

DC-DC converter with wide input voltage, non-isolated & regulated single output

FEATURES

- High efficiency up to 97%
- Input under-voltage protection, output short-circuit, over-current protection
- Operating ambient temperature range: -40 $^\circ C$ to +85 $^\circ C$
- Open frame package
- 1/4-Brick package industry standard pin-out
- Adjustable input starting (under-voltage) voltage
- EN62368 approved

KUB48_QB-10A series are non-isolated DC-DC products with 10A output current and wide input voltage. They feature efficiency up to 97%, operating ambient temperature of -40°C to +85°C, input under-voltage, output short-circuit, over-current protection. The products meet CLASS A of CISPR32/EN55032 emissions standards by adding the recommended external components and they are widely used in applications such as battery powered systems and robotic field.

Selection Guide								
		Input Voltage (VDC)		Output		Full Load	Capacitive	
Certification	Part No.	Nominal (Range)	Max.*	Voltage (VDC)	Current (A) Max.	• • • •	Load (µF) Max.	
<u>c</u> r	KUB4824QB-10A	48 (30-75)	80	24	10	94/97	3300	
CE	KUB4812QB-10A	48 (16-75)	80	12	10	92/95	5500	

Note: * Exceeding the maximum input voltage may cause permanent damage.

Item	Operating Conditions		Min.	Тур.	Max.	Unit
Input Current	Nominal input voltage, KUB4824	QB-10A		5208/35	5320/80	
(full load / no-load)	Nominal input voltage, KUB4812	QB-10A		2660/35	2718/80	mA
Reflected Ripple Current	Nominal input voltage			200		
Surge Voltage (1sec. max.)			-0.7		80	
04	KUB4824QB-10A				30	
Starting Voltage	KUB4812QB-10A			16	VDC	
	KUB4824QB-10A		25	27		
Under-voltage protection	KUB4812QB-10A	12.5	14	-		
Adjustable input		KUB4824QB-10A	30		75	_
Starting(Under-voltage)	Refer to Design Reference for details	KUB4812QB-10A	16		75	
Voltage		Rob-lo 12 QB To, (,,,	
Input Filter				Capacito	ance filter	
	Module on Module off		Ctrl pin open or pulled high (1.5-12VDC)			
Ctrl*			Ctrl pin pulled low to GND (0-0.8VDC)			
	Input current when off			2	10	mA
Hot Plug				Unav	ailable	

Note: * The voltage of Ctrl pin is relative to input pin GND.

Output Specifications						
Item	Operating Conditions	Min.	Тур.	Max.	Unit	
Voltage Accuracy	0%-100% load		±l	±3	0/	
Linear Regulation	Full load, the input voltage is from low to high		±0.1	±0.5	%	
MODNOLINI®						

MORNSUN

MORNSUN Guangzhou Science & Technology Co., Ltd.

2019.11.30-A/1 Page 1 of 7

MORNSUN Guangzhou Science & Technology Co., Ltd. reserves the copyright and right of final interpretation

DC/DC Converter KUB48_QB-10A Series

Load Regulation	5%-100% load		±0.3	±2	%
Transient Recovery Time	25% load step change		200	500	μs
Transient Response Deviation	25% load step change		±4	±5	%
Temperature Coefficient	Full load			±0.03	%/ ℃
Ripple & Noise*	20MHz bandwidth		150	220	mVp-p
Over-current protection		110	130	190	%lo
Short-circuit Protection	Input voltage range	Hiccup, continuous, self-recovery			

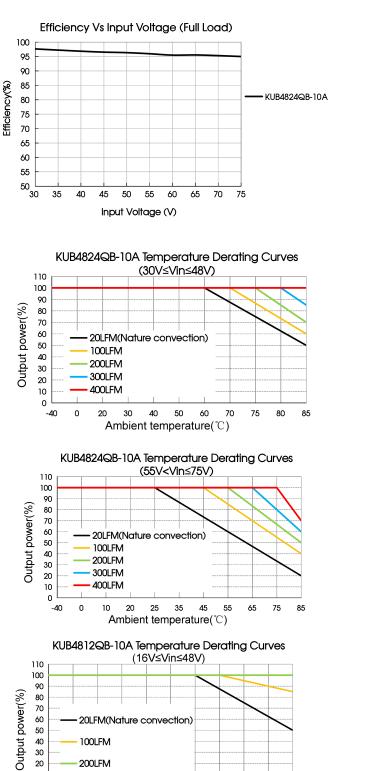
Note: * The "parallel cable" method is used for Ripple and Noise test, please refer to DC-DC Converter Application Notes for specific information;

