 ADC 和基准电压源规格计算的最坏情况误差。峰峰噪声值在 0°C 下计算(B 类在

400°C 下计算), 二极管测量使用 AVG = ON 模式。

热电偶误差不包括与冷结点测量相关的误差。 在工作温度范围内与特定冷结点传感器相关的 误差可以与给定热电偶的误差合并到一起,以 获得总的温度测量精度。

表 1.LTC2986 误差贡献和峰值噪声误差

传感器类型	温度范围	误差贡献	峰峰值噪声	
K 类热电偶	-200°C 至 0°C	±(温度 •0.23% + 0.05)℃	10.00°C	
	0℃ 至 1372℃	±(温度 •0.12% + 0.05)℃	±0.08°C	
」类热电偶	-210°C 至 0°C	±(温度 •0.23% + 0.05)℃	10.07°C	
	0℃ 至 1200℃	±(温度 ・0.12% + 0.05)℃	±0.07°C	
E 类热电偶	-200°C 至 0°C	±(温度 •0.18% + 0.05)℃	10.06°C	
	0°C 至 1000°C	±(温度 ・0.10% + 0.05)℃	±0.06°C	
N 类热电偶	-200°C 至 0°C	±(温度 •0.27% + 0.08)℃	LO 13°C	
	0℃ 至 1300℃	±(温度 ・0.10% + 0.08)℃	±0.13°C	
R 类热电偶	0°C 至 1768°C	±(温度 •0.10% + 0.4)℃	±0.62°C	
5 类热电偶	0°C 至 1768°C	±(温度 •0.10% + 0.4)℃	±0.62°C	
B 类热电偶	400℃ 至 1820℃	±(温度 •0.10%)℃	±0.83°C	
T 类热电偶	-250°C 至 0°C	±(温度 •0.15% + 0.05)℃	10.00%	
	0°C 至 400°C	±(温度 •0.10% + 0.05)℃	±0.09°C	
外部二极管 (2 周期读取)	-40°C 至 85°C	±0.25°C	±0.05°C	
外部二极管 (3 周期读取)	-40°C 至 85°C	±0.25°C	±0.2°C	
铂 RTD – PT-10, $R_{SENSE} = 1$ kΩ	-200°C 至 800°C	±0.1°C	±0.05°C	
铂 RTD – PT-100, $R_{SENSE} = 2k\Omega$	-200°C 至 800°C	±0.1°C	±0.05°C	
铂 RTD – PT-500, $R_{SENSE} = 2k\Omega$	-200°C 至 800°C	±0.1°C	±0.02°C	
铂 RTD – PT-1000, $R_{SENSE} = 2k\Omega$	-200°C 至 800°C	±0.1°C	±0.01°C	
热敏电阻,R _{SENSE} = 10kΩ	-40℃ 至 85℃	±0.1℃	±0.01°C	

存储器映射

LTC2986 的通道分配、配置、转换开始和结果均可通过 RAM 进行访问(参见表 2A)。表 2B 详细列出了访问存储器的有效 SPI 指令字节。通道转换结果将映射到存储器位置 0x010到 0x037 中,并可通过 SPI 接口进行读取,如图 1 所示。通过发送读指令字节 = 0x03 加

上地址和数据来启动读操作。通道分配数据位于存储器位置 0x200 至 0x227 中,并可通过 SPI 接口进行编程,如图 2 所示。通过发送写指令字节 = 0x02 加上地址和数据来启动写操作。通过对存储器位置 0x000 写入转换控制字节(参见表 6) 启动转换(命令状态寄存器)。

表 2A. 存储器映射

LTC	2986 存储器映	射		
段	起始地址	结束地址	大小 (字节)	说明
命令状态寄存器	0x000	0x0000	1	参见表 6 和 12, 启动转换、睡眠命令、EEPROM
				命令
保留	0x001	0x000F	15	
温度结果存储器	0x010	0x037	40	参见表 8 至 10, 读取结果
10 个字 - 40 个字节				
保留	0x038	0x0AF	120	
EEPROM 密钥	0x0B0	0x0B3	4	参见表 11(仅适用于 LTC2986-1, 其他器件保留)
保留	0x0B4	0x0CF	44	
EEPROM 读取结果代码	0x0D0	0x0D0	1	参见表 11(仅适用于 LTC2986-1, 其他器件保留)
保留	0x0D1	0x0EF	15	
全局配置寄存器	0x0F0	0x0F0	1	全局配置参见表 67
保留	0x0F1	0x0F3	3	
测量多个通道位掩码	0x0F4	0x0F7	4	参见表 84、85,运行多个转换
保留	0x0F8	0x0F8	1	
EEPROM 状态寄存器	0x0F9	0x0F9	1	参见表 13(仅适用于 LTC2986-1, 其他器件保留)
保留	0x0FA	0x0FE	5	
MUX 配置延迟	0x0FF	0x0FF	1	参见数据手册的"MUX 配置延迟"部分
保留	0x100	0x1FF	256	
通道分配数据	0x200	0x227	40	参见表 3、4, 通道分配
保留	0x228	0x24F	40	
定制传感器表数据	0x250	0x3CF	384	
保留	0x3D0	0x3FF	48	

表 2B.SPI 指令字节

指令	SPI 指令字节	说明
读	0b0000011	参见图 1
写	0b0000010	参见图 2
无效	0bxxxxxx0x	

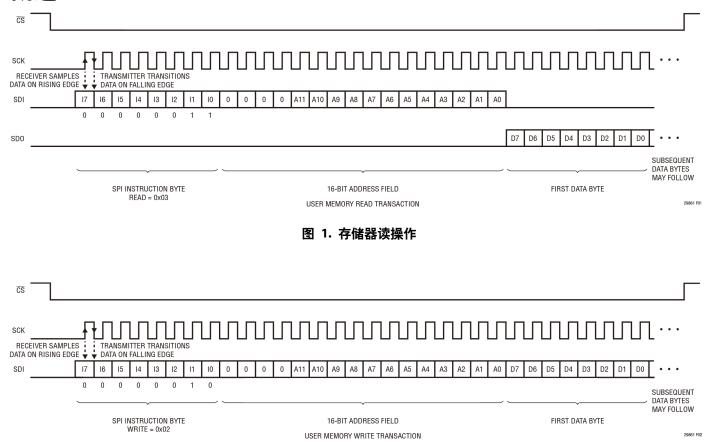


图 2. 存储器写操作

LTC2986 集高精度和易于使用于一身。其基本操作很简单,由五种状态组成(参见图 3)。

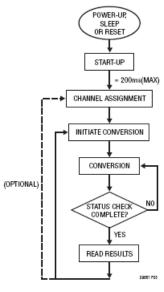


图 3. 基本操作

转换状态概述

- 1. 启动。对 LTC2986 施加电源后 (V_{DD} > 2.6V),会存在一个 200ms 的唤醒周期。在此期间,LDO、电荷泵、ADC 和基准电压源上电,且内部 RAM 初始化。一旦启动完成,中断引脚变为高电平,命令状态寄存器在读取时将返回数值 0x40 (开始位=0,完成位=1)。
- 2. 通道分配。启动完成后,器件自动进入通道分配状态。在此状态下,用户将每个输入通道的传感器特定数据写入 RAM。对于LTC2986-1,用户也可以从 EEPROM 加载这些数据(详情请参见"EEPROM"部分)。分配数据包含有关传感器类型、冷结点传感器或检测电阻的指针以及传感器特定参数的信息。
- 3. 启动转换。通过向 RAM 存储器位置 0x000 写入测量命令可启动转换。此命令 是一个指针,它指向需执行转换的通道。

- 4. 转换。收到启动转换命令后自动开始一个新的转换。在此状态下,ADC 在指定通道和相关冷结点或 R_{SENSE} 通道(如果适用)上执行转换。处于此状态时,RAM 被锁定,用户无法访问(除读取状态位置 0x000 以外)。中断引脚变为高电平并且状态寄存器开始位变为低电平、完成位变为高电平,表示转换结束。
- 5. 读取结果。在此状态下,用户可访问 RAM 并读取已完成的转换结果和故障状态位。 用户也可以在读取结果状态期间修改/附加 通道分配数据。

转换状态详情状态 1: 启动

对 LTC2986 施加了电源后,会自动进入启动状态。如果电源降至约 2.6V 阈值以下,并随后恢复到正常工作电压 (2.85V 至 5.25V), LTC2986 将复位并进入上电状态。请注意, LTC2986 也会在睡眠状态结束时进入启动状态。在正常操作期间,也可以通过把 RESET 引脚拉低,从而随时进入启动状态。

在启动状态的第一个阶段,所有关键模拟电路都上电。这包括 LDO、基准电压源、电荷泵和 ADC。在第一个阶段期间,用户不可访问命令状态寄存器。完成这一阶段最多需要 100ms。一旦此阶段完成,即可访问命令状态寄存器并返回值 0x80直至 LTC2986 完全初始化为止。一旦 LTC2986初始化完成并准备就绪,中断引脚将变为高电平,命令状态寄存器将返回读取值 0x40 (开始位= 0,完成位= 1)。此时,LTC2986 已完全初始化并准备好执行转换。

表 3. 通道分配存储器映射

		配置数据	配置数据	配置数据结束	
通道分配数	配置数据起始地址	地址 +1	地址 +2	地址 +3	大小 (字节)
CH1	0x200	0x201	0x202	0x203	4
CH2	0x204	0x205	0x206	0x207	4
CH3	0x208	0x209	0x20A	0x20B	4
CH4	0x20C	0x20D	0x20E	0x20F	4
CH5	0x210	0x211	0x212	0x213	4
CH6	0x214	0x215	0x216	0x217	4
CH7	0x218	0x219	0x21A	0x21B	4
CH8	0x21C	0x21D	0x21E	0x21F	4
CH9	0x220	0x221	0x222	0x223	4
CH10	0x224	0x225	0x226	0x227	4

状态 2: 通道分配

LTC2986 RAM 可以使用最多 10 组 32 位 (4 字节) 通道分配数据进行编程。它们按顺序存储在 RAM 中,与 10 个模拟输入通道中的每一个逐一对应 (参见表 3)。应将未使用通道的通道分配数据设置为全零 (默认为启动)。

通道分配数据包含与连接至此通道的特定传感器相关的所有必要信息(参见表 4)。前 5 位确定传感器类型(参见表 5)。传感器特定配置与每个传感器相关。这些配置包括指向冷结点

或检测电阻通道的指针、指向定制线性化数据存储器位置的指针、检测电阻值和二极管理想因子。如果适用,此数据还包括激励电流水平、单端/差分输入模式以及传感器特定的控制。热电偶、RTD、二极管、热敏电阻、模拟温度传感器和检测电阻的各个具体操作部分更详细地描述了与每种传感器类型相关的分配数据。LTC2986 演示软件包括一个实用程序,用于检查配置数据并生成可编程通道分配数据的注释版本 C 代码。

表 4. 通道分配数据

	传感器类型	Đ												
通道分配		配置数据		西	记置数	据			西己	置数	汝据		配置数据	
存储器位置		起始地址		起如	始地址	+1			起始	地	止 + 2	起	始地址 +3	
	31 30 29 28	27 26 25 24	23 22	21	20	19 18	17 16	15 14	13	12	11 10 9 8	7 6	5 4 3 2 1 0	
未分配	类型 = 0													
(默认)														
热电偶	类型 =1	冷结点通道分配 [4	1:0]	0	定制地址[5:0]	定制长度 -1							
	至 9			DIFF=0	检查	[1:0]							[5:0]	
RTD	类型 = 10	R _{SENSE} 通道分配 [4	:0]	二线、	三线、	激励	激励	电流	曲	线	定制地址[5:0]	定制长度 -1	
-	至 18			四线	式	模式	[3	:0]	[1	:0]			[5:0]	
热敏电阻	类型 = 19	R _{SENSE} 通道分配 [4	:0]	SGL=1	激	.励 激励	电流 [3:0] 0	0	0	定制地址[5:0]	定制长度 -1	
-	至 27			DIFF=0	模	式							[5:0]	
二极管	类型 = 28	SGL=1 2 至 3 启用	电流	理想因	子 (2、	20) 值从	0 至	4,分辨	幹率)	与 1	/1048576			
		DIFF=0 周期 均值	[1:0]	全零时位	吏用 R	OM 中的	出厂设置	置默认	值					
		读取												
检测电阻	类型 = 29	检测电阻值 (17、10) 7	高达 13	1,072Ω,	分辨率	图为 1/102	24Ω							
直接 ADC	类型 = 30	SGL=1 表模式	GL=1 表模式 未使用										定制长度 -1	
-		DIFF=0									[5:0]			
有源模拟	类型 = 31	SGL=1			未使用	1					定制地址[5:0]	定制长度 -1	
温度传感器													[5:0]	

表 5. 传感器类型选择

16 3	· 141	C 107	大王	企)干	
31	30	29	28	27	传感器类型
0	0	0	0	0	未分配
0	0	0	0	1	J 类热电偶
0	0	0	1	0	K 类热电偶
0	0	0	1	1	E 类热电偶
0	0	1	0	0	N 类热电偶
0	0	1	0	1	R 类热电偶
0	0	1	1	0	S 类热电偶
0	0	1	1	1	T 类热电偶
0	1	0	0	0	B 类热电偶
0	1	0	0	1	定制热电偶
0	1	0	1	0	RTD PT-10
0	1	0	1	1	RTD PT-50
0	1	1	0	0	RTD PT-100
0	1	1	0	1	RTD PT-200
0	1	1	1	0	RTD PT-500
0	1	1	1	1	RTD PT-1000
1	0	0	0	0	RTD 1000 (0.00375)
1	0	0	0	1	RTD NI-120
1	0	0	1	0	RTD 定制
1	0	0	1	1	热敏电阻 44004/44033 2.252kΩ
					(25°C 时)
1	0	1	0	0	热敏电阻 44005/44030 3kΩ
					(25°C 时)
1	0	1	0	1	热敏电阻 44007/44034 5kΩ
					(25°C 时)
1	0	1	1	0	热敏电阻 44006/44031 10kΩ
					(25℃ 时)
1	0	1	1	1	热敏电阻 44008/44032 30kΩ
					(25°C 时)
1	1	0	0	0	热敏电阻 YSI 400 2.252kΩ
					(25°C 时)
1	1	0	0	1	热敏电阻 Spectrum 1003k 1kΩ
1	1	0	1	0	热敏电阻定制 Steinhart-Hart
1	1	0	1	1	热敏电阻定制表
1	1	1	0	0	二极管
1	1	1	0	1	检测电阻
1	1	1	1	0	直接 ADC
1	1	1	1	1	模拟温度传感器

状态 3: 启动转换

一旦完成通道分配,此器件便可开始转换。通过将开始(B7=1)和完成(B6=0),以及所需的输入通道(B4-B0)写入 RAM 存储器位置 0x000(参见表 6 和 7)来启动转换。通过将通道选择位(B4至 B0)设置为 00000,可以在多个通道上启动测量周期,请参阅数据手册中"在多个通道上连续运行转换"部分。

表 6. 命令状态寄存器

В7	В6	B5	B4	В3	B2	B1	ВО	
开始	完成	0	EE	PRON	1 命令	和通	道	开始转换
= 1	= 0			选择	1 至	10		
1	0	0	1	0	1	1	1	启动睡眠

表 7. 输入通道映射

衣 /	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	く思い	크「大기	'n				
B7	B6	B5	B4	В3	B2	B1	В0	所选通道
1	0	0	0	0	0	0	0	多个通道
1	0	0	0	0	0	0	1	CH1
1	0	0	0	0	0	1	0	CH2
1	0	0	0	0	0	1	1	CH3
1	0	0	0	0	1	0	0	CH4
1	0	0	0	0	1	0	1	CH5
1	0	0	0	0	1	1	0	CH6
1	0	0	0	0	1	1	1	CH7
1	0	0	0	1	0	0	0	CH8
1	0	0	0	1	0	0	1	CH9
1	0	0	0	1	0	1	0	CH10
1	0	0	1	1	睡眠			
		戶	有其	他组征	合			保留
								·

位 B4 至 B0 决定执行转换的具体输入通道, 它们就是通道号的二进制等效值 (见表 7)。这 些位也用于 EEPROM 的读写操作 (适用于 LTC2986-1,参见表 12)。

位 B5 应该设置为 0。

位 B7 和 B6 用作开始/完成位。为了开始转换,这些位必需设置为"10" (B7=1 且 B6=0)。当转换开始时,中断引脚变为低电平。一旦转换完成,位 B7 和 B6 将切换为"01" (B7=0 且 B6=1)(地址=0x000),中断引脚将变为高电平,表示转换完成且结果可用。

状态 4: 转换

将启动转换命令写入 RAM 地址 0x000 后,测量周期开始 (表 6)。LTC2986 可同时测量所选的输入传感器、检测电阻 (RTD 和热敏电阻)和冷结点温度 (热电偶,如适用)。

- 一旦转换开始, RAM 被锁定, 用户无法访问 (读取存储在 RAM 存储器位置 0x000 中的状态数据除外)。
- 一旦转换开始,中断引脚变为低电平。根据传感器配置,每个温度结果需要两个或三个82ms的周期。这将分别对应于 167ms 和251ms 的转换速率(假设滤波器频率设置为55Hz)。有关这些模式的详情,请参见数据手册的"2 周期和 3 周期转换模式"部分。

通过中断引脚(从低到高转换)或通过读取 RAM 存储器位置 0x000 中的命令状态寄存器(开始位 B7 从 1 切换到 0 且完成位 B6 从 0 切换到 1),可以监控转换结束。

状态 5: 读取结果

一旦转换完成,可以从与输入通道对应的 RAM 存储器位置读取转换结果(参见表 8)。

转换结果的长度为 32 位,包含传感器温度 (D23 至 D0) 和传感器故障数据 (D31 至 D24)(参见表 9A 和 9B)。

所有温度传感器结果的报告以 °C 为单位、范围为 -273.15°C 至 8192°C、具 有1/1024°C 分辨率,或以 °F 为单位、范围为 -459.67°F 至 8192°F、具有 1/1024 °F 分辨率。转换结果包括 7 个传感器故障位和 1 个有效位。如果存在与对应转换结果相关的故障,则这些传感器故障位被设置为 1 (参见表 10)。可报告两种类型的错误:硬错误和软错误。硬错误表示读数无效,报告的温度结果为 -999°C 或 °F。软错误表示操作超出传感器正常温度范围或 ADC输入范围。在这种情况下,仍将报告计算所得的温度,但精度可能会降低。各个故障类型的详情为传感器特定,在本数据手册的传感器特定部分中进行了详细描述。位 D24 是有效位,在数据有效时将设置为 1。

一旦数据读取完成后,器件就可以执行新的启动转换命令。在需要新的通道配置数据的情况下,用户可以访问 RAM 以修改现有的通道分配数据。

表 8. 转换结果存储器映射

转换通道	起始地址	结束地址	大小 (字节)
CH1	0x010	0x013	4
CH2	0x014	0x017	4
CH3	0x018	0x01B	4
CH4	0x01C	0x01F	4
CH5	0x020	0x023	4
CH6	0x024	0x027	4
CH7	0x028	0x02B	4
CH8	0x02C	0x02F	4
CH9	0x030	0x033	4
CH10	0x034	0x037	4

表 9A. 数据输出字示例 (°C)

				起如	台地址						起	始地	.址	+ 1					起始	地均	止 +	2							址 地均		3	
	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2l	D1	D0
				故區	章数捷	i i			符号	, M	SB																				L	SB
温度	传感	ADC	CJ	CJ	传感	传感	ADC	为																								
	器硬	硬	硬	软	器过	器欠	超出	1																								
	故障	故	故	故	范围	范围	范围	时																								
		障	障	障	故障	故障	故障	有	4	096	°F											1°F							•	1/1	024	1°F
								效		↓												↓										<u></u>
8191.999°C								1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1024°C								1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1°C								1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1/1024°C								1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0°C								1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-1/1024°C								1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-1°C								1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
−273.15°C								1	1	1	1	1	1	0	1	1	1	0	1	1	1	0	1	1	0	1	1	0	0	1	1	1

表 9B. 数据输出字示例 (°F)

				起如	冶地址	:		起始地址 + 1 5 D24 D23D22D21D20D19D18D17D16D								起始	地均	止 +	2			起始地址 +3										
	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4[D3	D2	D1	D0
				故图	章数据	i i			符号	- M:	SB																				L	SB
温度	传感	ADC	CJ	CJ	传感	传感	ADC	为																								
	器硬	硬	硬	软	器过	器欠	超出	1																								
	故障	故	故	故	范围	范围	范围	时																								
		障	障	障	故障	故障	故障	有	4	096°	Ϋ́F											1°F							•	1/1	024	1°F
								效		ţ												Ų.										<u></u>
8191.999°F								1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1024°F								1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1°F								1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1/1024°F								1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0°F								1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-1/1024°F								1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-1°F								1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
-459.67°F								1	1	1	1	1	1	0	0	0	1	1	0	1	0	0	0	1	0	1	0	1	0	0	1	0

表 10. 传感器故障报告

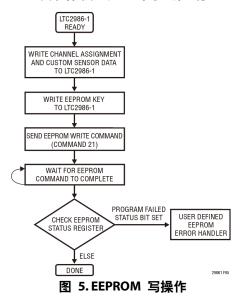
位	故障	错误类型	说明	输出结果
D31	传感器硬故障	硬	不良传感器读数	-999℃ 或 ℉
D30	硬 ADC 超出范围	硬	不良 ADC 读数 (可能为外部大噪声事件)	-999℃ 或 ℉
D29	CJ 硬故障	硬	冷结点传感器出现硬故障错误	-999℃ 或 ℉
D28	CJ 软故障	软	冷结点传感器结果超出正常范围	可疑读数
D27	传感器过范围	软	传感器读数高于正常范围	可疑读数
D26	传感器欠范围	软	传感器读数低于正常范围	可疑读数
D25	ADC 超出范围	软	ADC 绝对输入电压超过 ±1.125 • V _{REF} /2	可疑读数
D24	有效	不适用	结果有效 (应当为 1) 若为 0 则丢弃结果	可疑读数

LINEAR TECHNOLOGY

EEPROM 概述 (LTC2986-1)

LTC2986-1 包含 512 个字节的 EEPROM,它会投影用户 RAM 上端的传感器配置段(位置为 0x200-0x3CF,参见图 4)。在初次使用之前,用户使用所有通道分配和定制传感器数据对用户 RAM 进行编程。一旦对用户 RAM 进行了编程,用户就可以将这段存储内容保存到 EEPROM 中。在随后的断电或睡眠周期中,用户可以忽略通常所需的通道分配和客户传感器编程过程,使用此 EEPROM 存储的数据重新加载用户 RAM。

