AP22850
10V SINGLE CHANNEL PROGRAMMABLE LOAD SWITCH

Description

AP22850 is an integrated P-Channel load switch, which features an adjustable ramp-up and discharge rate that can be set via an external capacitor and a resistor, respectively. In addition, it incorporates a "power good" output to flag when the switch is fully enhanced. The PChannel switch has a typical $\operatorname{RDS}(\mathrm{ON})$ of $21 \mathrm{~m} \Omega$, enabling a current handling capability of up to 8 A .

AP22850 is designed to operate from 4.5 V to 11 V . The near-zero quiescent supply current makes it ideal for use in battery powered distribution systems where power consumption is a concern.

Even as a P-Channel load switch, AP22850 does not require an external gate pull-up resistor, and consequently, stays true to its headlining feature of near-zero quiescent current specification. It also features circuitry to suppress fast input transients (with EN low) from coupling to VOUT

Feature

- Near-Zero Quiescent Current
- No External Gate Pull-Up Resistor Required
- Suppresses Fast Transients on VIN
- 4.5 V to 11 V Input Voltage Range
- Low Typical RDs(on) of $21 \mathrm{~m} \Omega$
- Adjustable Start-Up and Discharge Rate
- Small Form Factor Package W-DFN2020-8
- Footprint of just 4mm ${ }^{2}$
- Thermally Efficient Package with an Exposed Pad
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Lead-Free Plating (NiPdAu Finish over Copper Leadframe). Terminals: Solderable per MIL-STD-202, Method 208 (4)
- Weight: TBD grams (Approximate)
- Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Pin Assignments

Applications

- Integrated Load Switches in Ultrabook PCs
- Power Up/Down Sequencing in Ultrabook PCs
- Tablets
- Notebooks / Netbooks
- E-Readers
- Consumer Electronics
- Set-Top Boxes
- Industrial Systems
- Telecom Systems

[^0]
Typical Applications Circuit

Pin Descriptions

Pin Name	Pin Number	Function				
SS	1	Soft-Start Adjust An external capacitor connected between this pin and VOUT sets the ramp-up time of VOUT				
EN	2	Enable Input Active high				
VIN	3,4	Input Voltage Connects to the Source of the P-channel MOSFET				
GND	5	Ground		VBIAS	6	Supply Voltage Recommended range: $2.5 \mathrm{~V} \leq$ VBIAS $\leq 5.5 \mathrm{~V}$
:---:	:---:	:---				
PG	7	Power Good Open-drain output to indicate when the P-channel pass switch is fully enhanced				
DIS	8	Output Discharge An external resistor between DIS and VOUT sets the discharge rate of VOUT				
VOUT	PAD	Output Voltage PAD connects to the Drain of the P-channel MOSFET				

Functional Block Diagram

Absolute Maximum Ratings (@T $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.) (Note 4)

Symbol	Parameter		Ratings	Units
V_{IN}	Input Voltage		12.0	V
Vout	Output Voltage		12.0	V
VEN	Enable Voltage		6.0	V
$V_{\text {BIAS }}$	Bias Voltage		6.0	V
IL	Load Current		8.0	A
$\mathrm{T}_{\mathrm{J} \text { (max) }}$	Maximum Junction Temperature		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {ST }}$	Storage Temperature		-55 to +150	${ }^{\circ} \mathrm{C}$
PD	Power Dissipation	(Note 5)	0.35	W
		(Note 6)	1.8	W
RөJA	Thermal Resistance, Junction to Ambient	(Note 5)	300	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		(Note 6)	60	
$R_{\text {өлс }}$	Thermal Resistance, Junction to Case	-	5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes: 4. Stresses greater than the 'Absolute Maximum Ratings' specified above may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions exceeding those indicated in this specification is not implied. Device reliability may be affected by exposure to absolute maximum rating conditions for extended periods of time.
5. For a device surface mounted on minimum recommended pad layout, in still air conditions; the device is measured when operating in a steady state condition.
6. For a device surface mounted on 25 mm by 25 mm by 1.6 mm FR4 PCB with high coverage of single sided 2 oz copper, in still air conditions; the device is measured when operating in a steady state condition

Recommended Operating Conditions (@T $\mathrm{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Min	Max	Units
$\mathrm{V}_{\text {IN }}$	Input Voltage	4.5	11.0	V
$\mathrm{~V}_{\text {BIAS }}$	Bias Voltage	2.5	5.5	V
$\mathrm{~V}_{\mathrm{EN}}$	Enable Voltage	0	5.5	V
$\mathrm{~V}_{\mathrm{PG}}$	Power Good Voltage Range	0	11.0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\left(@ T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}-5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{nF}\right.$, unless otherwise specified.)