AND IS NOT SHADOWED BY EEPROM

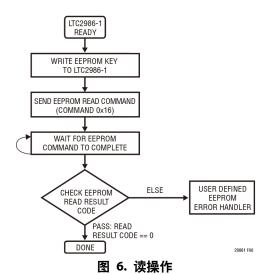

图 4. 投影 EEPROM 存储器映射

EEPROM 读/写验证

对 EEPROM 的访问受密钥保护,以防止意外访问。EEPROM 还提供两级数据一致性保护。第一级使用 EEPROM 中每个 32 位数据字上的纠错码 (ECC) 实现。ECC 能够纠正每个字的任何单个位错误并检测每个字的 2 位错误。第二级保护使用 32 位校验和实现,该校验和覆盖用户 EEPROM 的全部内容。用户可以使用状态位报告 ECC 状态与校验和错误情况。

EEPROM 写操作

EEPROM 写操作需要 5 个步骤 (参见图 5)。


- 1. **传感器配置**。将所有所需的通道分配和定制传感器数据写入 LTC2986-1 用户 RAM。
- 2. **设置 EEPROM 密钥**。将 EEPROM 密钥 (0xA53C0F5A) 写入 LTC2986-1 用户 RAM 的密钥寄存器空间 (地址范围 0x0B0-0x0B3, 参见表 11)。请注意,密钥写入方式为 MSB 优先。
- 3. **发送 EEPROM 写命令。**将 EEPROM 写命令 (0x15) 和 开 始 位 (0x80) 写 入 LTC2986-1 命令寄存器 (地址 0x000)。此命令加上开始位为 0x80 + 0x15 = 0x95 (参见表 12)。
- 4. **等待 EEPROM 命令完成。**中断引脚变为高电平并且状态寄存器开始位变为低电平、完成位变为高电平,表示完成写操作。
- 5. **检查 EEPROM 状态寄存器**。读 EEPROM 状态寄存器 (地址 0x0F9) 并检查编程失败状态位 (位 2) 以确定 EEPROM 写操作是否成功 (参见表 13)。若编程失败状态位置位,则表示写操作失败。

成功完成步骤 1 至 5 后, EEPROM 现在将包含用户 RAM 位置 0x200-0x3CF 中的数据影像。

EEPROM 读操作 (LTC2986-1)

LTC2986-1 EEPROM 读操作由 4 个步骤组成 (参见图 6)

- 1. **设置 EEPROM 密钥**。将 EEPROM 密钥 (0xA53C0F5A) 写入 LTC2986-1 用户 RAM 的密钥寄存器空间 (地址范围 0x0B0-0x0B3, 参见表 11)。请注意,密钥写入方式为 MSB 优先。
- 2. **发送 EEPROM 读命令。**将 EEPROM 读命令 (0x16) 和 开 始 位 (0x80) 写 入 LTC2986-1 命令寄存器 (地址为 0x000)。 此命令加上开始位应该为 0x80 + 0x16 = 0x96 (参见表 12)。
- 3. **等待 EEPROM 命令完成。**中断引脚变为高电平并且状态寄存器开始位变为低电平、完成位变为高电平,表示完成读操作。
- 4. 检查 EEPROM 读取结果代码。将EEPROM 读取结果代码寄存器地址 (0x0D0) 读出以确定读操作的成功/失败状态。值为零表示命令成功完成,非零值则表示发生了错误。EEPROM 状态寄存器中还提供了更多读操作状态位(参见表 13和表 14)。

成功完成步骤 1 至 4 后,用户 RAM 位置 0x200-0x3CF 现在将包含存储在 LTC2986-1 投影 EEPROM 中的数据。

表 11. LTC2986-1 EEPROM 相关寄存器

地址	寄存器名称	说明
0x0B0	EEPROM 密钥 [3]	EEPROM 密钥字节 3- 设置为
	(MSB)	0xA5
0x0B1	EEPROM 密钥 [2]	EEPROM 密钥字节 2- 设置为
		0x3C
0x0B2	EEPROM 密钥 [1]	EEPROM 密钥字节 1- 设置为
		0x0F
0x0B3	EEPROM 密钥 [0]	EEPROM 密钥字节 0- 设置为
	(LSB)	0x5A
0x0D0	EEPROM 读取	此寄存器表示最近的 EEPROM
	结果代码	读操作的通过/失败状态
		0x00 = 通过
-		0xFF = 失败
0x0F9	EEPROM 状态	请参见 LTC2986-1 EEPROM 状态
	寄存器	寄存器表 12 和 13

表 12.LTC2986-1 EEPROM 相关命令和状态

B7	В6	B5	В4	ВЗ	B2	В1	ВО	说明
1	0	0	1	0	1	0	1	EEPROM 写命令 - 将用户
								存储器位置 0x200-0x3CF
								的内容传送到片内投影
								EEPROM
1	0	0	1	0	1	1	0	EEPROM 读命令 - 将片内
								投影 EEPROM 的内容传送
								到用户存储器位置
								0x200-0x3CF

表 13. EEPROM 状态位

A 13. LLI NOM 1	人心区
EEPROM 状态位	说明
使用了 ECC	使用了纠错码 - 该位表示在 EEPROM 读
	取过程中使用 ECC 来纠正一个或多个位
	置的数据 (注释 20)
ECC 故障	纠错码故障 - 该位表示在 EEPROM 读取
	过程中, ECC 无法纠正一个或多个位置的
	数据。 如果该位置位,表示一个或多个位
	置的数据无效 (注释 20)
程序故障	程序故障 - 该位表示 EEPROM 编程过程
	中一个或多个位置发生写入数据错误 (注
	释 20)
校验和错误	校验和错误 - 该位表示 EEPROM 读取过
	程中出现校验和错误 (注释 20)

注释 20: 一旦对 EEPROM 状态寄存器中的位进行了置位,它们将保持置位状态,直到被用户清除为止。通过将 0x00 写入地址 0x0F9 可清空 EEPROM 状态寄存器位。在复位或退出睡眠模式后,这些位也会被清空。

表 14. LTC2986-1 EEPROM 状态寄存器 (地址为 0x0F9)

7	6	5	4	3	2	1	0
_	-	_	-	校验和错误	程序故障	ECC 故障	使用了
							ECC

29861fa

热电偶测量

通道分配 - 热电偶

针对连接到 LTC2986 的每个热电偶, 32 位的 通道分配字被编程到与传感器所连通道相对应 的存储器位置 (参见表 15)。该字包括 (1) 热电偶类型、(2) 冷结点通道指针、(3) 传感器配置以及 (4) 定制热电偶数据指针。

(1) 热电偶类型

热电偶类型由前 5 个输入位 B31 至 B27 确定,如表 16 所示。J、K、E、N、R、S、T 和 B 类热电偶的标准 NIST 系数存储在器件 ROM 中。如果使用定制热电偶,则可以选择定制热电偶传感器类型。在这种情况下,可将用户特定数据存储在片内 RAM 中,从定制热电偶数据指针中定义的地址开始。

(2) 冷结点通道指针

冷结点补偿可以是二极管、有源模拟温度传感器、RTD 或热敏电阻。冷结点通道指针告诉LTC2986 将冷结点传感器分配给哪个通道(1至 10,参见表 17)。在与热电偶相连的通道上进行转换时,会同时自动测量冷结点传感器。最终输出数据使用存储在 ROM 中的嵌入式系数自动补偿冷结点温度并输出热电偶传感器温度。

(3) 传感器配置

传感器配置字段 (参见表 18) 用于选择单端 (B21 = 1) 或差分 (B21 = 0) 输入,并允许在启 用内部开路检测时选择开路电流(位 B20)。单 端读数是相对于 COM 引脚进行的测量, 差分 读数则是在选定的 CH_{TC} 和相邻的 CH_{TC-1} 之 间进行的测量(参见图 7)。如果启用开路检测, B20 = 1, 则用户可以使用位 B18 和 B19 选择 开路检测期间施加的脉冲电流值。用户根据外 部保护电阻和滤波电容的大小(通常为 10µA) 来确定开路电流的值。此网络需要在 50ms 内 建立至 1µV 或更低。电流脉冲的持续时间约 为 8ms, 且发生 50 ms 后进入正常转换周期。 热电偶通道分配遵循图 7 所示的通用约定。对 于单端和差分两种操作模式,均将热电偶正极 端子连接到 CH_{TC} (其中 TC 为所选通道编号)。 对干单端测量,将热电偶负端子和 COM 引脚 接地。对于差分测量,将热电偶负端子连接到 CH_{TC-1}。此节点可以接地或连接到偏置电压。

表 15. 热电偶通道分配字

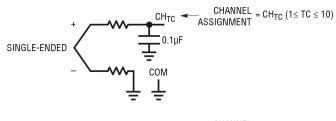

		(2) 冷结点通道											
	(1) 热电偶类型	指针	(3) 🛉	专感器	配置							(4) 定制热电	偶数据指针
	表 4、16	表 17		表 18								表 86	至 88
测量类型	31 30 29 28 27	26 25 24 23 22	21	20	19 18	17	16	15	14	13	12	11 10 9 8 7 6	5 4 3 2 1 0
热电偶	类型 1 至 9	冷结点通道分配	SGL=1	OC	OC	0	0	0	0	0	0	定制地址 [5:0]	定制长度 -1
		[4:0]	DIFF=0	检查	电流								[5:0]
					[1:0]								

表 16. 热电偶类型

	(1)	热电偶	类型		
B31	B30	B29	B28	B27	热电偶类型
0	0	0	0	1	J 类热电偶
0	0	0	1	0	K 类热电偶
0	0	0	1	1	E 类热电偶
0	0	1	0	0	N 类热电偶
0	0	1	0	1	R 类热电偶
0	0	1	1	0	S 类热电偶
0	0	1	1	1	T 类热电偶
0	1	0	0	0	B 类热电偶
	1	0	0	1	定制热电偶

表 17. 冷结点通道指针

	(2) 冷	结点通道	道指针		
B26	B25	B24	B23	B22	冷结点通道
0	0	0	0	0	无冷结点补偿,
					使用 0℃ 进行计算
0	0	0	0	1	CH1
0	0	0	1	0	CH2
0	0	0	1	1	CH3
0	0	1	0	0	CH4
0	0	1	0	1	CH5
0	0	1	1	0	CH6
0	0	1	1	1	CH7
0	1	0	0	0	CH8
0	1	0	0	1	CH9
0	1 0 1 (0	CH10	
	所有	有其他 组	L合		无效

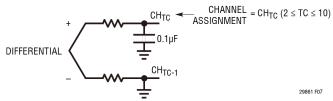


图 7. 热电偶通道分配约定

表 18. 传感器配置

	(3) 传感器	器配置			
SGL	OC 检查	oc	电流		
B21	B20	B19	B18	单端/差分	开路电流
0	0	Χ	Χ	差分	外部
0	1	0 0		差分	10μΑ
0	1	0 0 0		差分	100μΑ
0	1	1	0	差分	500μΑ
0	1	B19 B18 X X 0 0 1 1 1 0 1 1 X X 0 0 1 1 1 1		差分	1mA
1	0	Χ	Χ	单端	外部
1	1	0	0	单端	10μΑ
1	1	0	1	单端	100μΑ
1	1	1	0	单端	500μΑ
1	1	1	1	单端	1mA

(4) 定制热电偶数据指针

有关更多信息,请参见数据手册最后的"定制 热电偶"部分。

故障报告 - 热电偶

每种传感器类型都有一个独特的故障报告机制, 在数据输出字的高字节中指示。表 19 显示了 热电偶测量中会报告的故障。

位 D31 表示热电偶传感器已开路(损坏或未插入),冷结点传感器出现硬故障,或 ADC 超出范围。读数远远超出正常工作范围。位 D30表示 ADC 读数错误。这可能是由于传感器损坏(开路)或噪声过大(ESD 或静电放电至传感器路径)。这两种都是硬错误,报告为 -999°C

或°F。在噪声过大的情况下,如果噪声事件为随机、非频繁事件,则器件可恢复并且后续转换将是有效的。位 D29 表示冷结点传感器发生硬故障,报告为 -999°C 或°F。请参阅用于冷结点补偿的特定传感器(二极管、电阻器或RTD)。位 D28 表示冷结点传感器发生软故障。器件报告了有效温度,但由于冷结点传感器在其正常温度范围之外工作,因此精度可能会降低。位 D27 和 D26 表示特定热电偶类型已经超过或低于温度限制(参见表 20 中的定义范围)。位 D25 表示 ADC 测量的绝对电压超出其正常工作范围。此故障反映的读数远远超出热电偶的正常范围。

表 19. 热电偶故障报告

位	故障	错误类型	说明	输出结果
D31	传感器硬故障	硬	开路或硬 ADC、硬 CJ	-999℃ 或 ℉
D30	硬 ADC 超出范围	硬	不良 ADC 读数 (可能为外部大噪声事件)	-999℃ 或 ℉
D29	CJ 硬故障	硬	冷结点传感器出现硬故障错误	-999℃ 或 ℉
D28	CJ 软故障	软	冷结点传感器结果超出正常范围	可疑读数
D27	传感器过范围	软	热电偶读数大于最高限值	可疑读数
D26	传感器欠范围	软	热电偶读数小于最低限值	可疑读数
D25	ADC 超出范围	软	ADC 绝对输入电压超过 ±1.125・V _{REF} /2	可疑读数
D24	有效	不适用	结果有效 (应当为 1) 若为 0 则丢弃结果	有效读数

表 20. 热电偶温度限值

	_	
热电偶类型	低温限值 °C	高温限值 °C
亅类	-210	1200
K类	-265	1372
E 类	-265	1000
N类	-265	1300
R 类	-50	1768
S 类	-50	1768
T 类	-265	400
B 类	40	1820
定制	最低表条目	最高表条目

二极管测量

通道分配 - 二极管

针对连接到 LTC2986 的每个二极管, 32 位通 道分配字被编程到与传感器所连通道相对应的 存储器位置(参见表 21)。该字包括(1)二极管传感器选择、(2)传感器配置、(3)激励电流和(4)二极管理想因子。

(1) 传感器类型

通过前 5 个输入位 B31 至 B27 选择二极管 (参见表 22)。

(2) 传感器配置

传感器配置字段(位 B26 至 B24)用于定义各种二极管测量属性。对于单端测量(相对于COM 的测量),将配置位 B26 设置为高电平, 差分测量则设为低电平。

位 B25 设置测量算法。如果 B25 为低电平,则使用两个转换周期(分别在 11、81 电流激励下)进行二极管测量。这适用于 LTC2986和二极管之间的寄生电阻很小的应用。通过将位 B25 设置为高电平可以消除寄生电阻效应,

并且实现三个转换周期(分别在 11、41、81 条 件下)。

位 B24 使能二极管温度读数的移动平均值。 当二极管用作温度缓慢变化的等温块上的冷结 温元件时,这将降低噪声。

用于二极管平均的算法是简单的递归移动平均值。新数值等于当前读数加上前一个值的平均值。

新数值 =
$$\frac{$$
当前读数 $}{2}$ + $\frac{前一个值}{2}$

如果当前读数比前一个值高或低 2°C,则将新数值重置为当前读数。

(3) 激励电流

通道分配字 (B23 至 B22) 中的下一个字段用来控制施加到二极管的激励电流的幅度 (参见表 23)。在两转换周期模式下,器件以等于激励电流 11 8 倍的电流执行第一次转换。第二次转换发生在 11 电流条件下。而在三转换周期模式下,第一个转换激流电流为 81,第二个为 41,第三个则为 11。

表 21. 二极管通道分配字

	W^ =	-	表 22 表 23 表 24																											
								(3)	激励					表 24 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																
	(1) 传感器类型 (2) 传感器配置 电流 (4) 二极管理想因子值 表 22 表 23 表 24																													
		₹	長 22					表	23							表 24 6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 (2、20) 值从 0 至 4, 分辨率为 1/1048576														
测量等级	31	30	29 28	27	26	25	24	23	22	21	20	19	18	17	16	6 1	5	14	1	3 1	12	11	10	9	8	7 6	5 4	3	2 1	0
二极管		类	型 = 28	3	SGL=1	2 或 3	启用	电	3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 电流 非理想因子 (2、20) 值从 0 至 4,分辨率为 1/1048576																					
					DIFF=0	个周期	均值	[1	:0]																					
						读数																								

表 22. 二极管传感器选择

		(1)	传感器	类型		
	B31	B30	B29	B28	B27	传感器类型
Ī	1	1	1	0	0	二极管

表 23. 二极管激励电流选择

(3) 激	励电流			
B23	B22	11	41	81
0	0	10μΑ	40μΑ	80μΑ
0	1	20μΑ	80μΑ	160μΑ
1	0	40μΑ	160μΑ	320μΑ
1	1	80μΑ	320μΑ	640µA

LINEAR

(4) 二极管理想因子

通道分配字 (B21 至 B0) 中的最后一个字段 将二极管理想因子设置在 0 至 4 的范围内, 分辨率为 1/1048576 (2⁻²⁰)。前两位 (B21 至 B20) 是整数部分,位 B19 至 B0 是理想因子 的小数部分 (参见表 24)。

二极管通道分配遵循图 8 所示的通用约定。对于单端和差分操作模式,均将阳极连接到 CH_D (其中 D 为所选通道编号),阴极接地。对于差分二极管测量,阴极也连接到 CH^{D-1} 。

故障报告 - 二极管

每种传感器类型都有一个独特的故障报告机制, 在数据输出字的高字节中指示。表 25 显示了 二极管测量中会报告的故障。

位 D31 表示二极管开路、短路、未插入、连 线不良或 ADC 读数错误。这些都是硬故障, 报告为 -999°C 或 °F。位 D30 表示 ADC 读 数错误,这可能是由于传感器损坏 (开路) 或 噪声过大 (ESD 或静电放电至传感器路径),这 是硬错误,报告为 -999°C 或 °F。在噪声过大 的情况下,如果噪声事件为随机、非频繁事件,

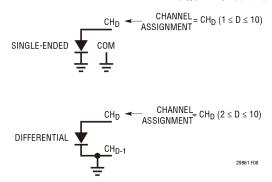


图 8. 二极管通道分配约定

表 24. 编程二极管理想因子

										(4) _	-极省	理想	因子	值								
	B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3															B2	B1	ВО				
示例 η	2 ¹	2º	2-1	2-2	2^{-3}	2-4	2-5	2^{-6}	2-7	2-8	2-9	2 ⁻¹⁰	2-11	2 ⁻¹²	2-13	2-14	2-15	2-16	2-17	2-18	2-19	2-20
1.25	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.003 (默认值)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.006	0	1	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	1	1

表 25. 二极管故障报告

位	故障	错误类型	说明	输出结果
D31	传感器硬故障	硬	开路、短路、反向或硬 ADC	-999℃ 或 ℉
D30	硬 ADC 超出范围	硬	不良 ADC 读数 (可能为外部大噪声事件)	-999℃ 或 ℉
D29	二极管未使用	不适用	总是为 0	
D28	二极管未使用	不适用	总是为 0	
D27	传感器过范围	软	T > 130°C	可疑读数
D26	传感器欠范围	软	T < -60°C	可疑读数
D25	ADC 超出范围	软	ADC 绝对输入电压超过 ±1.125 • V _{REF} /2	可疑读数
D24	有效	不适用	结果有效 (应当为 1) 若为 0 则丢弃结果	有效读数

则器件可恢复并且后续转换将是有效的。二极管未使用位 D29 和 D28。位 D27 和 D26 表示超出或低于温度限值 (定义为 T> 130°C 或 T<-60°C)。此时仍将报告计算所得的温度,但精度可能会降低。位 D25 表示 ADC 测量的绝对电压超出其正常工作范围。如果使用二极管作为冷结点元件,则在相应的热电偶结果中会指示所有硬或软错误 (表 19 中的位 D28 和 D29)。

示例: 带有共用二极管冷结点补偿的单端 K 类和差分 T 类热电偶

图 9 显示了典型的温度测量系统,其中两个热电偶共用一个冷结点二极管。在此示例中, K 类热电偶连接到 CH1, T 类热电偶连接到 CH3 和 CH4。它们共用一个冷结点二极管, 其理想因子 η= 1.003, 并与 CH2 相连。表 26 至 28 显示了热电偶和二极管的通道分配数据。热电偶 #1 (K 类) 传感器类型和配置数据分

配给 CH1。32 位二进制配置数据直接映射到 存储器位置 0x200 到 0x203 中 (参见表 26)。 冷结点二极管传感器类型和配置数据分配给 CH2。32 位二进制配置数据直接映射到存储器 位置 0x204 到 0x207 中 (参见表 27)。热电偶 #2(T 类) 传感器类型和配置数据分配给 CH4。 32 位二进制配置数据直接映射到存储器位置 0x20C 到 0x20F 中 (参见表 28)。通过将 10000001 写入存储器位置 0x000, 在 CH1 上 启动转换。同时测量 K 类热电偶和二极管。 LTC2986 计算冷结点补偿并确定 K 类热电偶 的温度。一旦转换完成,中断引脚变为高电平, 存储器位置 0x000 内容变为 01000001。类似 地, 通过将 10000100 写入存储器位置 0x000, 可以在 CH4 上启动转换。结果(以 °C 为单 位)可以从 CH1 的存储器位置 0x010 到 0x013 读取, 对于 CH4 可以从 0x01C 到 0x01F 读取。

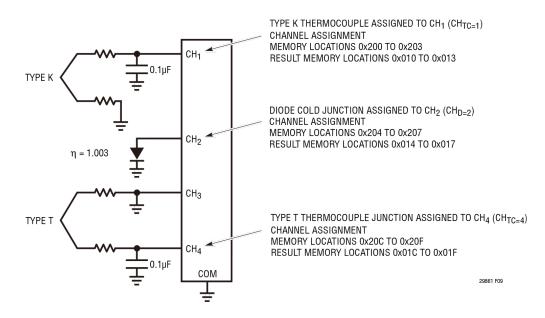


图 9. 带有二极管冷结点的双热电偶示例

表 26. 热电偶 #1 通道分配 (K 类、冷结点 CH₂、单端、10μA 开路检测)

配置字段	说明	# 位	二进制数据	存	猪	器	地址	址	0)	x2(00	存	储	器	地	址	0	x2	01	存	储	器	地	址	0:	x2(02	存	陗	器	地	址	0>	(20	3
(1) 热电偶类型	K 类	5	00010	0	0	0	1	0																											
(2) 冷结点通道	CH ₂	5	00010						0	0	0	1	0																						
指针																																		L	
(3) 传感器配置	单端、10μA	4	1100											1	1	0	0																		
	开路																																	L	
未使用	将这些位	6	000000															0	0	0	0	0	0												
	设置为 0																																	L	L.
(4) 定制热电偶	非定制	12	000000000000																					0	0	0	0	0	0	0	0	0	0	0	0
数据指针																																			

表 27. 二极管通道分配 (单端 3 周期读取、启用平均值、20μΑ/80μΑ 激励、理想因子 = 1.003)

					1	存信	者岩	器均	也均	止			存	字储	器	地	址	:		;	存	储	器	地	址			7	字信	絽	地	址		Ī
配置字段	说明	# 位	二进制数据			()x2	204	4					0	x2	05						c0	(2(06					C)x2	07	'		
(1) 传感器类型	二极管	5	11100	1	1	1	0	0																										_
(2) 传感器配置	单端、3周	3	111						1	1	1																							_
	期读数、																																	
	启用平均值																																	
(3) 激励电流	20μΑ、	2	01									0	1																					
	80μΑ、																																	
	160μΑ																																	
(4) 理想因子	1.003	22	0100000000110001001001											0	1 (0)	0) (0	0) ()	1 1	C	0	0	1	0	0	1	0) 1	l

表 28. 热电偶 #2 通道分配 (T 类、冷结点 CH2、差分、100μA 开路检测)

配置字段	说明	# 位	二进制数据	存	储	器	地	址	02	x20	C	存	肂	器	地	址	0	κ 2 (D	7	字储	器	地	址	0	κ 2 (ÞΕ	存	储	器	地	址	0)	x20	F
(1) 热电偶类型	T 类	5	00111	0	0	1	1	1																											
(2) 冷结点通道 指针	CH ₂	5	00010						0	0	0	1	0																						
	学 八 100A	1	0101		\dashv									0	1	0	1			+	+	\vdash							-					╁	_
(3) 传感器配置	左分、100μA 开路电流	4	0101											U	_	U	1																		
未使用	将这些位	6	000000															0	0	0	0	0	0												
	设置为 0																																	L	L
(4) 定制热电偶 数据指针	非定制	12	000000000000																					0	0	0	0	0	0	0	0	0	0	0	0

RTD 测量

通道分配 - RTD

针对连接到 LTC2986 的每个 RTD, 32 位通 道分配字被编程到与传感器所连通道相对应的 存储器位置 (参见表 29)。该字包括 (1) RTD 类型、(2) 检测电阻通道指针、(3) 传感器配置、(4) 激励电流、(5) RTD 曲线和 (6) 定制 RTD 数据指针。

(1) RTD 类型

RTD 类型由前 5 个输入位 B31 至 B27 确定,如表 30 所示。器件内置了 RTD 类型 PT-10、PT-50、PT-100、PT-200、PT-500、PT-1000 和 NI-120 的线性化系数以及可选公共曲线 (α = 0.003850、 α = 0.003911、 α = 0.003916 和 α = 0.003926)。如果使用定制 RTD,则可以选择 RTD 定制。在这种情况下,可将用户特定数据存储在片内 RAM 中,从定制 RTD 数据指针中定义的地址开始。

(2) 检测电阻通道指针

RTD 测量根据已知 R_{SENSE} 电阻按比率执行。 检测电阻通道指针字段表示与检测电阻相连、 用于该 RTD 的差分通道 (参见表 31)。检测 电阻测量始终采用差分方式。

(3) 传感器配置

传感器配置字段用于定义各种 RTD 属性。配置位 B20 和 B21 确定 RTD 是二线、三线还是四线式 (参见表 32)。

最简单的配置是二线式配置。虽然这种设置很简单,但引线中 IR 下降引起的寄生误差会导致系统温度误差。三线式配置通过向 RTD 施加两个匹配的电流源(每个引线一个)来消除RTD 引线电阻误差(如果线路电阻相等)。通过透明背景校准消除两个电流源中的不匹配。四线式 RTD 通过使用高阻抗开尔文检测直接测量传感器来消除 RTD 失衡引线电阻。采用开尔文 R_{SENSE} 的四线式测量对检测电阻布线寄生效应会导致误差的应用非常有用,它对于低阻抗 PT-10 型 RTD 尤为有用。在这种情况下,RTD 和检测电阻都具有开尔文检测连接。

后续的传感器配置位 (B18 和 B19) 用于确定激励电流模式。这些位用于实现 R_{SENSE} 共用,其中一个检测电阻用于多个二线、三线和/或四线式 RTD。在这种情况下,RTD 接地连接采用内置式,每个 RTD 指向相同的 R_{SENSE} 通道。位 B18 和 B19 还用于激励电流旋转,以自动消除寄生热电偶效应。寄生热电偶效应可能来自 RTD 和测量仪器之间的物理连接。此模式适用于使用内部电流源激励的所有四线式配置。

表 29.RTD 通道分配字

						(2) 检	测电	阻通	道								(5)	RTD								
	(1	1) RT	D §	型 类	!			指针	-		(:	3) 作	も感器	配置	(4)	ショップ	包流	曲	线		(6)	定	制 R	TD	数据	指针	t
		表	30)			3	表 3	1			;	表 32		ā	長 33		表	34			17	表 92	2 至	94		
测量等级	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17 1	6 15	14	13	12	11	10 9	8	7 6	5 5	4 3	3 2	1 0
RTD	类型	型 =	10	至	18	R _{SEN}	se 通	道分	酡	[4:0]	二丝	بملت	激励	模式	激	励电	流	曲线	[1:0]	定	制丸	地	[5:0]	定	制长	度-1	[5:0]
											三约	总、				[3:0]											
											四丝	民式															

表 30.RTD 类型

	(1) RTD 类	型		
B31	B30	B29	B28	B27	RTD 类型
0	1	0	1	0	RTD PT-10
0	1	0	1	1	RTD PT-50
0	1	1	0	0	RTD PT-100
0	1	1	0	1	RTD PT-200
0	1	1	1	0	RTD PT-500
0	1	1	1	1	RTD PT-1000
1	0	0	0	0	RTD 1000 (α = 0.00375)
1	0	0	0	1	RTD NI-120
1	0	0	1	0	RTD 定制

表 31. 检测电阻通道指针

70.11		1404510	1		
	(2) 检	测电阻通	道指针		
B26	B25	B24	B23	B22	检测电阻通道
0	0	0	0	0	无效
0	0	0	0	1	无效
0	0	0	1	0	CH2-CH1
0	0	0	1	1	CH3-CH2
0	0	1	0	0	CH4-CH3
0	0	1	0	1	CH5-CH4
0	0	1	1	0	CH6-CH5
0	0	1	1	1	CH7-CH6
0	1	0	0	0	CH8-CH7
0	1	0	0	1	CH9-CH8
0	1	0	1	0	CH10-CH9
	戶	f有其他组	合		无效

表 32.RTD 传感器配置选择

				1. 国心汗	****						/I: ++	
	(3) 检	测配证			测	量模式	1				优势	
								每个器件	消除 RTD	消除 RTD		
						电流源	共用检测	可用	匹配引线	不匹配引线	消除寄生热电偶	消除 R _{SENSE}
连	线数	激励	模式	连线数	接地连接	旋转	电阻	RTD	电阻	电阻	效应	引线电阻
B21	B20	B19	B18									
0	0	0	0	二线式	外部	否	否	2				
0	0	0	1	二线式	内部	否	是	4				
0	1	0	0	三线式	外部	否	否	2	•			
0	1	0	1	三线式	内部	否	是	4	•			
0	1	1	Χ	保留								
1	0	0	0	四线式	外部	否	否	2	•	•		
1	0	0	1	四线式	内部	否	是	2	•	•		
1	0	1	0	四线式	内部	是	是	2	•	•	•	
1	0	1	1	保留								
1	1	0	0	四线式、 开尔文 R _{SENSE}	外部	否	否	2	•	•		•
1	1	0	1	四线式、 开尔文 R _{SENSE}	内部	否	是	2	•	•		•
1	1	1	0	四线式、 开尔文 R _{SENSE}	内郊	是	是	2	•	•	•	•
1	1	1	1	保留								

(4) 激励电流

通道分配字 (B17 至 B14) 中的下一个字段控制施加到 RTD 的激励电流的幅度 (参见表33)。所选电流是流经 RTD 的总电流,与布线配置无关。R_{SENSE} 电流为三线式 RTD 传感器激励电流的 2 倍。

表 33. 所有 RTD 连线方式的总激励电流

		(4) 激	励电流	
B17	B16	B15	B14	电流
0	0	0	0	外部
0	0	0	1	5μΑ
0	0	1	0	10μΑ
0	0	1	1	25μΑ
0	1	0	0	50μΑ
0	1	0	1	100μΑ
0	1	1	0	250μΑ
0	1	1	1	500μA
1	0	0	0	1mA

为防止软故障或硬故障,请选择一个能使传感器或检测电阻上的最大压降标称值为 1.0V 的电流。例如,如果 R_{SENSE} 为 $10k\Omega$ 且 RTD 为 PT-100 型,则为二线和四线式 RTD 选择 100μ A 的激励电流,为三线式 RTD 选择 50μ A。或者,将 $1k\Omega$ 检测电阻和 PT-100 RTD 配合使用,可以为任何布线配置提供 500μ A 的激励电流。

(5) RTD 曲线

位 B13 和 B12 设置所采用的 RTD 曲线和相应的 Callendar-Van Dusen 常数 (如表 34 所示)。

(6) 定制 RTD 数据指针

当使用表 34 中未列出的 RTD 时,可在 LTC2986 中输入定制 RTD 表。

有关更多信息,请参阅本数据手册最后的"定制 RTD"部分。

表 34. RTD 曲线: T < 0°C 时, RT = R0 • (1 + a • T + b • T² + (T - 100°C) • c • T³); T > 0°C 时, RT = R0 • (1 + a • T + b • T²)

(5)	曲线					
B13	B12	曲线	ALPHA	a	b	С
0	0	欧洲曲线	0.00385	3.908300E-03	-5.775000E-07	-4.183000E-12
0	1	美国	0.003911	3.969200E-03	-5.849500E-07	-4.232500E-12
1	0	日本	0.003916	3.973900E-03	-5.870000E-07	-4.400000E-12
1	1	ITS-90	0.003926	3.984800E-03	-5.870000E-07	-4.000000E-12
Χ	Χ	RTD1000-375	0.00375	3.810200E-03	-6.018880E-07	-6.000000E-12
Χ	X	*NI-120	不适用	不适用	不适用	不适用

^{*}NI-120 使用表格数据。

故障报告 - RTD

每种传感器类型都有一个独特的故障报告机制, 在数据输出字的最高字节中指示。表 35 显示 了 RTD 测量中会报告的故障。

位 D31 表示 RTD 或 R_{SENSE} 开路、短路或未插入。这是一个硬故障,报告为 -999°C 或 °F。位 D30 表示 ADC 读数错误。这可能是由于传感器损坏 (开路) 或噪声过大 (ESD 或静电放电至传感器路径)。这是硬错误,报告为 -999°C 或 °F。在噪声过大的情况下,如果噪声为随机、非频繁事件,则器件可恢复并且后续转换将是有效的。RTD 未使用位 D29 和 D28。

位 D27 和 D26 表示超出或低于温度限值 (参见表 36)。此时仍将报告计算所得的温度,但精度可能会降低。位 D25 表示 ADC 测量的绝对电压超出其正常工作范围。如果使用 RTD 作为冷结点元件,则在热电偶测量结果中还会指示所有硬或软错误。

检测电阻 通道分配

针对连接到 LTC2986 的每个检测电阻, 32 位 通道分配字被编程到与传感器所连通道相对应 的存储器位置 (参见表 37)。该字包括 (1) 检 测电阻选择和 (2) 检测电阻值。

表 35.RTD 故障报告

位	故障	错误类型	说明	输出结果
D31	传感器硬故障	硬	开路或短路 RTD 或 R _{SENSE}	-999°C 或 °F
D30	硬 ADC 超出范围	硬	不良 ADC 读数 (可能为外部大噪声事件)	-999°C 或 °F
D29	RTD 未使用	不适用	总是为 0	有效读数
D28	RTD 未使用	不适用	总是为 0	有效读数
D27	传感器过范围	软	T > 高温限值 (参见表 36)	可疑读数
D26	传感器欠范围	软	T < 低温限值 (参见表 36)	可疑读数
D25	ADC 超出范围	软	ADC 绝对输入电压超过 ±1.125 • V _{REF} /2	可疑读数
D24	有效	不适用	结果有效 (应当为 1) 若为 0 则丢弃结果	有效读数

表 36. 电压和电阻范围

RTD 类型	最小值 Ω	最大值 Ω	低温限值 °C	高温限值 ℃
PT-10	1.95	34.5	-200	850
PT-50	9.75	172.5	-200	850
PT-100	19.5	345	-200	850
PT-200	39	690	-200	850
PT-500	97.5	1725	-200	850
PT-1000	195	3450	-200	850
NI-120	66.6	380.3	-80	260
定制表	最低表条目	最高表条目	最低表条目	最高表条目

表 37. 检测申阳诵道分配字

	(1)	传	感記	类	型											(2) 检	测	包阻	值	(Ω)											
		7	₹ 3	8														表	39													
测量等级	31 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
检测电阻	1	类型	钽 =	29	Ī	检测	电	阻促	1 (1	7、	10)	高过	<u>5</u> 1	31,0	720	2 左	右,	分	辨率	为	1/1	024	Ω						<u> </u>			

(1) 传感器类型

通过将前 5 个输入位 B31 至 B27 设置为 11101 选择检测电阻 (参见表 38)。

表 38. 检测电阻选择

	(1)	传感器	类型		
B31	B30	B29	B28	B27	传感器类型
1	1	1	0	1	检测电阻

(2) 检测电阻值

通道分配字 (B26 至 B0) 中的最后一个字段 将检测电阻值设置在 0 至 $131,072\Omega$ 的范围内,精度为 $1/1024\Omega$ (参见表 39)。前 17 位 (B26 至 B10) 是整数部分,位 B9 至 B0 是检测电阻值的小数部分。

示例: 二线式 RTD

最简单的 RTD 配置是二线式配置,二线式RTD 遵循图 10 所示的通用约定。每个 RTD 只需两线连接,并且可以直接与双引线 RTD 元件相连。然而,这种拓扑结构会因寄生引线电阻而导致误差。如果未选择共用(每个 RTD 使用 1 个 R_{SENSE}),则应将 CH_{RTD} 接地。如果选择共用(多个 RTD 使用 1 个 R_{SENSE}),则应移除接地连接。

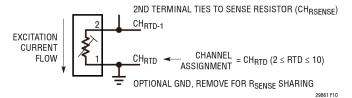


图 10. 二线式 RTD 通道分配约定

检测电阻通道分配遵循图 11 所示的通用约定。将检测电阻连接在 CH_{RSENSE} 和 $CH_{RSENSE-1}$ 之间,其中 CH_{RSENSE} 连接到 RTD 的第二个端子。通道分配数据(参见表 37)映射到与 CH_{RSENSE} 对应的存储器位置。

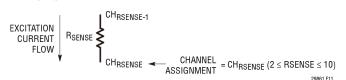


图 11. 二线式 RTD 检测电阻通道分配约定

示例: 共用 R_{SENSE} 的二线式 RTD

图 12 显示了一个使用多个二线式 RTD 的典型温度测量系统。在此示例中,PT-1000 RTD 连接到 CH7 和 CH8, NI-120 RTD 连接到 CH9 和 CH10。采用此配置,LTC2986 可以通过一个检测电阻对多达四个二线式 RTD 进行数字化处理。

RTD #1 传感器类型和配置数据分配给 CH8。 32 位二进制配置数据直接映射到存储器位置 0x21C 到 0x21F 中 (参见表 40)。RTD #2 传感器类型和配置数据分配给 CH10。32 位二进制配置数据直接映射到存储器位置 0x224 到 0x227 中 (参见表 41)。检测电阻分配给 CH6。此电阻的用户可编程阻值为 5001.5Ω。32 位二进制配置数据直接映射到存储器位置 0x214 到 0x217 中 (参见表 42)。

通过将 10001000 写入存储器位置 0x000, 在 CH8 上启动转换。一旦转换完成,中断引脚变 为高电平,存储器位置 0x000 内容变为 01001000。可以从存储器位置 0x02C 到 0x02F (对应于 CH8) 读取以 °C 为单位的结果温度。可以采用类似的方式从 CH10 启动转换并读取结果。

表 39. 检测电阻值示例

												(2)	检测	则电阻	且值	(Ω)											
	B26	B25	B24	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	B8	В7	В6	B5	B4	В3	B2	B1	ВО
示例 R	2 ¹⁶	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º	2-1	2 ⁻²	2 ⁻³	2-4	2 ⁻⁵	2-6	2 ⁻⁷	2-8	2-9	2 ⁻¹⁰
10,000.2Ω	0	0	0	1	0	0	1	1	1	0	0	0	1	0	0	0	0	0	0	1	1	0	0	1	1	0	1
99.99521kΩ	1	1	0	0	0	0	1	1	0	1	0	0	1	1	0	1	1	0	0	1	1	0	1	0	1	1	1
1.0023kΩ	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	1	0	0	1	0	0	1	1	0	0	1	1

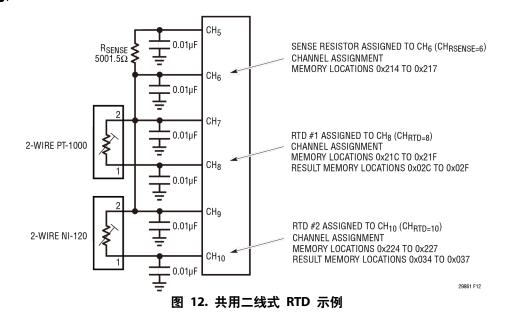


表 40. 二线式 RTD #1 (PT-1000、CH $_6$ 上的 R_{SENSE} 、二线式、共用 R_{SENSE} 、10 μ A 激励电流、 α = 0.003916 曲线) 的通 道分配数据

配置字段	说明	# 位	二进制数据	存	储	器:	地	址	0х	21	C	存	储	器	地	址	0	x21	ID	荐	引	器	地	址	02	κ 2 ΄	ΙE	7	引信	器	地	址	0)	(2 1	IF
(1) RTD 类型	PT-1000	5	01111	0	1	1	1	1																											
(2) 检测电阻通	CH ₆	5	00110						0	0	1	1	0																						
道指针																																			
(3) 传感器配置	共用 R _{SENSE}	4	0001											0	0	0	1																		
	的二线式																																		
	RTD																																		
(4) 激励电流	10μΑ	4	0010															0	0	1	0														
(5) 曲线	日本, α=	2	10																			1	0												
	0.003916																																		
(6) 定制 RTD	非定制	12	000000000000																					0	0	0	0	0	0	0	0	0	0	0	0
数据指针																																			

表 41. 二线式 RTD #2 (NI-120、CH₆ 上的 R_{SENSE}、二线式、共用 R_{SENSE}、100μA 激励电流)的通道分配数据

						•				• •		* * •	_		LIV.	<u> ·</u>			<u>. </u>		****				_			=				-			
配置字段	说明	# 位	二进制数据	存	存储	器	地	址	0х	(22	4	存	陗	器	地	址	0	x22	25	存	储	器	地:	址	0>	(22	26	7	字储	器	地	址	0>	(22	27
(1) RTD 类型	NI-120	5	10001	1	0	0	0	1																											
(2) 检测电阻通	CH ₆	5	00110						0	0	1	1	0																						
道指针																																			
(3) 传感器配置	共用 R _{SENSE}	4	0001											0	0	0	1																		
	的二线式																																		
	RTD																																		
(4) 激励电流	100μΑ	4	0101															0	1	0	1														
(5) 曲线	欧洲	2	00																			0	0												
	$\alpha = 0.00385$																																		
(6) 定制 RTD	非定制	12	00000000000																					0	0	0	0	0	0	0	0	0	0	0	0
数据指针																																			

表 42. 检测电阻 (值 = 5001.5 Ω) 的通道分配数据

					存	诸智	器均	也址	Ł	;	存值	者器	地	址		存	存储	器:	地块	ıŁ		存值	诸器	地	址	
配置字段	说明	# 位	二进制数据			0x	21	4			()x2	15				0	x21	6			()x2	17		
(1) 传感器类型	检测电阻	5	11101	1	1 1	0	1																			
(2) 检测电阻值	5001.5Ω	27	000010011100010011000000000					0 0	0	0	0	0 1	1	1	0 0	0	1	0 0	1	1 0	0	0 0	0	0 0	0	0

示例:三线式 RTD

三线式 RTD 通道分配遵循图 13 所示的通用约定。端子 1 和 2 连接到输入/激励电流源,端子 3 连接到检测电阻。通道分配数据被映射到与 CH_{RTD} 相对应的存储器位置。

检测电阻通道分配遵循图 14 所示的通用约定。将检测电阻连接在 CH_{RSENSE} 和 $CH_{RSENSE-1}$ 之间,其中 CH_{RSENSE} 连接到 RTD 的第三个端子, $CH_{RSENSE-1}$ 接地(或在 R_{SENSE} 共用时浮空)。通道分配数据(参见表 37)映射到与 CH_{RSENSE} 对应的存储器位置。

图 15 显示了一个使用三线式 RTD 的典型温度测量系统。在此示例中,三线式 RTD 的端子连接到 CH9、CH8 和 CH7。检测电阻连接到 CH7 和 CH6。检测电阻和 RTD 都一起连接到 CH7。

三线式 RTD 通过向每个 RTD 输入施加激励电流来减少与寄生引线电阻相关的误差。这是第一级抵消措施,消除了匹配引线电阻误差。此抵消措施不会消除由于热电偶效应或不匹配引线电阻引起的误差。RTD 传感器类型和配置数据分配给 CH9。32 位二进制配置数据直接映射到存储器位置 0x220 到 0x223 中(参见表 43)。检测电阻分配给 CH7。此电阻的用户可编程阻值为 12150.39Ω。32 位二进制配置数据直接映射到存储器位置 0x218 到 0x21B 中(参见表 44)。

通过将 10001001 写入存储器位置 0x000, 在 CH9 上启动转换。一旦转换完成,中断引脚变 为高电平,存储器位置 0x000 内容变为 01001001。可以从存储器位置 0x030 到 0x033 (对应于 CH9) 读取以 °C 为单位的结果温度。

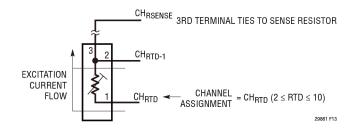


图 13. 三线式 RTD 通道分配约定

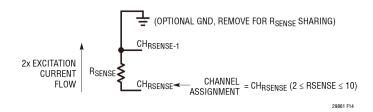


图 14. 三线式 RTD 的三线式检测电阻通道分配约定

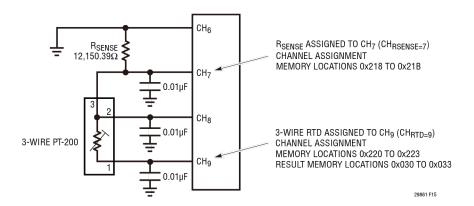


图 15. 三线式 RTD 示例

表 43. 三线式 RTD (PT-200、CH7 上的 R_{SENSE} 、三线式、50μA 激励电流、 α = 0.003911 曲线) 的通道分配数据

配置字段	说明	# 位	二进制数据	存	肂	器	地	址	0	x2:	20	7	字信	者器	料	址	Ŀ (Ox2	221	1	存	储	器	地	址	02	(2 2	22	7	引	器	地	址	0	x2:	23
(1) RTD 类型	PT-200	5	01101	0	1	1	0	1																												
(2) 检测电阻通	CH ₇	5	00111						C	0	1	1	1																							
道指针													L		L	⊥			↓																	
(3) 传感器配置	三线式	4	0100											0	1	() ()																		
(4) 激励电流	50μΑ	4	0100															C) .	1	0	0														
(5) 曲线	美国, α=	2	01																				0	1												
	0.003911																																			
(6) 定制 RTD	非定制	12	00000000000																						0	0	0	0	0	0	0	0	0	0	0	0
数据指针																																				