Symbol	Parameters	Conditions		Min	Typ	Max	Unit
IVIN_Q	$\mathrm{V}_{\text {IN }}$ Quiescent Current	Iout $=0 \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=10.0 \mathrm{~V}$	-	5.0	200	nA
			$\mathrm{V}_{\mathrm{IN}}=8.4 \mathrm{~V}$	-	3.0	200	
			$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$	-	1.0	200	
IvBiAs_Q	$V_{\text {BIAS }}$ Quiescent Current	$\mathrm{V}_{\text {IN }}=12.0 \mathrm{~V}$, IOUT $=0 \mathrm{~A}$		-	1.0	200	nA
IVIN_SD	$\mathrm{V}_{\text {IN }}$ Shutdown Current	$\mathrm{V}_{\mathrm{IN}}=12.0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$		-	2.0	200	nA
Ivbias_Sd	$\mathrm{V}_{\text {BIAS }}$ Shutdown Current	$\mathrm{V}_{\mathrm{IN}}=12.0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$		-	2.0	200	nA
Rds(on)	Load Switch On-Resistance	lout $=-1 \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=10.0 \mathrm{~V}$	-	21	31	$\mathrm{m} \Omega$
			$\mathrm{V}_{\mathrm{IN}}=8.4 \mathrm{~V}$	-	21	31	
			$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$	-	23	33	
$\mathrm{V}_{\text {IH_EN }}$	EN Input Logic High Voltage	-		1.0	-	-	V
$\mathrm{V}_{\text {IL_EN }}$	EN Input Logic Low Voltage	-		-	-	0.5	V
ILEAK_EN	EN Input Leakage	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\text {BIAS }}$		-	-	100	nA
RDs_dis	Discharge FET On-Resistance	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{IDIS}=10 \mathrm{~mA}$	$\mathrm{V}_{\text {BIAS }}=5.0 \mathrm{~V}$	-	8	11	Ω
			$\mathrm{V}_{\text {BIAS }}=2.5 \mathrm{~V}$	-	11	16	Ω
VoL_PG	Power Good Output Low Level	loL_PG $=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$		-	-	0.2	V
$\mathrm{loz}_{-} \mathrm{PG}$	Power Good High-Impedance Current	$\mathrm{V}_{\mathrm{PG}}=\mathrm{V}_{\text {BIAS }}, \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\text {BIAS }}$		-	-	0.05	$\mu \mathrm{A}$

AP22850

Switching Characteristics $\left(@ T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}-5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{nF}\right.$, unless otherwise specified)

Symbol	Parameters	Conditions		Min	Typ	Max	Unit
$t_{\text {RISE }}$	Output Rise Time	$R_{L}=10 \Omega, C_{s s}=10 n F$	$\mathrm{V}_{\text {IN }}=10.0 \mathrm{~V}$	-	100	-	$\mu \mathrm{s}$
			$\mathrm{V}_{\mathrm{IN}}=8.4 \mathrm{~V}$		102		
			$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$		104		
ton	Output Turn-ON Delay Time	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{S S}=10 \mathrm{nF}$	$\mathrm{V}_{\mathrm{IN}}=10.0 \mathrm{~V}$	-	70	-	$\mu \mathrm{s}$
			$\mathrm{V}_{\mathrm{IN}}=8.4 \mathrm{~V}$		75		
			$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$		82		
$\mathrm{t}_{\text {FALL }}$	Output Fall Time	$\begin{aligned} & R_{\mathrm{L}}=\text { Open, } \mathrm{R}_{\mathrm{DIS}}=240 \Omega, \\ & \mathrm{C}_{S S}=10 \mathrm{nF} \end{aligned}$	$\mathrm{V}_{\text {IN }}=10.0 \mathrm{~V}$	-	70	-	$\mu \mathrm{s}$
			$\mathrm{V}_{\mathrm{IN}}=8.4 \mathrm{~V}$		71		
			$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$		75		
toff	Output Turn-OFF Delay Time	$\begin{aligned} & R_{\mathrm{L}}=\text { Open, } \mathrm{R}_{\mathrm{DIS}}=240 \Omega, \\ & \mathrm{C}_{S S}=10 \mathrm{nF} \end{aligned}$	$\mathrm{V}_{\text {IN }}=10.0 \mathrm{~V}$	-	41	-	$\mu \mathrm{s}$
			$\mathrm{V}_{\mathrm{IN}}=8.4 \mathrm{~V}$		45		
			$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$		60		
t_{D}	Output Start Delay Time	$R_{L}=10 \Omega, C_{S S}=10 n F$	$\mathrm{V}_{\text {IN }}=10.0 \mathrm{~V}$	-	12	-	$\mu \mathrm{s}$
			$\mathrm{V}_{\text {IN }}=8.4 \mathrm{~V}$		16		
			$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$		22		
$t_{\text {PG }}$	Power Good Delay Time	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{S S}=10 \mathrm{nF}$	$\mathrm{V}_{\mathrm{IN}}=10.0 \mathrm{~V}$	-	250	-	$\mu \mathrm{s}$
			$\mathrm{V}_{\mathrm{IN}}=8.4 \mathrm{~V}$		230		
			$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$		205		

ton/toff Waveforms

AP22850

Typical Performance Characteristics $\left(@ T_{A}=+25^{\circ} \mathrm{C}\right.$, VBIAS $=5 \mathrm{~V}$, unless otherwise specified.)