表 44. 检测电阻 (值 = 12150.39Ω) 的通道分配数据

				7	字佾	器	地均	Ŀ		存	诸岩	とませ	.址			存值	诸器	計	也址			存	储器	몱놴	地址	,
配置字段	说明	# 位	二进制数据		0	x21	8			(0x2	219				()x2	1/	4				0x2	21E	3	
(1) 传感器类型	检测电阻	5	11101	1 1	1	0 1																				
(2) 检测电阻值	12150.39Ω	27	000101111011101100110001111				0	0 0	1	0 1	1	1	0	1	1	1 0	1	1	0 () 1	1	0	0 0	1	1 1	0

示例: 标准四线式 RTD (无旋转或 R_{SENSE} 共用)

标准四线式 RTD 通道分配遵循图 16 所示的 通用约定。端子 1 接地,端子 2 和 3 (开尔 文检测信号) 连接到 CH_{RTD} 和 CH_{RTD-1} ,第 4 个端子连接到检测电阻。通道分配数据(参见表 29) 映射到与 CH_{RTD} 对应的存储器位置。

检测电阻通道分配遵循图 17 所示的通用约定。 将检测电阻连接在 CH_{RSENSE} 和 CH_{RSENSE-1} 之 间,其中 CH_{RSENSE} 连接到 RTD 的第 4 个端 子。通道分配数据(参见表 37)映射到与 CH_{RSENSE} 对应的存储器位置。

图 18 显示了一个使用四线式 RTD 的典型温度测量系统。在此示例中,四线式 RTD 的端子连接到 GND、CH4、CH3 和 CH2。检测电

阻连接到 CH2 和 CH1。检测电阻和 RTD 在 CH2 共用同一个连接。RTD 传感器类型和配置数据分配给 CH4。32 位二进制配置数据直接映射到存储器位置 0x20C 到 0x20F 中 (参见表 45)。检测电阻分配给 CH2。此电阻的用户可编程阻值为 5000.2Ω。32 位二进制配置数据直接映射到存储器位置 0x204 到 0x207 中 (参见表 46)。

通过将 10000100 写入存储器位置 0x000 的数据字节,在 CH4 上启动转换。一旦转换完成,中断引脚变为高电平,存储器位置 0x000内容变为 01000100。可以从存储器位置 0x01C 到 0x01F (对应于 CH4) 读取以 ℃ 为单位的结果温度。

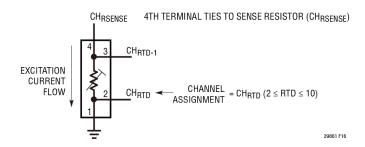


图 16. 四线式 RTD 通道分配约定

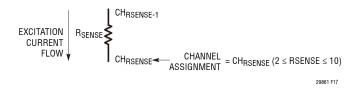


图 17. 四线式 RTD 检测电阻通道分配约定

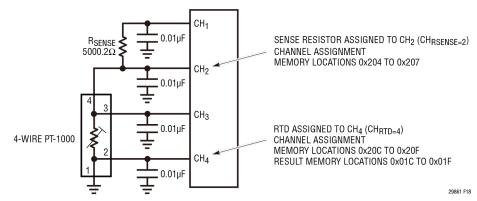


图 18. 标准四线式 RTD 示例

表 45. 四线式 RTD (PT-1000、CH $_2$ 上的 R $_{SENSE}$ 、标准四线式、25 μ A 激励电流、 α = 0.00385 曲线)的通道分配数据

配置字段	说明	# 位	二进制数据	存	储	器	地:	址	0х	20	C	存	储	器	地	址	02	(20	D	7	字储	器	地	址	02	(20)E	存	储	器	地	址	0х	20	F
(1) RTD 类型	PT-1000	5	01111	0	1	1	1	1																											
(2) 检测电阻通道指针	CH ₂	5	00010						0	0	0	1	0																						
(3) 传感器配置	四线式、 无旋转、 无共用	4	1000											1	0	0	0																		
(4) 激励电流	25μΑ	4	0011															0	0	1	1														
(5) 曲线	欧洲、α= 0.00385	2	00																			0	0												
(6) 定制 RTD 数据指针	非定制	12	000000000000																					0	0	0	0	0	0	0	0	0	0	0	0

表 46. 检测电阻 (值 = 5000.2Ω) 的通道分配数据

				7	字储	器均	也址		存储	器地	址		存储	器	也址		存储	器地块	址
配置字段	说明	# 位	二进制数据		0x	204	4		0:	c205			0	x20	6		0>	207	
(1) 传感器类型	检测电阻	5	11101	1 1	1 0	1													
(2) 检测电阻值	5000.2Ω	27	000010011100010000011001100				0 0	0 0	1 0	0 1 1	1 1 (0 0	0 1	0 0	0 0	0 1	1 0 0	1 1	0 0

示例: 带旋转的四线式 RTD

相较于标准四线式方法,提高 RTD 精度的另一种方法是旋转激励电流源。通过自旋转自动消除寄生热电偶效应。为了执行自旋转,将 RTD 的第一个端子连接到 CH_{RTD+1},而不是标准方法中的 GND。这使 LTC2986 能够自动改变电流源的方向,无需额外的外部元件。

带旋转的四线式 RTD 通道分配遵循图 19 所示的通用约定。端子 1 连接到 CH_{RTD+1},端子 2 和 3 (开尔文检测信号)连接到 CH_{RTD} 和 CH_{RTD-1},第 4 个端子连接到检测电阻。通道分配数据(参见表 29)映射到与 CH_{RTD} 对应的存储器位置。

检测电阻通道分配遵循图 20 所示的通用约定。将检测电阻连接在 CH_{RSENSE} 和 $CH_{RSENSE-1}$ 之间,其中 CH_{RSENSE} 连接到 RTD 的第 4 个端子。通道分配数据被映射到与 CH_{RSENSE} 相对应的存储器位置。

图 21 显示了一个使用旋转四线式 RTD 的典型温度测量系统。在此示例中,四线式 RTD 的端子连接到 CH10、CH9、CH8 和 CH6。检测电阻连接到 CH6 和 CH5。检测电阻和 RTD 都一起连接到 CH6。RTD 传感器类型和配置数据分配给 CH9。32 位二进制配置数据直接映射到存储器位置 0x220 到 0x223 中(参见表 47)。检测电阻分配给 CH6。此电阻的用户可编程值为 10.0102kΩ。32 位二进制配置数据直接映射到存储器位置 0x214 到 0x217 中 (参见表 48)。

通过将 10001001 写入存储器位置 0x000,在 CH9 上启动转换。一旦转换完成,中断引脚变 为高电平,存储器位置 0x000 内容变为 01001001。可以从存储器位置 0x030 到 0x033 (对应于 CH9) 读取以 °C 为单位的结果温度。

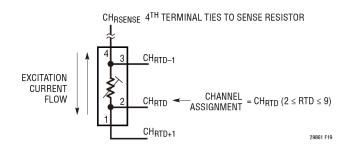


图 19. 四线式 RTD 通道分配约定

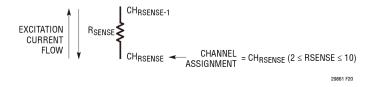


图 20. 带旋转的四线式 RTD 检测电阻通道分配约定

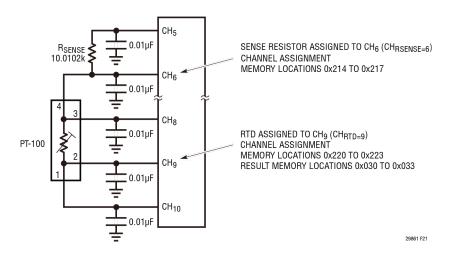


图 21. 旋转四线式 RTD 示例

表 47. 旋转四线式 RTD (PT-100、CH₆ 上的 R_{SENSE} 、旋转四线式、100μA 激励电流、α = 0.003911 曲线) 的通道分配数据

配置字段	说明	# 位	二进制数据	存	7储	器均	也址	<u> </u>	Ox2	220)	存	储	器	地	址	0х	22	21	7	引伸	器	地	址	02	(22	22	1	存储	뮒	排	址	0)	x2 2	23
(1) RTD 类型	PT-100	5	01100	0	1	1	0 (0																											
(2) 检测电阻通 道指针	CH ₆	5	00110						0	0	1	1	0																						
(3) 传感器配置	带旋转的四 线式	4	1010											1	0	1	0													İ					
(4) 激励电流	100μΑ	4	0101				İ	Ì	Ì									0	1	0	1														_
(5) 曲线	美国,α= 0.003911	2	01																			0	1												
(6) 定制 RTD 数据指针	非定制	12	000000000000																					0	0	0	0	0	0	0	0	0	0	0	0

表 48. 检测电阻 (值 = 10.0102kΩ) 的通道分配数据

				7	字储	器	地均	Ŀ		存值	诸器	鲱	址		存	储器	器均	也址	:		存值	者器	地	址	
配置字段	说明	# 位	二进制数据		0	x2	14			()x2	15				0x	21	6			()x2	17		
(1) 传感器类型	检测电阻	5	11101	1 1	1	0 1																			
(2) 检测电阻值	10.0102kΩ	27	000100111000110100011001100				0	0 (0 1	0 0	1	1 1	0	0 0	1	1 0	1	0	0	1	1 0	0	1 1	0	0

示例: 多个四线式 RTD 共用 R_{sense}

图 22 显示了一个使用两个四线式 RTD 共用 R_{SENSE} 的典型温度测量系统。LTC2986 可以通过一个检测电阻支持最多两个四线式 RTD。在此示例中,第一个四线式 RTD 的端子连接到 CH5、CH4、CH3 和 CH2,第二个连接到 CH8、CH7、CH6 和 CH2。检测电阻连接到 CH1 和 CH2。检测电阻和两个 RTD 一起连接到 CH2。此通道分配约定与旋转 RTD 的约定相同。此

拓扑支持旋转和非旋转 RTD 激励。表 49 至 51 显示了每个传感器的通道分配数据。

通过将 10000100 写入存储器位置 0x000,在 CH4 上启动转换。一旦转换完成,中断引脚变 为高电平,存储器位置 0x000 变为 01000100。可以从存储器位置 0x01C 到 0x01F (对应于 CH4) 读取以 °C 为单位的结果温度。可以采用类似的方式从 CH7 启动转换并读取结果。

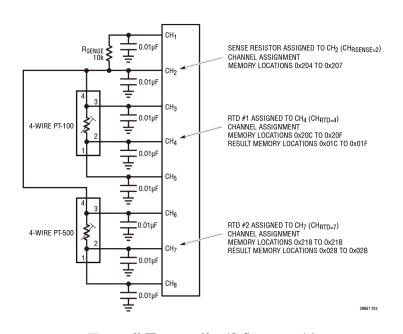


图 22. 共用 R_{SENSE} 的四线式 RTD 示例

表 49. 四线式 RTD #1 (PT-100、CH $_2$ 上的 R $_{SENSE}$ 、四线式、共用 R $_{SENSE}$ 、100μA 旋转激励电流、α = 0.003926 曲线) 的 通道分配数据

配置字段	说明	# 位	二进制数据	存	存储	器	地	址	0х	20	C	存	储	器	地	址	0х	20	D	7	字信	뮒	引地	址	()x	20	E	存	储	器	地	址	0	x2	0F
(1) RTD 类型	PT-100	5	01100	0	1	1	0	0																												
(2) 检测电阻通 道指针	CH ₂	5	00010						0	0	0	1	0																							
(3) 传感器配置	旋转四线式	4	1010											1	0	1	0																			I
(4) 激励电流	100μΑ	4	0101															0	1	0	1															
(5) 曲线	ITS-90 $\alpha = 0.003926$	2	11																			1	1													
(6) 定制 RTD 数据指针	非定制	12	000000000000																					C) (0	0	0	0	0	0	0	0	0	0	(

表 50. 四线式 RTD #2 (PT-500、 CH_2 上的 R_{SENSE} 、四线式、50 μ A 旋转激励电流、 α = 0.003911 曲线) 的通道分配数据

配置字段	说明	# 位	二进制数据	7	存储	器	地	址	Ох	(21	8	存	储	器	地	址	02	x2	19	7	引	器	地	址	0>	21	Α	存	储	器	地址	业	0x	21	В
(1) RTD 类型	PT-500	5	01110	0	1	1	1	0																											
(2) 检测电阻通	CH ₂	5	00010						0	0	0	1	0																						
道指针																																			<u> </u>
(3) 传感器配置	四线式	4	1001											1	0	0	1																		
	共用、																																		
	无旋转																																		
(4) 激励电流	50μΑ	4	0100															0	1	0	0														
(5) 曲线	美国,α=	2	01																			0	1												
	0.003911																																		L
(6) 定制 RTD	非定制	12	000000000000																					0	0	0	0	0	0	0	0	0	0	0	0
数据指针																																			

表 51. 检测电阻 (值 = 10.000kΩ) 的通道分配数据

				7	字储	器	地	止		7	字傾	器	地:	址		7	存储	器	地:	址		存	储器	財地	址	
配置字段	说明	# 位	二进制数据		0	x2	04				0	x2(05				0	(20)6				0x2	207		
(1) 传感器类型	检测电阻	5	11101	1 1	1	0	1																			
(2) 检测电阻值	10.000kΩ	27	0001001110001000000000000000				0	0	0	1 0	0	1 1	1	0	0 0	1	0	0 0	0	0 0	0	0	0 0	0 0	0 0	0

示例: 带开尔文 R_{SENSE} 的四线式 RTD

通过使用四线式 (开尔文连接) 检测电阻配置 四线式 RTD,可以消除检测电阻中的寄生引线 电阻。当使用具有很小 R_{SENSE} 值的 PT-10 或 PT-50,或检测电阻位于远端,或是应用需要极高的精度时,这非常有用。

四线式 RTD 通道分配遵循前述标准四线式 RTD 中所定义的通用约定 (图 19)。检测电阻 遵循图 23 所示的约定。

图 24 显示了一个使用带开尔文连接 R_{SENSE} 的四线式 RTD 的典型温度测量系统。在此示例中,四线式 RTD 的端子连接到 CH10、CH9、CH8 和 CH6。检测电阻连接到 CH6、CH5 和

CH4,激励电流施加到 CH4 和 CH10。为了提供 1mA 的激励电流,检测电阻的标称值为 1kΩ。检测电阻和 RTD 都一起连接到 CH6。此拓扑支持旋转、共用和标准四线式 RTD 拓扑。如果未使用旋转或共用配置,则 RTD 的端子 1 接地而非 CH10,从而可以释放一个输入通道。表 52 至 53 显示了通道分配数据。

通过将 10001001 写入存储器位置 0x000,在 CH9 上启动转换。一旦转换完成,中断引脚变为高电平,存储器位置 0x000 变为 01001001 (参见表 6)。可以从存储器位置 0x030 到 0x033 (对应于 CH9) 读取以 °C 为单位的结果温度。

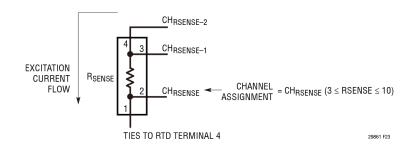


图 23. 开尔文连接检测电阻的通道分配约定

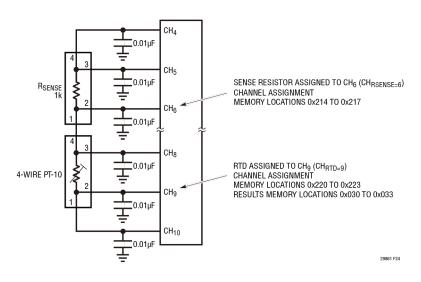


图 24. 开尔文连接检测电阻示例

表 52. 带开尔文连接 R_{sense} 的四线式 RTD (PT-10、CH $_{6}$ 上的 R_{sense} 、四线式、开尔文 R_{sense} 和 1mA 旋转激励电流、 $\alpha=0.003916$ 曲线)的通道分配数据

配置字段	说明	# 位	二进制数据		存	序储	韶	料	山	Ŀ			存	存储	韶	計	山	Ŀ			7	子信	器	料	助	Ŀ			存	储	器	地	址	
						0)x2	220)					0) x 2	22	1					0	x2	222	2					0	x2	23		
(1) RTD 类型	PT-10	5	01010	0	1	0	1	0																										
(2) 检测电阻通道	CH ₆	5	00110						0	0	1	1	0																					
指针																																		
(3) 传感器配置	四线式开尔文	4	1110											1	1	1	0																	
	R _{SENSE} 和旋转																																	
(4) 激励电流	1mA	4	1000															1	0	0	0													
(5) 曲线	日本, α=0.003916	2	10																			1	0											
(6) 定制 RTD	非定制	12	000000000000																					0	0	0	0	0	0	0	0	0 0	0	0
数据指针																																		

表 53. 检测电阻 (值 = 1000Ω) 的通道分配数据

					存	储器	器地	址	:	1	存储	器	地:	址		存	储	器	也均	Ŀ		存	储	居地	址	
配置字段	说明	# 位	二进制数据			0x2	214	ļ.			0	x2 ′	15				0x	21	6				0x	217	7	
(1) 传感器类型	检测电阻	5	11101	1	1 1	0	1																			
(2) 检测电阻值	1000Ω	27	0000000111110100000000000000					0 (0	0 0	0	0 1	1 1	1	1 1	0	1 0	0	0	0 (0	0	0 0	0	0 (0 0

热敏电阻测量

通道分配 - 热敏电阻

针对连接到 LTC2986 的每个热敏电阻, 32 位 通道分配字被编程到与传感器所连通道相对应 的存储器位置 (参见表 54)。该数据包括 (1) 热敏电阻类型、(2) 检测电阻通道指针、(3) 传感器配置、(4) 激励电流、(5) Steinhart-Hart 地 址指针或定制表地址指针。

(1) 热敏电阻类型

热敏电阻类型由前 5 个输入位 (B31 至 B27) 确定,如表 55 所示。器件内置了常用热敏电阻 类型 44004/44033、44005/44030、44006/44031、44007/44034、44008/44032 和 YSI-400 的

Steinhart-Hart 公式线性化系数。如果使用其他定制热敏电阻,可以选择热敏电阻定制 Steinhart-Hart 或热敏电阻定制表 (温度与电阻的关系)。在这种情况下,可将用户特定数据存储在片内 RAM 中,从热敏电阻定制 Steinhart-Hart 或热敏电阻定制表的地址指针中定义的地址开始。

(2) 检测电阻通道指针

热敏电阻测量根据已知 R_{SENSE} 电阻按比率执行。检测电阻通道指针字段表示与检测电阻相连、用于该电流热敏电阻的差分通道(参见表31)。

表 54. 热敏电阻通道分配字

						(2)	检	测电	1阻	通道																			
	(1)	热每	地	阻约	类型			指铂	+		(3) 传	感器	记置	(4)	激	励电	流				(!	5) 点	官制	訓热	敏	电阻	数据	錯	†
		表	₹ 5!	5			3	表:	31		ā	長 56			表	57					表	96	5,	97	, 9	98,	100	, 10	01
测量等级	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11 10	9	8	7	6	5	4 3	2	1 0
热敏电阻	类型	ĭ =	19	至	27	R	ENSE	通	道指	針	SGL = 1	激励	模式	激质		流 [3:0]	未	使月	月	定制	地地	址	[5:	0]	Ź	注制 书	シラ ショウ ショウ ショウ ショウ ショウ ショウ ショウ ショウ ショウ ショウ	-1
								[4:0)]		DIFF = 0							(000								[5	5:0]	

表 55. 热敏电阻类型: 1/T = A + B • ln(R) + C • ln(R)² + D • ln(R)³ + E • ln(R)⁴ + F • ln(R)⁵

B31	B30	B29	B28	B27	热敏电阻类型	Α	В	C	D	E	F
1	0	0	1	1	热敏电阻 44004/44033	1.46800E-03	2.38300E-04	0	1.00700E-07	0	0
					2.252kΩ (25°C 时)						
1	0	1	0	0	热敏电阻 44005/44030	1.40300E-03	2.37300E-04	0	9.82700E-08	0	0
					3kΩ (25°C 时)						
1	0	1	0	1	热敏电阻 44007/44034	1.28500E-03	2.36200E-04	0	9.28500E-08	0	0
					5kΩ (25°C 时)						
1	0	1	1	0	热敏电阻 44006/44031	1.03200E-03	2.38700E-04	0	1.58000E-07	0	0
					10kΩ (25°C 时)						
1	0	1	1	1	热敏电阻 44008/44032	9.37600E-04	2.20800E-04	0	1.27600E-07	0	0
					30kΩ (25°C 时)						
1	1	0	0	0	热敏电阻 YSI-400	1.47134E-03	2.37624E-04	0	1.05034E-07	0	0
					2.252kΩ (25°C 时)						_
1	1	0	0	1	Spectrum 1003k 1kΩ	1.445904E-3	2.68399E-04	0	1.64066E-07	0	0
					(25°C 时)						
1	1	0	1	0	热敏电阻定制	用户输入	用户输入	用户输入	用户输入	用户输入	用户输入
					Steinhart-Hart						
1	1	0	1	1	热敏电阻定制表	未使用	未使用	未使用	未使用	未使用	未使用

(3) 传感器配置

传感器配置字段用于定义各种热敏电阻属性。对于单端测量(相对于 COM 的测量),将配置位 B21 设置为高电平,差分测量则设为低电平(参见表 56)。

表 56. 传感器配置数据

(3)	传感器	配置			
SGL	激励	模式	单端/差分	共用 R _{SENSE}	旋转
B21	B20	B19			
0	0	0	差分	否	否
0	0	1	差分	是	是
0	1	0	差分	是	否
0	1	1		保留	
1	0	0	单端	否	否
1	0	1		保留	
1	1	0		保留	
1	1	1		保留	

下一个传感器配置位 (B19 和 B20) 用于确定激励电流模式。这些位用于实现 R_{SENSE} 共用,其中一个检测电阻用于多个热敏电阻。在这种情况下,热敏电阻接地连接采用内置式,每个热敏电阻指向相同的 R_{SENSE} 通道。

位 B19 和 B20 还用于激励电流旋转,以自动消除寄生热电偶效应。寄生热电偶效应可能来自热敏电阻和测量仪器之间的物理连接。此模式适用于使用内部电流源激励的所有差分热敏电阻配置。