AP22850

Typical Performance Characteristics (cont.) (@T $A=+25^{\circ} \mathrm{C}$, VBIAS $=5 \mathrm{~V}$, unless otherwise specified.)

Typical Performance Characteristics (cont.) (@T $=+25^{\circ} \mathrm{C}$, VBIAS $=5 \mathrm{~V}$, unless otherwise specified.)

Application Information

Theory of Operation

The AP22850 is a load switch that can be used to isolate or power-down part of a system in order to reduce power consumption, particularly in battery-powered devices. The PMOS pass element in AP22850 is turned on when the EN pin is pulled high. This provides a controlled current source to decrease the voltage on the SS pin to GND, effectively turning on the PMOS pass switch and connecting VOUT to VIN.

During the turn-on phase, once the SS voltage reaches close to GND, the PMOS pass switch is fully enhanced with maximum available overdrive. Power is deemed to be good and the Power Good (PG) output is pulled high via an external pull-up resistor. The rise-time on VOUT is controlled by the value of the external capacitor between the SS and VOUT pin.

When EN is pulled low, the switch turns off and isolates VOUT from VIN. In addition, PG is pulled to indicate that the power is no longer good. The discharge pin keeps VOUT grounded while EN is low. The fall time on VOUT is largely controlled by the value of the discharge resistor and the capacitance on the output.

Input and Output Voltage

The Input Voltage (VIN) should be between 4.5 V and 11 V . With the switch is activated, the Output Voltage (VOUT) will be the input voltage minus the voltage drop across the device.

Enable

The GPIO compatible EN input allows the output current to be switched on and off. A high signal (switch on) should be at least 1 V , and the low signal (switch off) no higher than 0.5 V .

This pin should not be left floating. It is advisable to hold EN low when applying or removing power

VBIAS

The VBIAS input provides a positive power supply to the controller circuitry. It should be set in the range of 2.5 V to 5.5 V . VBIAS signal is essential for the device to power up and should be set before the switch is enabled.

Power Good

Power Good is an open-drain output that indicates when the pass switch is enhanced enough to deliver current to the load. PG is high (opendrain high impedance) when power is deemed good, and low when the power is deemed to not be good.

PG can be pulled up to any voltage to a maximum of 11 V , although it is recommended to pull it up to VOUT with a resistor greater than $20 \mathrm{k} \Omega$. The advantage of pulling up PG to VOUT is that when EN is low, VOUT is also grounded. Thus, no power is wasted in the pull-up resistor

If this feature is not required, then PG pin can be left floating

Input and Output Capacitors

AP22850 does not require any capacitor on VIN for successful operation. In addition, this device has no input-to-output capacitor ratio stipulation to account for current through the body diode. However, to minimize voltage dip on VIN due to inrush current at start-up, a capacitor can be place on VIN.

For heavier loads, it is recommended that the VIN and VOUT trace lengths be kept to a minimum. In addition, a bulk capacitor ($\geq 10 \mu \mathrm{~F}$) may also be placed close to the VOUT pin. If using a bulk capacitor on VOUT, it is important to control the inrush current by choosing an appropriate softstart time in order to minimize the droop on the input supply.

AP22850

Application Information (cont.)

Adjustable Slew Rate/Soft-Start

SS pin allows the output ramp time of the switch to be controlled using an external capacitor ($\mathrm{C}_{s \mathrm{~s}}$). This timing capacitor is connected between the SS and VOUT pin. Rise times (in $\mu \mathrm{s}$) for different values of C_{SS} and V_{IN} are shown in the table below with $\mathrm{V}_{\text {BIAS }}=5.5 \mathrm{~V}$.