(4) 激励电流

通道分配字 (B18 至 B15) 中的下一个字段控制施加到热敏电阻的激励电流的幅度 (参见表57)。为防止硬故障或软故障,请选择一个能使传感器或检测电阻上的最大压降标称值为1.0V 的电流。LTC2986 对检测电阻和传感器两端压降之间的比率没有特殊要求。因此,检测电阻上的压降幅度比最大传感器值小几个数量级也可以。为了在整个热敏电阻温度范围内获得最佳性能,可以选择自动量程电流。在这种情况下,LTC2986 在三个周期 (而不是标准的两个周期) 内执行转换 (参见表83)。第一个周期确定适用于传感器电阻值和 R_{SENSE} 值的最佳激励电流。后两个周期将利用此电流来测量热敏电阻温度。

(5) Steinhart-Hart 地址/定制表地址

有关更多信息,请参阅本数据手册最后的"定制热敏电阻"部分。

表 57. 热敏电阻激励电流

	(4) 海	励电流		
B18	(4) 凉(B17	<u> </u>	B15	电流
0	0	0	0	保留
0	0	0	1	250nA
0	0	1	0	500nA
0	0	1	1	1μΑ
0	1	0	0	5μΑ
0	1	0	1	10μΑ
0	1	1	0	25μΑ
0	1	1	1	50μΑ
1	0	0	0	100μΑ
1	0	0	1	250μΑ
1	0	1	0	500μΑ
1	0	1	1	1mA
1	1	0	0	自动范围*
1	1	0	1	无效
1	1	1	0	无效
1	1	1	1	外部

^{*}自动范围不支持定制传感器。

故障报告 - 热敏电阻

每种传感器类型都有一个独特的故障报告机制, 在数据输出字的高字节中指示。表 58 显示了 热敏电阻测量中会报告的故障。

位 D31 表示热敏电阻或 R_{SENSE} 开路、短路或未插入。这是一个硬故障,报告为 -999° C。位 D30 表示 ADC 读数错误。这可能是由于传感器损坏 (开路) 或噪声过大 (ESD 或静电放电至传感器路径)。

这是硬错误,输出为 -999℃。在噪声过大的情况下,如果噪声事件为随机、非频繁事件,则器件可恢复并且后续转换将是有效的。热敏电阻未使用位 D29 和 D28。位 D27 和 D26 表示读数超出或低于温度限值 (参见表 59)。此时仍将报告计算所得的温度,但精度可能会降低。位 D25 表示 ADC 测量的绝对电压超出其正常工作范围。如果使用热敏电阻作为冷结点元件,则在热电偶测量结果中还会指示所有硬或软错误。

表 58. 热敏电阻故障报告

位	故障	错误类型	说明	输出结果
D31	传感器硬故障	硬	开路或短路热敏电阻或 R _{SENSE}	−999°C
D30	硬 ADC 超出范围	硬	不良 ADC 读数 (可能为外部大噪声事件)	−999°C
D29	热敏电阻未使用	不适用	总是为 0	有效读数
D28	热敏电阻未使用	不适用	总是为 0	有效读数
D27	传感器过范围*	软	T> 高温限值	可疑读数
D26	传感器欠范围*	软	T< 低温限值	可疑读数
D25	ADC 超出范围	软	ADC 绝对输入电压超过 ±1.125 • V _{REF} /2	可疑读数
D24	有效	不适用	结果有效 (应当为 1) 若为 0 则丢弃结果	有效读数

^{*}请勿用于定制 Steinhart-Hart 传感器类型。定制表热敏电阻过/欠范围由电阻表的数值确定,详情请参见定制热敏电阻表示例。

表 59. 热敏电阻温度/电阻范围

热敏电阻类型	最小值 (Ω)	最大值 (Ω)	低温限值 (°C)	高温限值 (°C)
热敏电阻 44004/44033 2.252kΩ (25°C 时)	41.9	75.79k	-40	150
热敏电阻 44005/44030 3kΩ (25°C 时)	55.6	101.0k	-40	150
热敏电阻 44007/44034 5kΩ (25°C 时)	92.7	168.3k	-40	150
热敏电阻 44006/44031 10kΩ (25°C 时)	237.0	239.8k	-40	150
热敏电阻 44008/44032 30kΩ (25°C 时)	550.2	884.6k	-40	150
热敏电阻 YSI 400 2.252kΩ (25℃ 时)	6.4	1.66M	-80	250
Spectrum 1003K 1kΩ (25°C 时)	51.1	39.51k	-50	125
热敏电阻定制 Steinhart-Hart	不适用	不适用	不适用	不适用
热敏电阻定制表	第二个表条目	最后一个表条目		

示例:单端热敏电阻

最简单的热敏电阻配置是单端配置。使用此配置的热敏电阻在所有传感器之间共用一个公共地 (COM),并且每个传感器都连接到一个单独的检测电阻 (单端热敏电阻不支持 R_{SENSE} 共用)。单端热敏电阻遵循图 25 所示的约定。端子 1 接地 (COM),端子 2 连接到 CH_{THERM} 和检测电阻。通道分配数据(参见表 54)映射到与 CH_{THERM} 对应的存储器位置。

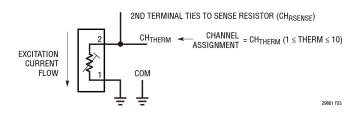


图 25. 单端热敏电阻通道分配约定

检测电阻通道分配遵循图 26 所示的通用约定。将检测电阻连接在 CH_{RSENSE} 和 $CH_{RSENSE-1}$ 之间,其中 CH_{RSENSE} 连接到热敏电阻的第 2 个端子。通道分配数据(参见表 37)映射到与 CH_{RSENSE} 对应的存储器位置。

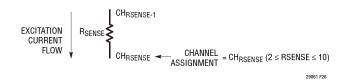


图 26. 检测电阻通道分配约定

图 27 显示了一个使用单端热敏电阻的典型温度测量系统。在此示例中,一个 10kΩ (44031型) 热敏电阻连接到 10.1kΩ 检测电阻。热敏电阻分配到通道 CH5 (存储器位置 0x210 至 0x213),检测电阻分配到 CH4 (存储器位置 0x20C 至 0x20F)。表 60 至 61 显示了通道分配数据。

通过将 10000101 写入存储器位置 0x000, 在 CH5 上启动转换。一旦转换完成,中断引脚变 为高电平,存储器位置 0x000 内容变为 01000101。可以从存储器位置 0x020 到 0x023 (对应于 CH5) 读取以 ℃ 为单位的结果温度。

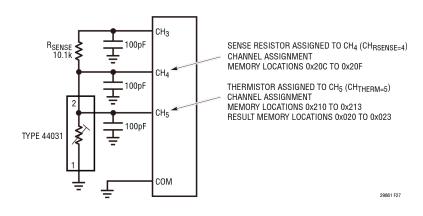


图 27. 单端热敏电阻示例

LINEAD

表 60. 单端热敏电阻 (25°C 时 10k Ω 44006/44031 型热敏电阻、单端配置、CH $_4$ 上的 R $_{SENSE}$ 、1 μ A 激励电流) 通道分配数据

配置字段	说明	# 位	二进制数据	7	字佾	器	地	址	Ох	21	0	存	储	器	地:	址	0х	21	1	7	字储	器	地	址	02	(21	2	存	7储	器:	地均	Ŀ (0x	213
(1) 热敏电阻	44006/44031	5	10110	1	0	1	1	0																										T
类型	10kΩ																																	
	(25°C 时)																																	
(2) 检测电阻	CH₄	5	00100						0	0	1	0	0																					
通道指针																																		
(3) 传感器配置	单端	3	100											1	0	0																		
(4) 激励电流	1μΑ	4	0011														0	0	1	1														
未使用	将这些位	3	000																		0	0	0											
	设置为 0																																	
(5) 定制 RTD	非定制	12	00000000000																					0	0	0	0	0	0	0	0	0	0	0 0
数据指针																																		

表 61. 检测电阻 (值 = $10.1k\Omega$) 的通道分配数据

				:	存储	器	地块	Ŀ		存值	诸器	地	址		存	储	器均	也划	Ė		存储	器均	也址	
配置字段	说明	# 位	二进制数据		0)x2(C			0)x2	0D				0x	20	E			0>	20	F	
(1) 传感器类型	检测电阻	5	11101	1 1	1 1	0 1																		
(2) 检测电阻值	10.1kΩ	27	0001001110111010000000000000				0	0 (1	0 0	1	1 1	0	1	1	0 1	0	0	0 0	0 (0 0	0	0 0	0 (

示例:差分热敏电阻

差分热敏电阻允许每个传感器单独进行接地检测。在这种标准差分配置中,每个热敏电阻使用一个检测电阻。差分热敏电阻遵循图 28 所示的约定。端子 1 连接到 CH_{THERM} 并短接至地,端子 2 连接到 CH_{THERM} 和检测电阻。通道分配数据(参见表 54)映射到与 CH_{THERM} 对应的存储器位置。

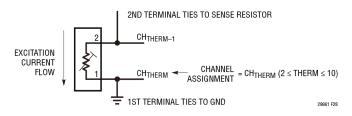


图 28. 差分热敏电阻通道分配约定

检测电阻通道分配遵循图 29 所示的通用约定。将检测电阻连接在 CH_{RSENSE} 和 $CH_{RSENSE-1}$ 之间,其中 CH_{RSENSE} 连接到热敏电阻的第 2 个端子。通道分配数据(参见表 37)映射到与 CH_{RSENSE} 对应的存储器位置。

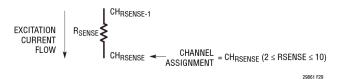


图 29. 检测电阻通道分配约定

图 30 显示了一个使用差分热敏电阻的典型温度测量系统。在此示例中,一个 30kΩ (44032型) 热敏电阻连接到 9.99kΩ 检测电阻。热敏电阻分配到通道 CH9 (存储器位置 0x220 至 0x223),检测电阻分配到 CH7 (存储器位置 0x218 至 0x218)。表 62 至 63 显示了通道分配数据。

通过将 10001001 写入存储器位置 0x000,在 CH9 上启动转换。一旦转换完成,中断引脚变 为高电平,存储器位置 0x000 内容变为 01001001。可以从存储器位置 0x030 到 0x033 (对应于 CH9) 读取以 °C 为单位的结果温度。

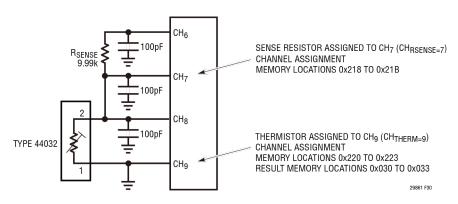


图 30. 差分热敏电阻示例

表 62. 差分热敏电阻 (25°C 时 30k Ω 44008/44032 型热敏电阻、差分配置、CH $_7$ 上的 R $_{SENSE}$ 、自动激励范围)通道分配数据

配置字段	说明	# 位	二进制数据	存	了储	器	地	址	0х	22	20	存	储	器:	地	址	0)	(22	21	存	存储	器	地	址	0	x22	22	7	字储	器	地	址	0	x2:	23
(1) 热敏电阻	44008/440	5	10111	1	0	1	1	1																											
类型	32 30kΩ																																		
	(25°C 时)																																		
(2) 检测电阻	CH ₇	5	00111						0	0	1	1	1																						
通道指针																																			L
(3) 传感器配置	差分、无共	3	000											0	0	0																			
	用、无旋转																																		
(4) 激励电流	自动范围	4	1100														1	1	0	0															L
未使用	将这些位	2	000																		0	0	0												
	设置为 0																																		
(5) 定制 RTD	非定制	12	00000000000																					0	0	0	0	0	0	0	0	0	0	0	0
数据指针																																			

表 63. 检测电阻 (值 = 9.99k Ω) 的通道分配数据

					存	诸岩	ま地	址		存	储器	とと としゅう とうしゅ とうしゅ とうしゅ とり とり とり とり とり とり とり とり とり とり とり とり とり	址		存	字储	器	地	址		存	储器	器地	址	
配置字段	说明	# 位	二进制数据		(0x2	218	3			0x2	219	1			0)	(21	ΙΑ				0x2	21B		
(1) 传感器类型	检测电阻	5	11101	1	1 1	0	1																		
(2) 检测电阻值	9.99kΩ	27	000100111000001100000000000				(0 0	0 1	0 (0 1	1	1 0	0	0 0	0	1 1	0	0	0 0	0	0 0	0 0	0 0	0

示例: 共用/旋转差分热敏电阻

差分热敏电阻允许每个传感器单独进行内部接地检测。在此配置中,一个检测电阻可用于多个热敏电阻。差分热敏电阻遵循图 31 所示的约定。端子 1 连接到 CH_{THERM},端子 2 连接到 CH_{THERM},和检测电阻。通道分配数据(参见表 54)映射到与 CH_{THERM} 对应的存储器位置。

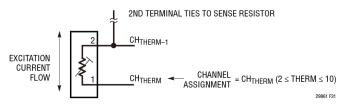


图 31. 共用 R_{SENSE} 的热敏电阻通道分配约定

检测电阻通道分配遵循图 32 所示的通用约定。将检测电阻连接在 CH_{RSENSE} 和 CH_{RSENSE-1} 之间,其中 CH_{RSENSE} 连接到热敏电阻的第 2 个端子。通道分配数据(参见表 37)映射到与 CH_{THERM} 对应的存储器位置。

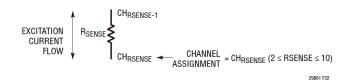


图 32. 热敏电阻检测电阻通道分配约定

图 33 显示了使用共用检测电阻和一个旋转/非旋转差分热敏电阻的典型温度测量系统。在此示例中,将 30kΩ (44032 型) 热敏电阻连接到 10.0kΩ 检测电阻,并配置为旋转/共用。将第二个热敏电阻 2.25kΩ (44033 型) 配置为非旋转/共用。表 64 至 66 显示了通道分配数据。通过将 10001000 写入存储器位置 0x000,在 CH8 上启动转换。一旦转换完成,中断引脚变为高电平,存储器位置 0x000 内容变为01001000。可以从存储器位置 0x02C 到 0x02F (对应于 CH8) 读取以 °C 为单位的结果温度。可以采用类似的方式从 CH10 启动转换并读取结果。

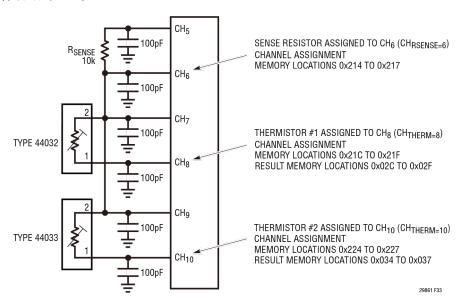


图 33. 旋转和共用热敏电阻示例

LINEAD

表 64. 差分热敏电阻 (25°C 时 30k Ω 44008/44032 型热敏电阻、带共用和旋转的差分配置、CH。上的 R_{SENSE}、250nA 激励电流) 通道分配数据

피무슨다	24 00	и <u>/-</u>	\# #\#\#\#	-	- <i>L</i> +	, 00	. مايل	L.L	Δ-	-21	_	+	24	00.	ا مادا	L.L	Δ	21	_	7	- r-	b 00	طبلا	T.L	•	-21		-	- 4-	, 00	. مايل	L.L	Δ	21	_
配置字段	说明	# 位	二进制数据	ſ	子馆	郤	垉.	<u> </u>	U)	(21	C	存	陌	谷.	吧	II.	UX	21	ט	f	子阴	谷	地	亚	U	XZ	E	13	阳	谷	吧.	址	UX	21	<u>-</u>
(1) 热敏电阻	44008/44032	5	10111	1	0	1	1	1																											l
类型	30kΩ																																		l
	(25°C 时)																																	L	L
(2) 检测电阻	CH ₆	5	00110						0	0	1	1	0																						l
通道指针																																			L
(3) 传感器配置	差分、旋转和	3	001											0	0	1																			l
	共用																																		L
(4) 激励电流	250nA 激励	4	0001														0	0	0	1															
	电流																																		l
未使用	将这些位	3	000																		0	0	0												Π
	设置为 0																																		l
(5) 定制 RTD	非定制	12	00000000000																					0	0	0	0	0	0	0	0	0	0	0	0
数据指针																																			

表 65. 差分热敏电阻 (25°C 时 2.252kΩ 44004/44033 型热敏电阻、带共用、无旋转的差分配置、CH₆ 上的 R_{SENSE}、10μA 激励电流) 通道分配数据

配置字段	说明	# 位	二进制数据	存	储	器均	也均	ıŁ (0x2	224	ŀ	存	储	器:	地址	业	0x	22	5	存	储	器	也均	Ŀ	0x	22	6	存	储	器	地地	韭	0x	22	7
() //// 2/ 5/==	44004/44033	5	10011	1	0	0	1	1																											
类型	2.252kΩ (25°C 时)																																		
(2) 检测电阻 通道指针	CH ₆	5	00110						0	0	1	1	0																						
(3) 传感器配置	差分、无旋 转和共用	3	010											0	1	0																			
(4) 激励电流	10μA 激励 电流	4	0101														0	1	0	1															
未使用	将这些位 设置为 0	3	000																		0	0	0												
(5) 定制 RTD 数据指针	非定制	12	000000000000																					0	0	0	0	0	0	0	0	0	0	0	0

表 66. 检测电阻 (值 = $10.0k\Omega$) 的通道分配数据

					存	储	器	地址	Ŀ		存	诸岩	몱地	址			存值	诸岩	計	地址			存值	诸器	地:	址	
配置字段	说明	# 位	二进制数据			0x	21	14				0x2	215	5			(0x2	216	5			()x2	17		
(1) 传感器类型	检测电阻	5	11101	1	1 1	1 0	1																				
(2) 检测电阻值	10.0kΩ	27	0001001110001000000000000000					0	0 () 1	0 0	1	1	1 0	0	0	1 0	0	0	0 0	0	0	0 0	0	0 0	0	0

全局配置寄存器

表 67 概述了全局配置寄存器。全局配置寄存器的长度为 1 个字节,位于存储器位置 0x0F0。位 G0-G1 用于设置片内数字滤波器的陷波频率,位 G2 用于设置温度结果单位 (C 或 C),位 C 3 和 C 3 和 C 3 为保留位,应设置为低,位 C 4-C 6 用于确定开尔文电流激励模式。

表 67. 全局配置寄存器

位 #	字段名称	说明
G0 G1	滤波器频率选择 [1:0]	00 = 55Hz
		01 = 60Hz
		10 = 50Hz
G2	温度结果格式	0= 摄氏度
		1= 华氏度
G3	保留	设置为 0
G4	三线式 RTD 开尔文电流	相邻通道上的激励电流
	激励模式	
G5	二线式 RTD 开尔文电流	相邻通道上的激励电流
	激励模式	_
G6	热敏电阻开尔文电流激励	相邻通道上的激励电流
	模式	
G7	保留	设置为 0

输入过压保护 - 概述

温度传感器通常用于恶劣环境。传感器或引线间可能会短路至高压或彼此短路。电阻电路可以保护 LTC2986 免受这些故障条件的影响。虽然这些外部电阻可能会导致测量误差,但是 LTC2986 包含可减少这些影响的特殊模式和功能

热电偶的测量端通常是未屏蔽的,从而形成到测量器件输入端的低阻导通路径。为了保护LTC2986 免受过压损坏,可以在输入通道和热电偶传感器之间放置限流电阻。选择此电阻的值,从而使最大过压时进入 LTC2986 的电流小于 ±15mA。由于 LTC2986 的输入漏电流(1nA) 规格非常低,因此在正常工作期间由这些保护电阻引起的误差很小。

大多数 RTD 传感器元件通过非导电封装或单独的接地屏蔽与传感器引线进行电气隔离。虽然这些类型的传感器可能不需要输入过压保护,某些应用在 RTD 和 LTC2986 之间仍然会需要限流电阻。一种这样的应用是通用输入设备,其输入端子未对 RTD 或热电偶屏蔽。其他应用可能需要防止错误连接,例如,将电压源意外连接到 RTD 输入端子。针对 RTD 的保护电路实现应同时适用于二线、三线和四线式配置。

热敏电阻是温度传感器的二线式电阻,带有密封传感器元件的绝缘封装。与 RTD 类似,通用传感器输入应用和防止用户意外施加过压也会需要热敏电阻的过压保护。

LTC2986 提供多种电流激励模式,可消除阻性过压保护电路引起的误差。以下几个部分描述了热电偶、二线、三线和四线式 RTD 以及热敏电阻的过压保护电路,特别强调了通用性(对所有传感器类型共用相同的保护方案)。

输入过压保护 - 电阻值的选择

LTC2986 可承受 ±15mA 的最大连续电流而不受损坏。为了确定过压保护电阻的值及其额定功率,需要使用最大电压。该电压为应用特定的,取决于最大预期过压。例如,一个可能过压为 40V 的系统需要 R > 2.7kΩ 的电阻和额定功率 (参见图 34 和图 35):

P > 600mW, 其中 $R > \frac{V_{MAX} - V_{DD}}{15$ mA

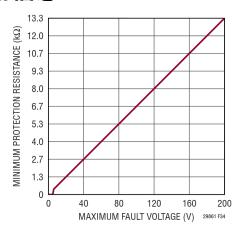


图 34. 最大故障电压与最小保护电阻的关系

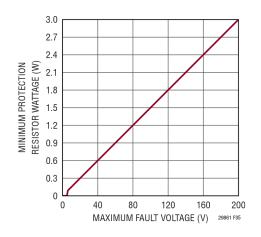


图 35. 最大故障电压与最小保护电阻额定功率的关系

输入过压保护 - 热电偶

热电偶是低阻抗器件,可根据温差产生电压。由于 LTC2986 输入阻抗非常高 (输入漏电流 <1nA),因此外部过压保护电阻对温度测量精度的影响极小。例如,2kΩ 的保护电阻会导致 4μV 的最坏情形误差 (参见图 36)。这相当于 K 类热电偶在 25°C 时 0.1°C 的误差。

除了保护电阻外,还应在每个输入端添加 100pF 电容以实现抗混叠滤波,为简单起见, 这些没有显示在以下示意图中。

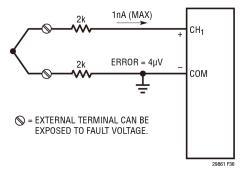


图 36. 带保护电阻的热电偶

输入过压保护 - RTD

RTD 是阻性器件,需要激励电流来确定其温度。 将激励应用于由 RTD 和检测电阻组成的串联 网络,以进行比率测量。过压保护通过在每个 RTD 端子和 LTC2986 输入通道之间放置一 个电阻来实现。

四线式 RTD

四线式 RTD 是保护最简单的 RTD 配置。保护电阻与 4 个 RTD 端子中的每一个相连 (参见图 37)。激励电流流过检测电阻 (R_{SENSE}),RTD 和保护电阻 RP1 和 RP4。LTC2986 通过保护电阻 RP2 和 RP3 使用 CH3 和 CH4测量 RTD 两端的压降。由于激励电流不流过 RP2 和 RP3,因此保护电阻引起的误差可以忽略不计。测量误差由输入漏电流(I<1nA)决定。例如,具有 $1k\Omega$ 检测电阻和 $1k\Omega$ 保护电阻的 PT-100 RTD 的漏电流引起的误差低于 0.025° C。

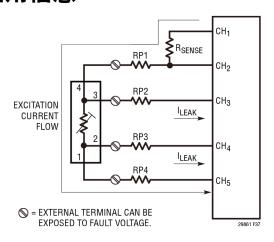


图 37. 带保护电阻的四线式 RTD

三线式 RTD

三线式 RTD 的保护比四线式 RTD 更困难。 通常,保护电阻与 3 个 RTD 端子中的每一个相连 (参见图 38)。LTC2986 提供两个匹配的 激励电流 I_1 和 I_2 。这些电流从 CH3 和 CH4 通过 RP2 和 RP3 流入 RTD。在 CH3 和 CH4 之间测量电压结果。假设 RP2 = RP3 且 $I_1 = I_2$,则抵消保护电阻产生的误差。虽然 LTC2986 提供匹配的电流源激励,但外部保护电阻可能仍难以匹配。RP2 和 RP3 之间的每 1Ω 不匹配转换为 RTD 测量中的 1Ω 误差。

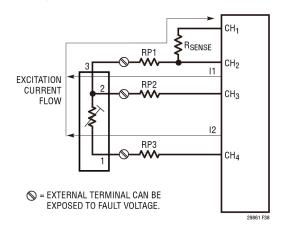


图 38. 带保护电阻的三线式 RTD

LTC2986 提供三线式 RTD 开尔文电流源模式,以消除由不匹配保护电阻引起的误差。在启动转换开始之前设置全局三线式 RTD 开尔文电流激励模式位 (G4=1,参见表 67),即可启用此功能。此模式使用相邻通道 (在此示例中为 CH5 和 CH6) 进行电流源激励,并执行 CH3 和 CH4 的测量 (参见图 39)。在 RTD和与激励电流源相连的通道之间放置两个额外的电阻,但无需再受所有电阻的保护电阻匹配约束。激励电流不再流过 RP2 或 RP3,从而消除了它们上面的压降。图 40 显示了此模式的通道分配约定。

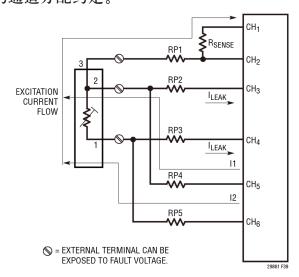


图 39. 三线式 RTD 开尔文电流模式 (G4=1)

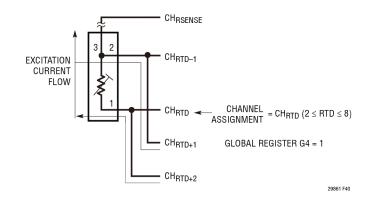


图 40. 三线式 RTD 开尔文电流模式通道分配 约定 (G4=1)

LINEAR

二线式 RTD

二线式 RTD 的保护很难,因为保护电阻 (RP3) 与 RTD 串联 (参见图 41)。每 1Ω 的保护电阻会为 RTD 增加 1Ω 的测量误差。

LTC2986 提供二线式开尔文电流源模式,以消除与保护电阻相关的误差。在启动转换开始之前设置全局二线式 RTD 开尔文电流激励模式位 (G5 = 1,参见表 67),即可启用此功能。此电流激励模式使用相邻通道 (本例中为 CH5)进行内部接地连接 (参见图 42)。RTD 和 CH5 之间增加了一个额外的保护电阻。激励电流不再流过 RP3,从而消除了它上面的压降。图 43 显示了此模式的通道分配约定。

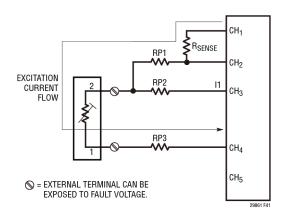


图 41. 带保护电阻的二线式 RTD

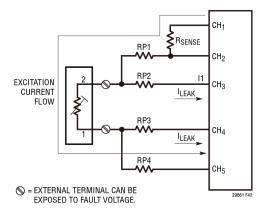


图 42. 二线式 RTD 开尔文电流模式 (G5=1)

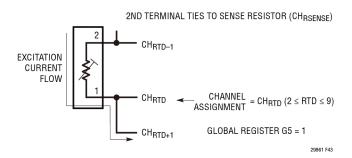


图 43. 二线式开尔文电流模式通道分配约定 (G5=1)

热敏电阻

与二线式 RTD 类似,热敏电阻的保护很难,因为保护电阻 RP3 与传感器串联 (参见图 44)。每 1Ω 的保护电阻会为热敏电阻增加 1Ω 的测量误差。

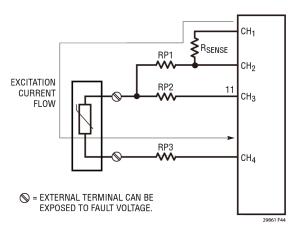


图 44. 带保护电阻的热敏电阻

LTC2986 提供热敏电阻开尔文电流源模式,以消除与保护电阻相关的误差。在启动转换开始之前设置全局热敏电阻开尔文电流激励模式位(G6=1,参见表 67),即可启用此功能。此电流激励模式使用相邻通道(本例中为 CH5)进行内部接地连接(参见图 45)。热敏电阻和CH5 之间增加了一个额外的保护电阻。激励电流不再流过 RP3,从而消除了它上面的压降。图 46 显示了此模式的通道分配约定。



图 45. 热敏电阻开尔文电流源模式 (G6=1)

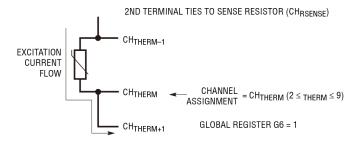


图 46. 热敏电阻开尔文电流模式通道分配约定 (G6 = 1)

通用实例

LTC2986 能够与多种传感器类型共用一个保护接口(参见图 47)。这包括所有 RTD 配置(二线,三线和四线式)、热敏电阻和热电偶。在传感器之间切换仅需通过软件控制以提供新的通道分配字。多传感器电路提供 4 个输入端子,每个端子都可以防止外部过压。要针对所有传感器启用开尔文电流激励模式,需将全部3 个全局配置位 G4、G5 和 G6 均设置为 1 (参见表 67)。

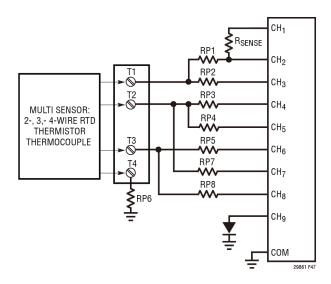


图 47. 通用多传感器原理图

在图 48 中,四线式 RTD 直接连接到 4 个输入端子。在这种情况下,四线式 RTD 分配到 CH6,检测电阻连接到 CH2。激励电流流过保护电阻 RP1 和 RP6。由于 RP6 接地,因此 R_{SENSE} 共用和激励电流旋转关闭。

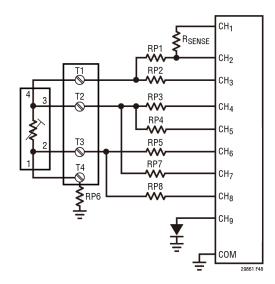


图 48. 带保护的多传感器四线式线 RTD 连接

图 49 显示了使用多传感器电路与三线式RTD 的连接。在这种情况下,RTD 直接连接到端子 T1 - T3,端子 T4 浮空。匹配的激励电流从 CH7 和 CH8 流过保护电阻 RP7 和 RP8,而 RTD 测量发生在 CH5 和 CH6。三线式 RTD 分配到 CH6, R_{SENSE} 共用开启。

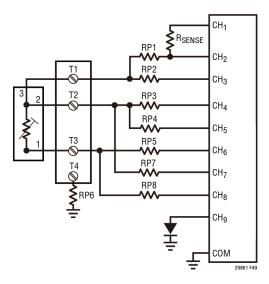


图 49. 带保护的多传感器三线式 RTD 连接

图 50 显示了使用 LTC2986 多传感器电路与二线式 RTD 的连接。在这种情况下,RTD 直接连接到端子 T1 和 T2,端子 T3 和 T4 浮空。激励电流从 CH1 流过 R_{SENSE} 和保护电阻 RP1 和 RP4 (CH5 内部接地),而 RTD 测量发生在 CH3 和 CH4。二线式 RTD 分配到 CH4, R_{SENSE} 共用开启。

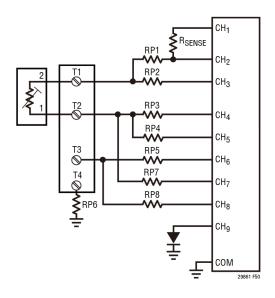


图 50. 带保护的多传感器二线式 RTD 连接

图 51 显示了使用 LTC2986 多传感器电路与热敏电阻的连接。在这种情况下,热敏电阻直接连接到端子 T1 和 T2,端子 T3 和 T4 浮空。激励电流从 CH1 流过 R_{SENSE} 和保护电阻 RP1 和 RP4 (CH5 内部接地),而热敏电阻测量发生在 CH3 和 CH4。热敏电阻分配到 CH4, R_{SENSE} 共用启用,以提供内部接地连接。

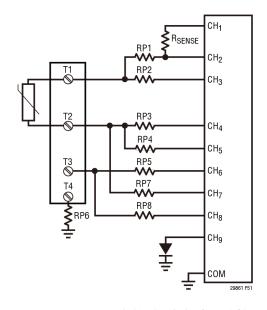


图 51. 带保护的多传感器热敏电阻连接

图 52 显示了使用 LTC2986 多传感器电路与热电偶的连接。在这种情况下,热电偶直接连接到端子 T3 和 T4,端子 T1 和 T2可以浮空、连接到 RTD(全局寄存器 G5=1)或热敏电阻(全局寄存器 G6=1),以进行冷结点补偿。或者,可使用二极管(连接到 CH9)作为冷结点补偿。热电偶分配到 CH6,采用单端测量模式。

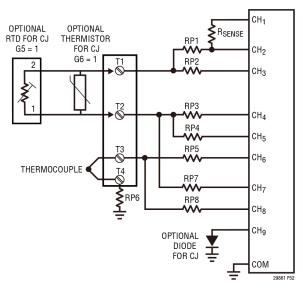


图 52. 带保护的多传感器热电偶连接

有源模拟温度传感器

除了无源型温度传感器,LTC2986 还支持有源模拟温度传感器 (即 LTC2997)。在此模式下,LTC2986 测量模拟温度传感器的电压输出,并通过表查找以将测量的电压转换为温度。此传感器选件完全可定制,用于直接温度测量或冷结点补偿。

模拟传感器通道分配和结果格式

对于有效模拟温度传感器类型= 31 (见表 4 和图 53), 差分测量的通道分配字为 0xF800 0000, 单端则为 0xFC00 0000。当 LTC2986 配置为有源模拟温度传感器类型时, 它将从 ADC 获取测量的电压值并执行表查找以产生温度结果。表查找的结果格式为 24 位带符号的定点温度结果以及错误状态字节。温度的定点格式与所有其他 LTC2986 温度传感器类型相同。此格式如表 9 所示。

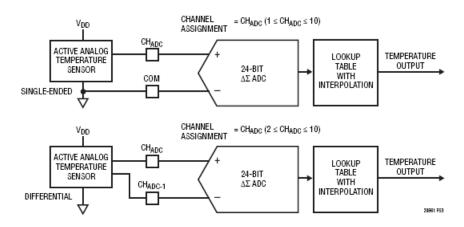


图 53. 有源模拟温度传感器通道分配约定

LINEAD

错误状态字节位于数据输出字的高字节中。表 68 显示了模拟传感器类型的错误状态字节的 格式。位 D31 和 D30 表示 ADC 读数错误。这可能是由于传感器损坏 (开路) 或噪声过大 (ESD 或静电放电至传感器路径)。这两种都是硬错误,报告为 -999°C 或 °F。在噪声过大的情况下,如果噪声事件为随机、非频繁事件,则器件可恢复并且后续转换将是有效的。位 D27 和 D26 表示温度上下限值已经超出表 68 所述的限制。位 D25 表示 ADC 测量的绝对电压超出其正常工作范围。

示例:差分有源模拟 温度传感器

在此示例中,实现了一个简化的温度曲线(参见图 54)。点 P1 到 P9 表示定制器件的正常操作范围。点 P9 之上的电压读数表示软故障,

并且报告的结果是使用由点 P8 和 P9 (表中最后两个条目)确定的斜率的线性外推值。低于 P1 点的电压读数也报告为软故障。报告的结果是点 P1 和 P0 之间的外推值,其中 P0 通常是可能的最低传感器输出电压。传感器输出电压低于 P0 (以 mV 为单位)时,将报告 P0 输出。

为了使用有源模拟温度传感器表对 LTC2986 进行编程,需将 mV 数据和开尔文数据都转换为 24 位二进制值(表示为表中两个 3 字节条目,请参见表 69)。由于某些模拟传感器会产生负输出电压,因此表中的 mV 值是 2 进制补码格式。传感器输出电压(单位= mV)遵循表 71 中所示的约定,其中第一位是符号,接下来的 11 位是整数部分,其余 12 位是小数部分。

表 68. 有源模拟温度传感器故障数据字节

位	故障	错误类型	说明	输出结果
D31	硬故障	硬	$V_{ADC} < -1.75 \cdot V_{REF}/2$ 或 $V_{ADC} > 1.75 \cdot V_{REF}/2$	-999
D30	范围硬故障	硬	$V_{ADC} < -1.75 \cdot V_{REF}/2$ 或 $V_{ADC} > 1.75 \cdot V_{REF}/2$	-999
D29	未使用	不适用	不适用	不适用
D28	未使用	不适用	不适用	不适用
D27	软、高于	软	V _{ADC} > 表中最后一点电压	可疑读数
D26	软、低于	软	V _{ADC} < 表中第二点 (P1) 电压	可疑读数
D25	软、范围	软	V _{ADC} < -1.125 • V _{REF} /2 或 V _{ADC} > 1.125 • V _{REF} /2	可疑读数
D24	结果有效 (始终为 1)	不适用	不适用	不适用

有源模拟温度传感器表的格式

表 69. 有源模拟温度传感器表的格式

地址	字节 0	字节 1	字节 2	字节 3	字节 4	字节 5
0x250+6· 起始地址		表条目 #1 (mV)		- 4	長条目 #1 (开尔文)	
0x250+6· 起始地址 +6		表条目 #2 (mV)		= 4	長条目 #2(开尔文)	
0x250+6·起始地址 +12		表条目 #3 (mV)		= 4	長条目 #3(开尔文)	
•		•			•	
•		•			•	
•		•			•	
最大地址 = 0x3CA		表条目 #64 (mV)		表	条目 #64(开尔文)

温度值为以开尔文单位输入的不带符号的定点值,但 LTC2986 报告的最终温度以 ℃ 或 ℉ 为单位。传感器温度(开尔文)遵循表 72 中 所示的约定,其中前 14 位是整数部分,其余 10 位是小数部分。在此示例中,定制模拟传感器连接到 CH2,并使用表 73 中所示的通道分配数据进行编程。在这种情况下,定制数据从

存储器位置 0x250 开始 (起始地址为 0)。起始地址 (偏移 0x250) 输入到通道分配数据的模拟传感器数据指针字段中。将表数据长度 -1 (在此示例中为 9) 输入到模拟温度传感器通道分配字的数据长度字段中。有关 10 个六字节表条目的位置和格式信息,请参见表 70。

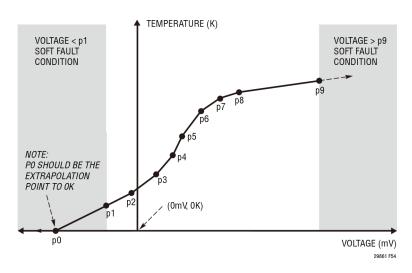


图 54. 有源模拟温度传感器表示例

耒	70.	有源模拟温度传感器示例表的数据存储器映射
A.C	,	H // A THE 1 / A / III / DE 1 & A / A A / A / A / A / A / A / A / A /

	传感器输出电压									
点	(mV)	开尔文温度	起始地址	结束地址	字节 0	字节 1	字节 2	字节 3	字节 4	字节 5
P0	-50.22	0	0x250	0x255						
P1	-30.2	99.1	0x256	0x25B						
P2	-5.3	135.4	0x25C	0x261						
P3	20.33	220.3	0x262	0x267						
P4	40.2	361.2	0x268	0x26D		mV 数据			温度数据	
P5	55.3	522.1	0x26E	0x273						
P6	88.3	720.3	0x274	0x279						
P7	132.2	811.2	0x27A	0x27F						
P8	188.7	922.5	0x280	0x285						
P9	460.4	1000	0x286	0x28B						

表 71. 有源模拟温度传感器电压值示例

				字节	j 0							字节	方 1							字节	5 2			
	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	B9	B8	B7	В6	B5	B4	В3	B2	B1	В0
mV	符号	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º	2^{-1}	2-2	2^{-3}	2^{-4}	2^{-5}	2-6	2-7	2-8	2-9	2 ⁻¹⁰	2-11	2 ⁻¹²
-50.22	1	1	1	1	1	1	0	0	1	1	0	1	1	1	0	0	0	1	1	1	1	0	1	1
-30.2	1	1	1	1	1	1	1	0	0	0	0	1	1	1	0	0	1	1	0	0	1	1	0	1
-5.3	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1	1	0	0	1	1	0	0	1	1
20.33	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	0
40.2	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	1	0	0	1	1	0	0	1	1
55.3	0	0	0	0	0	0	1	1	0	1	1	1	0	1	0	0	1	1	0	0	1	1	0	1
88.3	0	0	0	0	0	1	0	1	1	0	0	0	0	1	0	0	1	1	0	0	1	1	0	1
132.2	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	0	1	1	0	0	1	1
188.7	0	0	0	0	1	0	1	1	1	1	0	0	1	0	1	1	0	0	1	1	0	0	1	1
460.4	0	0	0	1	1	1	0	0	1	1	0	0	0	1	1	0	0	1	1	0	0	1	1	0

表 72. 有源模拟温度传感器温度值示例

		****	~	·	<u> </u>																			
				字节	† 3							字节	5 4							字章	节 5			
	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	B8	B7	B6	B5	B4	В3	B2	B1	ВО
温度	2 ¹³	2 ¹²	211	210	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º	2-1	2-2	2^{-3}	2-4	2^{-5}	2-6	2-7	2-8	2-9	2-10
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
99.1	0	0	0	0	0	0	0	1	1	0	0	0	1	1	0	0	0	1	1	0	0	1	1	0
135.4	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	1	0	0	1
220.3	0	0	0	0	0	0	1	1	0	1	1	1	0	0	0	1	0	0	1	1	0	0	1	1
361.2	0	0	0	0	0	1	0	1	1	0	1	0	0	1	0	0	1	1	0	0	1	1	0	0
522.1	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	1	0	0	1	1	0
720.3	0	0	0	0	1	0	1	1	0	1	0	0	0	0	0	1	0	0	1	1	0	0	1	1
811.2	0	0	0	0	1	1	0	0	1	0	1	0	1	1	0	0	1	1	0	0	1	1	0	0
922.5	0	0	0	0	1	1	1	0	0	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0
1000	0	0	0	0	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0

表 73. 有源模拟温度传感器通道分配数据示例

配置字段	说明	# 位	二进制数据	存	储	器	地址	址	21	4	1	字信	者器	暑地	址	2	215	5	存	储	器	地	址	2	16	5	存	诸智	居地	山山	2	17
(1) 模拟温度	传感器类型	5	11110	1 1	1	1	0)																								
传感器																																
(2) 单端/差分	单端或差分	1	0					0																								
(3) 未使用	设置为 0	14	00000000000000						0	0	0	0	0	0	0	0	0	0	0	0	0 0)										
(4) 直接 ADC	起始地址 = 0	6	000000																			()	0	0	0	0 0)				
表数据指针	(从 0x250 开始)																															
(5) 直接 ADC	数据长度-1=9	6	001001																									0	0	1	0	0 1
表数据长度-1																																

直接 ADC 测量

除了测量温度传感器外, LTC2986 还可以执行直接 ADC (即电压) 测量。可以将任何通道配置为执行直接单端或差分测量。直接 ADC 通道分配遵循图 55 中所示的通用约定。32 位通道分配字被编程到与输入通道相对应的存储器位置。

直接 ADC 模式可配置为单端和差分输入。对于单端和差分模式,正输入通道与 CH_{ADC} 相连。ADC 负输入在单端测量时为 COM,在差分测量时则为 CH_{ADC-1} 。对于单端测量,可以使用任意高于 GND-50mV 且低于 $V_{DD}-0.3V$ 的电压驱动 COM。直接 ADC 测量结果可在与转换通道相对应的存储器位置中获得。

直接 ADC 操作提供两种结果模式选项。第一种模式是直接电压输出,第二种模式是表驱动式输出。当配置为直接电压输出时,LTC2986 将返回 24 位定点电压结果以及 8 位故障状态字节。配置为表查找时,LTC2986 将对原始 ADC 电压执行表查找,并返回 24 位带符号整数的表查找结果以及 8 位故障状态字节。

图 56 至图 58 显示了典型积分非线性变化,对于差分输入电压(±V_{REF}/2)和 V_{REF}/2 共模输入电压,它是电源电压和温度的函数。

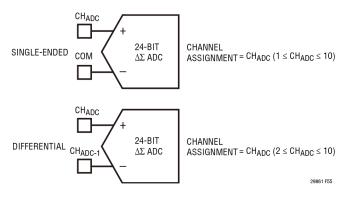


图 55. 直接 ADC 通道分配约定

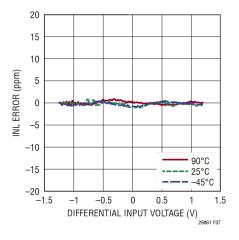


图 56.V_{DD} = 5.25V 时积分非线性与温度的函数关系

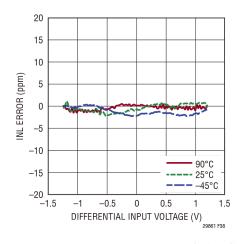


图 57.V_{DD} = 3.3V 时积分非线性与温度的函数关系

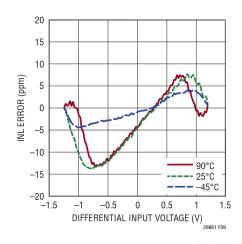


图 58.V_{DD} = 2.85V 时积分非线性与温度的函数关系

LINEAR

电压输出模式

对于标准(非表格模式)电压输出模式,差分读数的通道分配字为 0xF000 0000,单端读数为 0xF400 0000 (参见表 75)。

数据采用 32 位字表示 (参见表 74), 其中 8 个最高有效位为故障位, 最低 24 位是以伏特 为单位的 ADC 读数。对于直接 ADC 读数,硬 故 障 错 误 不 会 箝 位 数 字 输 出 。 超 出 $\pm 1.125 \bullet V_{REF}/2$ 的读数在 LTC2986 的正常精度 范围以外,将标记为软故障;这些结果应该被 舍弃。超出 $\pm 1.75 \bullet V_{REF}/2$ 的读数在 LTC2986 的可用范围以外,这些结果为硬故障,应该被 舍弃。