Rise Time (in $\mu \mathrm{s}$) Measured at $+\mathbf{2 5}{ }^{\circ} \mathrm{C}$ using 0805 X7R $\mathbf{1 0 \%} 50 \mathrm{~V}$ capacitors, $\mathrm{C}_{\mathrm{L}}=100 \mathrm{nF}, \mathrm{R}_{\mathrm{DIS}}=1 \mathrm{~K}, \mathrm{R}_{\mathrm{L}}=10 \Omega$				
$\mathrm{C}_{\mathrm{SSS}}^{\mathrm{V}_{\text {IN }}}$	4.5V	7.0V	9.0 V	11.0 V
1nF	13.6	12.4	12.0	11.4
10nF	97.2	99.2	98.8	97.9
100nF	955	1,075	1,154	1253

Table 1 Timing Capacitors and Rise Times

Adjustable Discharge

When EN goes low, VOUT is discharged to ground through the discharge resistor ($\mathrm{R}_{\text {DIS }}$) on the DIS pin. A value greater than 240Ω is recommended for RDIS.

While the discharge/fall-time on VOUT can be controlled using RDIs, capacitors on VOUT and SS also contribute to the timing. Higher discharge resistance increases the RC time constant and hence, the discharge time. Fall times (in $\mu \mathrm{s}$) for different values of $\mathrm{R}_{\mathrm{DIS}}$ and $\mathrm{V}_{\text {IN }}$ are shown in the table below with $\mathrm{V}_{\text {BIAS }}=5.5 \mathrm{~V}$

$\mathbf{1 , 2 0 6} \mathbf{2 5 0 m W} \mathbf{1 \%}$ Discharge resistor (Ω)	Fall Time (in $\boldsymbol{\mu s})$	
	$\mathbf{5 V}$	$\mathbf{1 1 V}$
$\mathbf{2 4 0}$	71.8	69.5
$\mathbf{1 , 0 0 0}$	264.2	276.7
$\mathbf{3 , 9 0 0}$	1,029	1,078

Table 2 Discharge Resistors and Output Voltage Fall Time

AP22850

Board Layout and Thermal Considerations

Due to the high current capacity of the load switch, PCB layout needs to ensure good thermal distribution during operation. The top and bottom of AP22850EV1, (the evaluation board for AP22850), can be seen below.

Figure 3 PCB Copper Layout \& Silk Screen - Top

Figure 4 PCB Copper Layout \& Silk Screen - Bottom

Thermal vias are used directly underneath the chip to help distribute the heat from the device. The ground plane on the underside of the board effectively acts as a large heatsink. The widths of the tracks carrying VIN and VOUT are kept wide. Vias are also distributed around the board to aid thermal conduction and to ensure a consistent potential, particularly around the ground connections of the capacitors. All capacitors used are located as close as possible to the AP22850 to minimize any parasitic effects.

The maximum junction temperature of the AP22850 is $+125^{\circ} \mathrm{C}$. To ensure that this is not exceeded, the following equation can be used to give an approximation of junction temperature. Temperature readings taken with a thermal camera can also give a good approximation of power dissipation with the use of this equation. The board layout has a major influence on the parameter $\theta_{J A}$.

$$
T_{J}=T_{A}+\left(\theta_{J A} \times P_{D}\right)
$$

Where, $\quad T_{J}=$ Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$T_{A}=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)
$\theta_{J A}=$ Junction to Ambient Thermal Impedance (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
$P_{D}=$ Power Dissipation (voltage drop across device \times output current) (W)

Ordering Information

(3)

Part Number	Package	Packaging Code	(Note 7)	7" Tape and Reel	
	SH8		Quantity	Part Number Suffix	
AP22850SH8-7	SH00/Tape \& Reel	-7			

Note: \quad 7. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

Marking Information

W-DFN2020-8
(Top View)

	XX : Identification code
XX	\underline{Y} : Year 0~9 $\underline{\underline{W}}$: Week : A~Z: 1~26 week; a~z: 27~52 week; z represents 52 and 53 week
$\underline{Y} \underline{W} \underline{X}$	
	\underline{X} : A Z : Internal Code

Device	Package	Identification Code
AP22850SH8-7	W-DFN2020-8	WC

Package Outline Dimensions (All dimensions in m m)

Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version

W-DFN2020-8			
Type C			
Dim	Min	Max	Typ
A	0.770	0.830	0.800
A1	0	0.05	0.02
A3	-	-	0.152
b	0.20	0.30	0.25
D	1.950	2.075	2.000
D2	1.50	1.70	1.60
E	1.950	2.075	2.000
E2	0.80	1.00	0.90
e	-	-	0.50
K	-	-	0.125
L	0.240	0.340	0.290
All Dimensions in $\mathbf{~ m m}$			

Suggested Pad Layout

Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

Dimensions	Value (in mm)
\mathbf{C}	0.500
\mathbf{G}	0.200
$\mathbf{G 1}$	0.210
\mathbf{X}	0.300
$\mathbf{X 1}$	1.600
$\mathbf{X 2}$	1.750
\mathbf{Y}	0.490
$\mathbf{Y 1}$	0.900
$\mathbf{Y 2}$	2.300

[^0]: Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) \& 2011/65/EU (RoHS 2) compliant.
 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.