表 74. 直接 ADC 电压输出结果格式

				起	!始地址	Ł					起	始地	址 + ′	ı					起始	油均	止 +	2						也址 東地		3	
	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7[D6[)5D	4D3	D2	D1	D0
				故	障数排	3			名	符号	MSB																		LS	iВ	
伏特	传感	范围	不	不	软	软	软	有效																							
	器硬	硬故	适	适	高于	低于	范围	始终																							
	故障	障	用	用				为 1	± 2	2V 1	V	0.5V	0.25V																		
										整数										小娄	文										
$>V_{REF}$	1	1	0	0	1	0	1	1		箝位	至出	厂设	置的	V_{REF}	值																
1.75 • V _{REF} /2	1	1	0	0	1	0	1	1	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0
1.125 • V _{REF} /2	0	0	0	0	1	0	1	1	0	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0
$V_{REF}/2$	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0
2-21V	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0
-2-21V	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1
$-V_{REF}/2$	0	0	0	0	0	0	0	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1
−1.125 • V _{REF}	0	0	0	0	0	1	1	1	1	1	0	1	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1
−1.75 • V _{REF}	1	1	0	0	0	1	1	1	1	0	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1
$<$ $-V_{REF}$	1	1	0	0	0	1	1	1	4	箝位:	至出	厂设	置的	-V _{REF}	值																

示例: 带差分输入的直接 ADC

表 75. 直接 ADC 通道分配数据

					7	字作	者岩	몱地	也址	E			7	储	器	地:	址			:	存	诸	器均	也均	ıŁ			:	存	诸	器均	也均	Ŀ	
配置字段	说明	# 位	二进制数据			0)x2	200)					02	(20)1					(0x	20	2						0x	20	3		
(1) 直接 ADC	直接测量 ADC	5	11110	1	1	1	1	0																										
(2) 单端/差分	单端或差分	1	0						0																									
(3) TBL	表查找	1	0							0																								
(4) 未使用	设置为 0	13	0000000000000								0	0	0	0 0	0	0	0	0	0	0	0	0												
(4) 直接 ADC	起始地址 = 0	6	000000																				0	0	0	0	0	0						
表数据指针																																		
(5) 直接 ADC	数据长度-1=0	6	000000																										0	0	0	0	0	0
表数据长度-1																																		

表查找模式

对于表驱动式输出模式,通道分配字前两个字 节在差分读数中为 0xF200,在单端读数中为 0xF600。12 个最低有效位包含定制表数据的长 度和指针信息。当 LTC2986 配置为表驱动式输出数据时,它将获取 ADC 的电压值并执行表查找。表查找的结果格式为 24 位带符号整数和错误状态字节。

表 76. 直接 ADC 表查找结果格式

			起	始地址	:					起如	冶地:	址 +	· 1					起	2始均	地址	+ 2	!		起始均	也址	+ 3 (\$	结束均	也址)
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22 [)21 I	D20	D19	D18	D17)16[D15 [D14	D1.	3 D1	2 D1	1 C)10 D9	D8	D7 D6 I)5 D	4 D3	D2	D1 D0
			故	障数据	i			符号	MSB																			LSB
传感	范围	不	不	软	软	软	有效																					
器硬	硬故障	适	适	高于	低于	范围	始终为									表查	找结	吉果		带符	号生	೬数						
故障		用	用				1																					

表 77. 直接 ADC 表查找故障数据字节

位	故障	说明
D31	传感器硬故障	V _{ADC} <-1.75 • V _{REF} /2 或 V _{ADC} >1.75 • V _{REF} /2
D30	范围硬故障	V _{ADC} < -1.75 • V _{REF} /2 或 V _{ADC} > 1.75 • V _{REF} /2
D29	未使用	不适用
D28	未使用	不适用
D27	软高于	V _{ADC} > 表中最后一点电压
D26	软低于	V _{ADC} < 表中第二点 (P1) 电压
D25	软范围	V _{ADC} <-1.125 • V _{REF} /2 或 V _{ADC} >1.125 • V _{REF} /2
D24	结果有效 (始终为 1)	不适用

表 78. 直接 ADC 表格式

地址	字节 0 字节 1	字节 2	字节 3	字节 4	字节 5
0x250+6・起始地址	表条目 #1 (mV)			表条目 #1(整数值))
0x250+6・起始地址 +6	表条目 #2 (mV)			表条目 #2(整数值))
0x250+6・起始地址 +12	表条目 #3 (mV)			表条目 #3 (整数值))
•	•			•	
•	•			•	
•	•			•	
	_			·	
最大地址 = 0x3CA	表条目 #64 (mV)		=	表条目 #64 (整数值	

应用信息

示例: 带差分输入的直接 ADC 和表查找

在此示例中,实现了一个简化的定制曲线(参见图 59)。点 P1 到 P9 表示定制器件的正常操作范围。点 P9 之上的电压读数表示软故障,并且报告的结果是使用由点 P8 和 P9 (表中最后两个条目)确定的斜率的线性外推值。低于 P1 点的电压读数也报告为软故障。报告的结果是点 P1 和 P0 之间的外推值,其中 P0 通常是可能的最低传感器输出电压。传感器输出电压低于 P0 (以 mV 为单位)时,将报告 P0 输出。

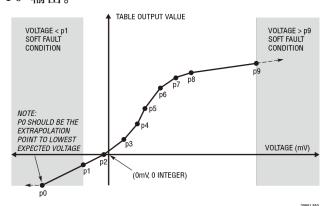


图 59. 直接 ADC 表示例

为了使用定制 ADC 表对 LTC2986 进行编程, 需将 mV 数据和结果数据都转换为 24 位二进制值 (表示为表中两个 3 字节条目)。为了适应具有双极性输出电压的传感器,输入到LTC2986 的 mV 值为二进制补码形式。传感器输出电压 (单位= mV) 遵循表 80 中所示的约定,其中第一位是符号,接下来的 11 位是整数部分,其余 12 位是小数部分。

表条目的结果端输入为带符号的 24 位整数,LTC2986 报告的最终结果也是 24 位整数。结果格式遵循表 81 中所示的约定,其中第一位是符号位,其余 23 位是整数值。在此示例中,定制差分传感器连接到 CH2,并使用表 82 中所示的通道分配数据。在这种情况下,定制数据从存储器位置 0x250 开始(起始地址为 0)。起始地址(偏移 0x250)输入到通道分配数据的数据指针字段中。将表数据长度 -1(在此示例中为 9)输入到传感器通道分配字的数据长度字段中。有关 10 个六字节表条目的位置和格式信息,请参见表 79。

表 79. 直接 ADC 表数据存储器映射示例

,	传感器输出电压									
点	(mV)	整数输出数据	起始地址	结束地址	字节 0	字节 1	字节 2	字节 3	字节 4	字节 5
P0	-50.22	-100	0x250	0x255						
P1	-30.2	-50	0x256	0x25B						
P2	-5.3	0	0x25C	0x261						
Р3	20.33	2203	0x262	0x267						
P4	40.2	3612	0x268	0x26D		mV 数据		3	整数输出数 排	居
P5	55.3	5221	0x26E	0x273						
P6	88.3	7203	0x274	0x279						
P7	132.2	8112	0x27A	0x27F						
P8	188.7	9225	0x280	0x285						
P9	460.4	10000	0x286	0x28B						

应用信息

表 80. ADC 电压值示例

				字节	5 0							字节	† 1							字节	5 2			
	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	B8	B7	В6	B5	B4	В3	B2	B1	ВО
mV	符号	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º	2^{-1}	2-2	2^{-3}	2^{-4}	2^{-5}	2 ⁻⁶	2^{-7}	2-8	2-9	2 ⁻¹⁰	2-11	2-12
-50.22	1	1	1	1	1	1	0	0	1	1	0	1	1	1	0	0	0	1	1	1	1	0	1	1
-30.2	1	1	1	1	1	1	1	0	0	0	0	1	1	1	0	0	1	1	0	0	1	1	0	1
-5.3	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1	1	0	0	1	1	0	0	1	1
20.33	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	0
40.2	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	1	0	0	1	1	0	0	1	1
55.3	0	0	0	0	0	0	1	1	0	1	1	1	0	1	0	0	1	1	0	0	1	1	0	1
88.3	0	0	0	0	0	1	0	1	1	0	0	0	0	1	0	0	1	1	0	0	1	1	0	1
132.2	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	0	1	1	0	0	1	1
188.7	0	0	0	0	1	0	1	1	1	1	0	0	1	0	1	1	0	0	1	1	0	0	1	1
460.4	0	1	0	1	1	1	0	0	1	1	0	0	0	1	1	0	0	1	1	0	0	1	1	0

表 81. 表输出值示例

· · · · · · · · · · · · · · · · · · ·																								
				字节	5 3							字章	节 4							字节	5 5			
	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	B8	В7	В6	B5	B4	В3	B2	B1	ВО
温度	符号	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶	2 ¹⁵	214	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º
-100	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	0	0
-50	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2203	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1	1	0	1	1
3612	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	1	1	0	0
5221	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	1	0	0	1	0	1
7203	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1
8112	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	1	0	0	0	0
9225	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1
10000	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	0	0	0	1	0	0	0	0

表 82. 表查找模式通道分配数据示例

配置字段	说明	# 位	二进制数据	存值	诸岩	몱놴	坦	<u> </u>	214	ŀ	存	储	器	地块	止	21	5	7.	字佾	铝	財	也均	Ŀ	21	6	7	字信	絽	몱地	址	2	17
(1) 直接 ADC	直接测量 ADC	5	11110	1 1	1	1	0																									
(2) 单端/差分	单端或差分	1	0					0																						Ш		
(3) TBL	表查找	1	1						1																					Ш		
(4) 未使用	设置为 0	13	00000000000000							0 () (0	0	0	0	0	0	0	0	0	0									Ш		
(5) 直接 ADC	起始地址 = 0	6	000000																			0	0	0	0	0	0					
表数据指针	(从 0x250 开始)																													Ш		
(5) 直接 ADC	数据长度-1=9	6	001001																									0	0	1	0	0 1
表数据长度-1																																

补充信息

2 周期和 3 周期转换模式

LTC2986 执行多次内部转换以确定传感器温度。通常,每个温度结果需要两个内部转换周期,最大输出时间为 167.2ms。LTC2986 使用这两个周期自动消除失调/失调漂移误差,降低 1/f 噪声,自动校准内部匹配电流源,同时提供 50/60Hz 噪声抑制。

除了每个结果执行两个转换周期外,LTC2986还通过利用第三个转换周期提供了一些独特的功能。在这种情况下,最大输出时间为 251ms,并且保留了 2 周期模式的所有优点(参见表83)。

利用 3 周期转换模式的第一个功能是内部开路检测模式。通常,通过在热电偶和 V_{DD} 间增加高阻值上拉电阻来执行热电偶开路检测。在 2 周期转换模式 (OC = 0) 下工作时,此方法可与 LTC2986 配合使用。该外部上拉电阻会与输入保护电路相互作用,从而导致温度测量误差和噪声增加。通过选择内部开路检测模式 (OC = 1) 可以消除这些问题。在这种情况下,电流脉冲持续 8ms,允许在一个转换周期间建立稳定状态。接下来是正常的热电偶的 2 周期转换测量。如果热电偶损坏,电流脉冲将导致开路故障。

利用第 3 个转换周期的第二个功能是热敏电阻激励电流自动范围调整。由于热敏电阻的阻值变化会跨多个数量级,因此低阻区域的性能会受到高阻工作区域所需的小电流的影响。为了确定热敏电阻的阻态最佳电流,自动范围调整模式在第一个转换周期期间施加测试电流。然后,它利用此电流以正常的 2 周期测量执行热敏电阻测量。如果将 3 周期热敏电阻测量用作冷结点传感器进行 2 周期热电偶测量,则热电偶转换结果在 3 个周期后准备就绪。

需要第 3 个转换周期的第三个功能是三电流 二极管测量。在这种模式下,将三个比例电流 施加到外部二极管,以消除寄生引线电阻效应。 这在二极管位于远端和需要消除明显的未知寄 生引线电阻的应用中非常有用。如果将 3 周期 二极管或热敏电阻测量用作冷结点传感器进行 2 周期热电偶测量,则热电偶转换结果在 3 个 周期后准备就绪。

表 83.2 周期和 3 周期转换模式

传感器类型	配置	转换周期数	最大输出时间
热电偶	OC = 0	2	167.2ms
RTD	全部	2	167.2ms
热敏电阻	非自动范围调整电流	2	167.2ms
二极管	2 周期读数	2	167.2ms
热电偶	OC = 1	3	251ms
热电偶	OC = 0,3 周期冷结点	3	251ms
热敏电阻	自动范围调整电流	3	251ms
二极管	3 周期读数	3	251ms

在多个通道上连续运行转换

通常,在启动转换状态期间,在由写入存储器位置 0x000 的通道号(位 B [4:0] = 00001 至 01010)确定的单个输入通道上开始转换测量。通过将位 B [4:0] = 00000 写入存储器位置 0,可以启动多个连续转换。将在屏蔽寄存器中所选的每个通道上启动转换(参见表 84)。

例如,使用表 85 中所示的屏蔽数据,在将 1000000 写入存储器位置 0 之后,会在 CH10、CH8、CH6 和 CH1 上连续启动转换。

补充信息

一旦转换开始,中断引脚变为低电平,并保持低电平直至所有转换完成。如果为未分配数据的通道设置了屏蔽寄存器,则跳过该转换步骤。所有结果都存储在转换结果存储位置,并可在测量周期结束时进行读取。

进入/退出睡眠模式

通过将 0x97 写入存储器位置 0x000,可以将LTC2986 置于睡眠模式。根据存储器写入操作(参见图 2),在 CS 的上升沿器件进入低功耗睡眠状态。它会保持这种状态,直到 CS 置位为低电平或 RESET 置位。一旦这两个信号的一个被置位,LTC2986 就会开始其启动周期,如状态 1 所述:本数据手册的"启动"部分。

MUX 配置延迟

LTC2986 针对每个温度结果执行 2 或 3 个内部转换周期。执行每个转换周期均使用不同的激励和输入多路复用器配置。在每次转换之

前,这些激励电路和输入开关配置都会发生变化,内部 1ms (典型值)的延迟可确保大多数情况下在转换周期之前建立稳定状态。

如果外部传感器电路 (用于热敏电阻或 RTD 的旁路大电容) 中存在过大的 RC 时间常数,则可能增加电流源激励和 MUX 切换之间的建立时间。额外延迟由写入 MUX 配置延迟寄存器 (存储器位置 0x0FF) 的值决定。将写入此存储器位置的值乘以 100μs,最大额外MUX 延迟为 25.5ms (即 0x0FF = 255 • 100μs)。

基准电压源考虑因素

将 LTC2986 焊接至 PC 板上产生的机械应力会导致输出电压基准偏移和温度系数变化。这两个变化相互之间并无联系。例如,电压可能发生偏移而温度系数并没有偏移。为减少与应力相关的偏移的影响,请将基准电压源安装于PC 板短边附近或拐角处。

表 84. 多个转换屏蔽寄存器

存储器位置	B7	В6	B5	B4	В3	B2	B1	В0
0x0F4		保留						
0x0F5								
0x0F6							CH10	CH9
0x0F7	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1

表 85. 屏蔽寄存器选择 CH10、CH8、CH6 和 CH1 示例

		·						
存储器位置	B7	В6	B5	B4	В3	B2	B1	В0
0x0F4		保留						
0x0F5								
0x0F6							1	0
0x0F7	1	0	1	0	0	0	0	1

定制热电偶

除了数字化标准热电偶外, LTC2986 还可以对用户可编程的定制热电偶进行数字化处理(热电偶类型 = 0b01001, 参见表 16)。定制传感器数据(最少 3 个, 最多 64 对)按顺序位于存储器中,并将 mV 与温度的关系以 6 字节组块形式进行单调递增的表格式数据排列(参见表 86)。

表 86. 定制热电偶表格式数据格式

	字节 0 字节	字节 3 字节
地址	1 字节 2	4 字节 5
0x250+6• 起始	表条目 #1 (mV)	表条目 #1(开尔文)
地址		
0x250+6• 起始	表条目 #2 (mV)	表条目 #2(开尔文)
地址 +6		
0x250+6•起始	表条目 #3 (mV)	表条目 #3(开尔文)
地址 +12		
•	•	•
•	•	•
•	•	•
最大地址 = 0x3CA	表条目 #64 (mV)	表条目 #64(开尔文)

定制热电偶示例

在此示例中,实现了一个简化的热电偶曲线 (参见图 60)。点 P1 到 P9 表示定制热电偶的 正常操作范围。点 P9 之上的电压读数表示软 故障,并且报告的温度是使用由点 P8 和 P9 (表 87 中最后两个条目)确定的斜率的线性 外推值。低于 P1 点的电压读数也报告为软故障。报告的温度是点 P1 和 P0 之间的外推值,其中 P0 通常是 0 开尔文的传感器输出电压。如果 P0 高于 0 开尔文,那么低于 P0 (以 mV 为单位)的所有传感器输出电压将报告 0 开尔文。低于 P1 的传感器读数报告为软故障

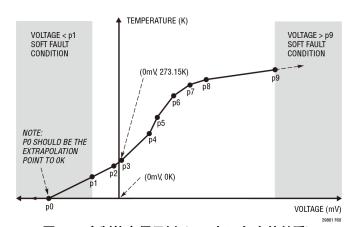


图 60. 定制热电偶示例 (mV 与开尔文的关系)

定制热电偶

为了使用定制热电偶表对 LTC2986 进行编程, 需将 mV 数据和开尔文数据都转换为 24 位 二进制值 (表示为表中两个 3 字节条目)。由 于大多数热电偶产生负输出电压,输入到 LTC2986 的 mV 值为二进制补码形式。传感器输出电压 (单位= mV) 遵循表 88 中所示的约定,其中第一位是符号,接下来的 9 位是整数部分,其余 14 位是小数部分。

表 87. 热电偶示例 mV 与开尔文 (K) 温度的关系及数据存储器映射

'	传感器输出电压									
点	(mV)	开尔文温度	起始地址	结束地址	字节 0	字节 1	字节 2	字节 3	字节 4	字节 5
P0	-50.22	0	0x250	0x255						
P1	-30.2	99.1	0x256	0x25B						
P2	-5.3	135.4	0x25C	0x261						
P3	0	273.15	0x262	0x267						
P4	40.2	361.2	0x268	0x26D		mV 数据			温度数据	
P5	55.3	522.1	0x26E	0x273		(参见表 88)			(参见表 89))
P6	88.3	720.3	0x274	0x279						
P7	132.2	811.2	0x27A	0x27F						
P8	188.7	922.5	0x280	0x285						
P9	460.4	1000	0x286	0x28B						

表 88. 热电偶输出电压值示例 (mV)

				字节	j 0							字章	† 1							字节	5 2			
	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	B8	В7	В6	B5	B4	В3	B2	B1	ВО
mV	符号	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2-2	2^{-3}	2^{-4}	2 ⁻⁵	2^{-6}	2-7	2-8	2-9	2-10	2-11	2-12	2-13	2-14
-50.22	1	1	1	1	0	0	1	1	0	1	1	1	0	0	0	1	1	1	1	0	1	1	0	0
-30.2	1	1	1	1	1	0	0	0	0	1	1	1	0	0	1	1	0	0	1	1	0	1	0	0
-5.3	1	1	1	1	1	1	1	0	1	0	1	0	1	1	0	0	1	1	0	0	1	1	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
40.2	0	0	0	0	1	0	1	0	0	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0
55.3	0	0	0	0	1	1	0	1	1	1	0	1	0	0	1	1	0	0	1	1	0	0	1	1
88.3	0	0	0	1	0	1	1	0	0	0	0	1	0	0	1	1	0	0	1	1	0	0	1	1
132.2	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0
188.7	0	0	1	0	1	1	1	1	0	0	1	0	1	1	0	0	1	1	0	0	1	1	0	0
460.4	0	1	1	1	0	0	1	1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1

定制热电偶

为了简化温度字段,温度值为以开尔文单位输入的不带符号的值,但 LTC2986 报告的最终温度以 ℃ 或 °F 为单位 (参见表 9)。传感器温度 (开尔文) 遵循表 89 中所示的约定,其中前 14 位是整数部分,其余 10 位是小数部分。

在此示例中,定制热电偶连接到 CH1,冷结点传感器连接到 CH2,使用表 90 中所示的通道分配

数据对其进行编程(类似格式请参阅图 9)。在这种情况下,定制数据从存储器位置 0x250 开始(起始地址为 0)。起始地址(偏移 0x250)输入到通道分配数据的定制热电偶数据指针字段中。将表数据长度 -1 (在此示例中为 9)输入到热电偶通道分配字的定制热电偶数据长度字段。请参阅表 87,其中 6 字节条目的数量为 10。

表 89. 热电偶温度值示例

				字节	5 3							字章	5 4							字节	5 5			
	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	В8	В7	В6	B5	B4	В3	B2	B1	ВО
温度	2 ¹³	2 ¹²	211	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º	2^{-1}	2-2	2^{-3}	2^{-4}	2 ⁻⁵	2-6	2-7	2-8	2-9	2 ⁻¹⁰
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
99.1	0	0	0	0	0	0	0	1	1	0	0	0	1	1	0	0	0	1	1	0	0	1	1	0
135.4	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	1	0	0	1
273.15	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	1
361.2	0	0	0	0	0	1	0	1	1	0	1	0	0	1	0	0	1	1	0	0	1	1	0	0
522.1	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	1	0	0	1	1	0
720.3	0	0	0	0	1	0	1	1	0	1	0	0	0	0	0	1	0	0	1	1	0	0	1	1
811.2	0	0	0	0	1	1	0	0	1	0	1	0	1	1	0	0	1	1	0	0	1	1	0	0
922.5	0	0	0	0	1	1	1	0	0	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0
1000	0	0	0	0	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0

表 90. 定制热电偶通道分配数据

			二进制																															
配置字段	说明	# 位	数据		存储	器:	地址	0	x20	00	存	储	器	地	址	0x	20	1	存	引	器	地	址	0:	κ 2 ()2	7	字储	器	地	址	0х	2()3
(1) 热电偶类型	类型定制	5	01001	0	1	0	0 1																											
(2) 冷结点通道	CH ₂	5	00010					0	0	0	1	0																						
指针																																		L
(3) 传感器配置	单端、10μA	4	1100										1	1	0	0																		
	开路																																	L
未使用	将这些位设置为	6	000000														0	0	0	0	0	0												
	0																																	L
(4) 定制热电偶数	起始地址 = 0	6	000000																				0	0	0	0	0	0						
据指针	(从 0x250 开始)																																	L
定制热电偶数据	数据长度 -1=9	6	001001																										0	0	1	0	0	1
长度-1	(10 个配对条目)																																	

定制 RTD

除了数字化标准 RTD 外, LTC2986 还可以对定制 RTD 进行数字化处理 (RTD 类型=0b10010, 参见表 30)。定制传感器数据 (最少3 个,最多 64 对)按顺序位于存储器中,并将 Ω 与温度的关系以 6 字节组块形式进行单调递增的表格式数据排列 (参见表 91)。

表 91. 定制 RTD/热敏电阻表格式数据格式

	字节 0 字节	字节 3 字节
地址	1 字节 2	4 字节 5
0x250+6·起始地址	表条目 #1 (Ω)	表条目 #1(开尔文)
0x250+6· 起始地址	表条目 #2(Ω)	表条目 #2(开尔文)
+ 6		
0x250+6·起始地址	表条目 #3 (Ω)	表条目 #3(开尔文)
+ 12		
•	•	•
•	•	•
•	•	•
最大地址 = 0x3CA	表条目 #64 (Ω)	表条目 #64 (开尔文)

定制 RTD 示例

在此示例中,实现了一个简化的 RTD 曲线 (参见图 61)。点 P1 到 P9 表示定制 RTD 的 正常操作范围。点 P9 之上的电阻读数表示软 故障,并且报告的温度是使用由点 P8 和 P9 (表中最后两个条目)确定的斜率的线性外推值。低于 P1 点的电阻读数也报告为软故障。报告的温度是点 P1 和 P0 之间的外推值,其中 P0 是 0Ω 时的传感器输出温度 (作为 P1 点下方的正确内插值,此点应为 0Ω)。

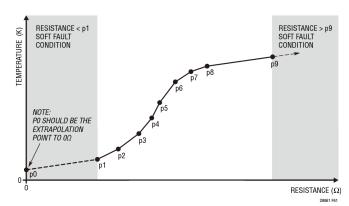


图 61. 定制 RTD 示例 (Ω 与开尔文的关系)

定制 RTD

定制 RTD 表数据的格式为 Ω (传感器输出电阻值) 与开尔文 (参见表 92) 的关系。每个表条目对占用 6 个字节。第一组数据可以从大于或等于 0x250 的任何存储器位置开始,并在 0x3CF 或低于 0x3CF 的位置结束。

为了使用定制 RTD 表对 LTC2986 进行编程, 需将电阻数据和开尔文数据都转换为 24 位二 进制值。传感器输出电阻 (单位=Ω) 遵循表 93 中所示的约定,其中前 13 位是整数部分,其余 11 位是小数部分。

为了简化温度字段,温度值为以开尔文单位输入的不带符号的值,但 LTC2986 报告的最终温度以°C或°F为单位。传感器温度(开尔文)遵循表 94 中所示的约定,其中前 14 位是整数部分,其余 10 位是小数部分。

表 92. RTD 示例电阻与开尔文温度的关系及数据存储器映射

	传感器输出电阻									
点	(Ω)	温度 (K)	起始地址	结束地址	字节 1	字节 2	字节 3	字节 1	字节 2	字节 3
P0	0	112.3	0x28C	0x291						
P1	80	200.56	0x292	0x297						
P2	150	273.16	0x298	0x29D						
Р3	257.36	377.25	0x29E	0x2A3						
P4	339.22	489.66	0x2A4	0x2A9		电阻数据			温度数据	
P5	388.26	595.22	0x2AA	0x2AF						
P6	512.99	697.87	0x2B0	0x2B5						
P7	662.3	765.14	0x2B6	0x2BB						
P8	743.5	801.22	0x2BC	0x2C1	·					
P9	2001.89	900.5	0x2C2	0x2C7	·					

表 93.RTD 电阻值示例

		· - :-	T + 2 + 12																					
				字节	5 1							字节	节 2							字节	5 3			
	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	В3	B2	B1	ВО
电阻	2 ¹²	211	2 ¹⁰	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º	2-1	2-2	2^{-3}	2^{-4}	2^{-5}	2 ⁻⁶	2-7	2-8	2-9	2 ⁻¹⁰	2-11
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
80	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
150	0	0	0	0	0	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
257.36	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	1	1	1	0	0	0	0	1
339.22	0	0	0	0	1	0	1	0	1	0	0	1	1	0	0	1	1	1	0	0	0	0	1	0
388.26	0	0	0	0	1	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	1	0	0
512.99	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	1	1
662.3	0	0	0	1	0	1	0	0	1	0	1	1	0	0	1	0	0	1	1	0	0	1	1	0
743.5	0	0	0	1	0	1	1	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0
2001.89	0	0	1	1	1	1	1	0	1	0	0	0	1	1	1	1	0	0	0	1	1	1	1	0

定制 RTD

在此示例中,定制 RTD 连接到 CH3/CH4, 检测电阻连接到 CH1/CH2,使用表 95 中所 示的通道分配数据对其进行编程(类似格式请 参阅图 18)。在这种情况下,定制数据从存储 器位置 0x28C 开始(起始地址为 10)。起始地 址 (偏移 0x250) 输入到通道分配数据的定制 RTD 数据指针字段中。将表数据长度 -1 (在此示例中为 9) 输入到通道分配字的定制 RTD 数据长度字段。请参阅表 91, 其中配对条目的总数为 10。

表 94.RTD 温度值示例

				字节	5 1							字章	节 2							字节	5 3			
	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	B9	B8	B7	В6	B5	B4	В3	B2	B1	В0
温度	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º	2-1	2-2	2 ⁻³	2-4	2 ⁻⁵	2 ⁻⁶	2-7	2-8	2-9	2 ⁻¹⁰
112.3	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	1	1	0	0	1	1
200.56	0	0	0	0	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	1	1	1	0	1
273.16	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	1
377.25	0	0	0	0	0	0	1	1	1	1	1	0	0	1	0	1	0	0	0	0	0	0	0	0
489.66	0	0	0	0	0	0	0	1	1	0	1	0	0	1	1	0	1	0	1	0	0	0	1	1
595.22	0	0	0	0	1	0	0	1	0	1	0	0	1	1	0	0	1	1	1	0	0	0	0	1
697.87	0	0	0	0	1	0	1	0	1	1	1	0	0	1	1	1	0	1	1	1	1	0	1	0
765.14	0	0	0	0	1	1	0	1	1	1	1	1	0	1	0	0	1	0	0	0	1	1	1	1
801.22	0	0	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	1	1	0	0	0	0	1
900.5	0	0	0	0	1	1	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0

表 95. 定制 RTD 通道分配数据

配置字段	说明	# 位	二进制 数据	存	储	器均	也址	E (0x2	00		存	储器	器	地址	址	0х	20	D	7	字佾	器	地	址	0)	(20)E	7	字储	絽	地	址	0)	(2))F
(1) RTD 类型	定制	5	10010	1	0	0	1 (0																											Τ
(2) 检测电阻通 道指针	CH ₂	5	00010					(0 () (0	1	0																						
(3) 传感器配置	四线式、无旋转、 无共用	4	1000											1	0	0	0																		
(4) 激励电流	25μΑ	4	0011															0	0	1	1														Π
(5) 曲线	定制未使用	2	00																			0	0												Π
(6) 定制 RTD 数据指针	起始地址 = 10	6	001010																					0	0	1	0	1	0						
(6) 定制 RTD 数据长度-1	数据长度 -1=9 10 个配对条目	6	001001																											0	0	1	0	0	1

除了数字化标准热敏电阻外, LTC2986 还可以对定制热敏电阻进行数字化处理 (热敏电阻类型=0b11011, 参见表 55)。定制传感器数据 (最少 3 个, 最多 64 对) 按顺序位于存储器中, 并将 Ω 与温度的关系以 6 字节组块形式进行单调递增的表格式数据排列 (参见表 91)。

定制热敏电阻表示例

在此示例中,实现了一个简化的热敏电阻 NTC (负温度系数) 曲线 (参见图 62)。点 P1 到 P9 表示定制热敏电阻的正常操作范围。点 P9 之上的电阻读数表示软故障,并且报告的

RESISTANCE < p1
SENSOR UNDER-RANGE
SOFT FAULT CONDITION

NOTE:
PO SHOULD BE THE
EXTRAPOLATION
POINT TO 00

P1

RESISTANCE > p9
SENSOR OVER-RANGE
SOFT FAULT CONDITION

RESISTANCE > p9
SENSOR OVER-RANGE
SOFT FAULT CONDITION

RESISTANCE (2)

RESISTANCE > p9
SENSOR OVER-RANGE
SOFT FAULT CONDITION

RESISTANCE (2)

图 62. 定制 NTC 热敏电阻示例 (Ω 与开尔文的关系)

温度是使用由点 P8 和 P9 (表中最后两个条目) 确定的斜率的线性外推值。低于 P1 点的电阻读数也报告为软故障。报告的温度是点 P1 和 P0 之间的外推值,其中 P0 是 0Ω 时的传感器输出温度 (作为 P1 点下方的正确内插值,此点必须为 0Ω)。

除了 NTC 热敏电阻外,还可以实现 PTC(正温度系数)热敏电阻(参见表 63)。在这两种情况下,表条目从最小电阻值开始,在最大电阻值处结束。

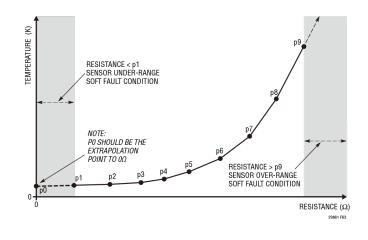


图 63. 定制 PTC 热敏电阻示例 (Ω 与开尔文的关系)

定制热敏电阻表数据的格式为 Ω (传感器输出电阻值) 与开尔文 (参见表 96) 的关系。每个表条目对占用 6 个字节。第一组数据可以从大于或等于 0x250 且低于 0x3CF 的任何存储器位置开始。

为了使用定制热敏电阻表对 LTC2986 进行编程,需将电阻数据和开尔文数据都转换为 24位二进制值。传感器输出电阻 (单位=Ω) 遵循

表 97 中所示的约定, 其中前 20 位是整数部分, 其余 4 位是小数部分。

为了简化温度字段,温度值为以开尔文单位输入的不带符号的值,但 LTC2986 报告的最终温度以°C或°F为单位。传感器温度(开尔文)遵循表 98 中所示的约定,其中前 14 位是整数部分,其余 10 位是小数部分。

表 96. NTC 热敏电阻电阻值示例与开尔文温度的关系及数据存储器映射

点	传感器输出电阻									
	(Ω)	温度 (K)	起始地址	结束地址	字节 1	字节 2	字节 3	字节 1	字节 2	字节 3
P0	0	457.5	0x2C8	0x2CD						
P1	80	400.2	0x2CE	0x2D3						
P2	184	372.3	0x2D4	0x2D9						
Р3	423.2	320.1	0x2DA	0x2DF						
P4	973.36	290.55	0x2E0	0x2E5		电阻数据			温度数据	
P5	2238.728	249.32	0x2E6	0x2EB						
P6	5149.0744	240.3	0x2EC	0x2F1						
P7	26775.18688	230	0x2F2	0x2F7						
P8	139230.9718	215.3	0x2F8	0x2FD						
P9	724001.0532	200	0x2FE	0x303						

表 97. 热敏电阻的电阻值示例

				字节	5 1							字章	5 2							字节	5 3			
	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	В3	B2	B1	ВО
电阻	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2°	2 ⁻¹	2 ⁻²	2 ⁻³	2-4
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
80	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
184	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0	0	0	0	0	0
423.2	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	1	1	1	0	0	1	1
973.36	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	1	1	0	1	0	1	0	1
2238.728	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	1	0	1	0	1	1
5149.074	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	1	1	0	1	0	0	0	1
26775.19	0	0	0	0	0	1	1	0	1	0	0	0	1	0	0	1	0	1	1	1	0	0	1	1
139231	0	0	1	0	0	0	0	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	0	0
724001.1	1	0	1	1	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	0	0	1

在此示例中,定制热敏电阻连接到 CH5,检测电阻连接到 CH3/4,使用表 99 中所示的通道分配数据对其进行编程 (类似格式请参阅图 27)。在这种情况下,定制数据从存储器位置 0x2C8 开始 (起始地址为 20)。起始地址 (偏

移 0x250) 输入到通道分配数据的定制热敏电阻数据指针字段中。将表数据长度-1 (在此示例中为 9) 输入到热敏电阻通道分配字的定制热敏电阻数据长度字段。

表 98. 热敏电阻温度值示例

				字节	力 1							字章	节 2							字节	† 3			
	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	B8	В7	В6	B5	B4	В3	B2	B1	ВО
温度	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	27	2 ⁶	25	2 ⁴	2 ³	2 ²	2 ¹	2º	2 ⁻¹	2-2	2-3	2-4	2 ⁻⁵	2-6	2 ⁻⁷	2-8	2-9	2 ⁻¹⁰
457.5	0	0	0	0	0	1	1	1	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0
400.2	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0	0	1	1	0	0	1	1	0	0
372.3	0	0	0	0	0	1	0	1	1	1	0	1	0	0	0	1	0	0	1	1	0	0	1	1
320.1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0
290.55	0	0	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	1	1
249.32	0	0	0	0	0	0	1	1	1	1	1	0	0	1	0	1	0	1	0	0	0	1	1	1
240.3	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	1	0	0	1	1	0	0	1	1
230	0	0	0	0	0	0	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
215.3	0	0	0	0	0	0	1	1	0	1	0	1	1	1	0	1	0	0	1	1	0	0	1	1
200	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0

表 99. 定制热敏电阻通道分配数据

			二进制																																	
配置字段	说明	# 位	数据	存	储	器	地	址	0х	21	0	存	俏	器	地	址	0	х2	11	;	存作	诸岩	몱垟	也均	Ŀ	0x	21	2	7	引	器	地	址	0	x2	13
(1) 热敏电阻类型	定制表	5	11011	1	1	0	1	1																												
(2) 检测电阻通道	CH ₄	5	00100						0	0	1	0	0																							
指针																																				L
(3) 传感器配置	单端	3	100											1	0	0																				L
(4) 激励电流	1μΑ	4	0011														0	0) 1	1																L
未使用	将这些位	3	00																		0	0	(0												
	设置为 0																																			L
(5) 定制热敏电阻	起始地址	6	010100																						0	1	0	1	0	0						
数据指针	= 20																																			L
(5) 定制热敏电阻	长度 -1=9	6	001001																												0	0	1	0	0	1
长度-1																																				

除了使用定制表驱动热敏电阻外,还可以直接将 Steinhart-Hart 系数输入 LTC2986 (热敏电阻 11010型,参见表 55)。Steinhart-Hart 系数是热敏电阻制造商提供的常用参数。Steinhart-Hart 公式为:

$$\frac{1}{T} = A + B \cdot \ln(R) + C \cdot \ln(R)^2 + D \cdot \ln(R)^3 + E \cdot \ln(R)^4$$
$$+ F \cdot \ln(R)^5$$

Steinhart-Hart 数据按顺序存储在大于或等于 0x250 且低于 0x3CF 的任何存储器位置中。 每个系数由标准的单精度 IEEE754 32 位值表示 (参见表 100)。

定制 Steinhart-Hart 热敏电阻示例

在此示例中,将 Steinhart-Hart 公式输入从位置 0x2C8 开始的存储器地址 (参见表 101)。

表 100. Steinhart-Hart 定制热敏电阻数据格式

地址	系数	值
0x250+4• 起始地址	Α	32 位单精度浮点格式
0x250+4• 起始地址 +4	В	32 位单精度浮点格式
0x250+4・起始地址 +8	С	32 位单精度浮点格式
0x250+4・起始地址 +12	D	32 位单精度浮点格式
0x250+4・起始地址 +16	Е	32 位单精度浮点格式
0x250+4• 起始地址 +20	F	32 位单精度浮点格式

表 101. 定制 Steinhart-Hart 数据示例

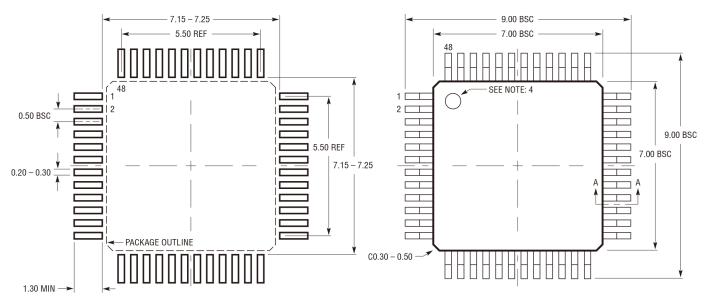
							指	数														厍	数											
系数	值	起始地址	符号	MSB							LSB	MSB																						LSB
Α	1.45E-03	0x2C8	0	0	1	1	1	0	1	0	1	0	1	1	1	1	1	0	0	0	0	0	1	1	0	1	1	1	1	0	1	1	0	1
В	2.68E-04	0x2CC	0	0	1	1	1	0	0	1	1	0	0	0	1	1	0	0	1	0	0	0	0	0	1	0	0	1	0	1	1	0	1	0
C	0	0x2D0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D	1.64E-07	0x2D4	0	0	1	1	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	0	1	0
E	0	0x2D8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F	0	0x2DC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

定制热敏电阻连接到 CH5, 检测电阻连接到 CH3/4, 使用表 102 中所示的通道分配数据对 其进行编程 (类似格式请参阅图 27)。在这种情况下,定制数据从存储器位置 0x2C8 开始

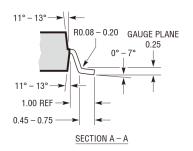
(起始地址为 30)。起始地址 (偏移 0x250) 输入到通道分配数据的定制热敏电阻数据指针字段中。数据长度 (设置为 0) 始终为 6 个 32 位浮点字。

表 102. 定制 Steinhart-Hart 通道分配数据

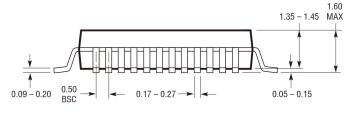
			二进制		存	诸智	器地	也均	Ŀ			7	字信	者岩	몱뉙	地	-			:	存	诸智	器均	也均	Ŀ			7	存值	诸岩	몱킈	也均	Ŀ	
配置字段	说明	# 位	数据			0x2	210)					()x2	211	<u> </u>					(0x	21	2					(0x2	21:	3		
(1) 热敏电阻类型	定制	5	11010	1 1	0	1	0																											
	Steinhart-Hart																										L							
(2) 检测电阻通道指针	CH ₄	5	00100					0	0	1	0	0															L							
(3) 传感器配置	单端	3	100										1	0	0																			
(4) 激励电流	1μA	4	0011													0	0	1	1															
未使用	将这些位	3	00																	0	0	0												
	设置为 0																										L							
(5) 定制热敏电阻数据	起始地址	6	011110																				0	1	1	1	1	0						
指针	= 30																																	
(5) 定制 Steinhart-Hart	固定为 6 个	6	000000																										0	0	0	0	0	0
长度始终设置为 0	32 位字																																	

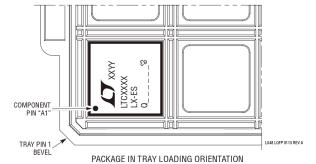


封装说明


有关最新封装图纸,请访问: http://www.analog.com/cn/product/LTC2986#packaging。

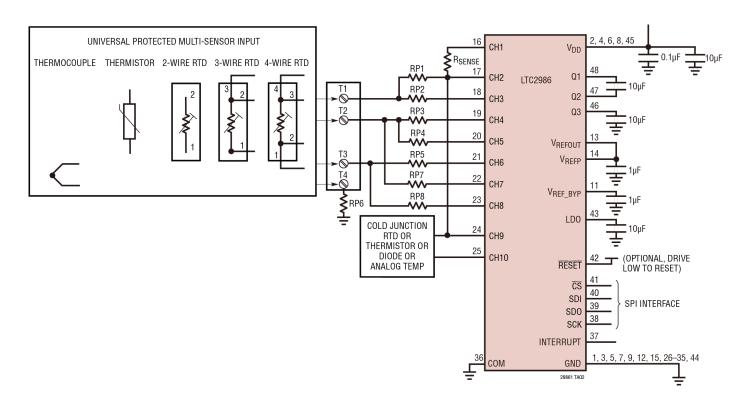
LX 封装 48 引脚塑料 LQFP (7mm×7mm)


(参考 LTC DWG#05-08-1760 Rev A)



RECOMMENDED SOLDER PAD LAYOUT APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

- NOTE: 1. PACKAGE DIMENSIONS CONFORM TO JEDEC #MS-026 PACKAGE OUTLINE
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DIMENSIONS OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.25mm ON ANY SIDE, IF PRESENT
- 4. PIN-1 INDENTIFIER IS A MOLDED INDENTATION, 0.50mm DIAMETER
- 5. DRAWING IS NOT TO SCALE


修订历史

修订版	日期	说明	页码
A	09/16	增加 H 级。	3 - 5

典型应用

通用输入允许热电偶、二极管、热敏电阻、三线式 RTD 和四线式 RTD 共享相同的硬件

相关器件

产品型号	说明	备注
LTC2983	多传感器高精度数字温度测量系统	与 LTC2986 引脚/软件兼容的 20 通道版本
LTC2984	具有 EEPROM 的多传感器高精度数字温 度测量系统	与 LTC2986-1 引脚/软件兼容的 20 通道版本
LTC2990	四通道 I2C 温度、电压和电流监控器	远程和内部温度, 14 位电压和电流, 内部 10ppm/℃ 基准电压源
LTC2991	八通道 I2C 电压、电流和温度监控器	远程和内部温度, 14 位电压和电流, 内部 10ppm/℃ 基准电压源
LTC2995	具警报输出的温度传感器和电压监控器	监控温度和两路电压,可调阈值,漏极开路警报输出,温度转换为电压输出, 集成 1.8V 基准电压源,±1℃(最大值) 精度
LTC2996	具警报输出的温度传感器	监控温度,可调阈值,漏极开路警报输出,温度转换为电压输出,集成 1.8V 基准电压源,±1℃(最大值) 精度
LTC2997	远程/内部温度传感器	温度转换为电压输出,集成 1.8V 基准电压源,±1℃(最大值) 精度
LTC2943	20V I2C 库仑计	监控电荷、电流、电压和温度,1%精度。适用于各种电池化学成分和容量