General Specificat	ions					
Item	Operating Condition	\$	Min.	Тур.	Max.	Unit
Trim			90		110	%Vo
Sense	Refer to Remote Sens	e Application for details			105	%00
Operating Temperature					+85	
Storage Temperature					+125	°C
Pin Soldering Resistance Temperature	Wave-soldering, 10s	Wave-soldering, 10s			260	
Storage Humidity	Non-condensing		5		95	%RH
Vibration			10-150Hz	, 5g, 0.75mm,	90 Min. along	X, Y and Z
0 H H F	DW/M mode	KUB4824QB-10A		250		KHz
Switching Frequency	PWM mode	KUB4812QB-10A		200		
MTBF	MIL-HDBK-217F@25°C	MIL-HDBK-217F@25°C				K hours

Mechanical Specifications					
Dimensions	59.20 x 37.60 x 13.00 mm				
Weight	33.0g(Typ.)				
Cooling Method	Nature convection or forced convection				

Electror	Electromagnetic Compatibility (EMC)					
Emissions	CE	CISPR32/EN55032	CLASS A (see Fig. 2 for recommended circuit)			
ETTISSIOTIS	RE	CISPR32/EN55032	CLASS A (see Fig. 2 for recommended circuit)			
	ESD	IEC/EN61000-4-2	Contact ±6KV	perf. Criteria B		
	RS	IEC/EN61000-4-3	10V/m	perf. Criteria A		
Immunity	EFT	IEC/EN61000-4-4	±2KV (see Fig. 2 for recommended circuit)	perf. Criteria A		
	Surge	IEC/EN61000-4-5	±2KV (see Fig. 2 for recommended circuit)	perf. Criteria B		
	CS	IEC/EN61000-4-6	10 Vr.m.s	perf. Criteria A		

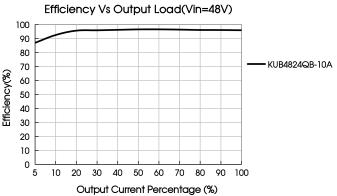
MORNSUN®

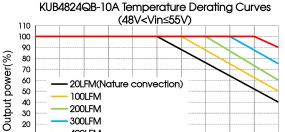

10

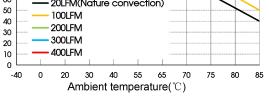
0

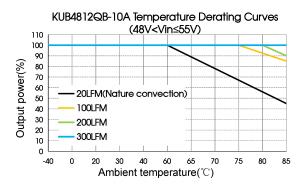
-40 0 20 30 40

MORNSUN®

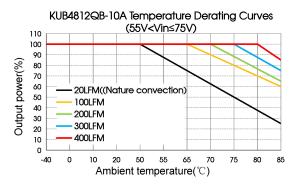

Typical Characteristic Curves




50


Ambient temperature(°C)

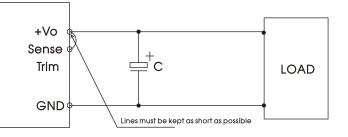
65 70 75 80 85


MORNSUN Guangzhou Science & Technology Co., Ltd.

MORNSUN[®]

2019.11.30-A/1 Page 3 of 7

MORNSUN Guangzhou Science & Technology Co., Ltd. reserves the copyright and right of final interpretation

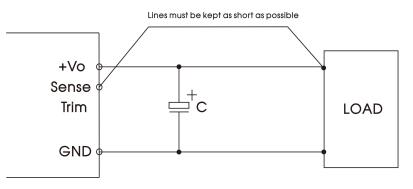


Notes:

1) Product application thermal design should be referred to the recommended PCB layout and recommended heat dissipation structure, please see DC-DC Converter Application Notes for specific operation.

Remote Sense Application

1. Remote sense connection if not used



Notes:

1). If the sense function is not used for remote regulation the user must connect the Sense to + Vo at the DC-DC converter pins and will compensate for voltage drop across pins only;

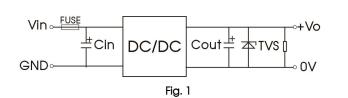
2). The connections between Sense and +Vo must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote sense connection used for compensation

Notes:

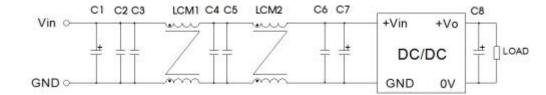
Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.
 We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
 Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

MORNSUN[®]


Design Reference

1. Typical application

We recommended using the recommended circuit shown in Fig.1 during product testing and application, otherwise please ensure that at least a 100µF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.
 We recommended increasing the value of Cin and pay attention to the unstable input voltage if the product input side is paralleled with motor drive circuit and/or larger energy transient circuits, to ensure the stability of input terminal and avoid repeatedly start-up problems due to input voltage lower than undervoltage protection point.


(3) We recommended increasing the output capacitance with limited to the capactive load specification and/or increasing the voltage clamping circuit(such as TVS) if the output terminal is inductive device such as relay or a motor, to ensure adequate voltage surge suppression and protection.

(4) Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

	Vout(VDC)	Fuse	Cin®	Cout	TVS
	12	20A, slow	100.15	100 JE	SMDJ14A
	24	blow	100µF	100µF	SMDJ28A
No	te:				

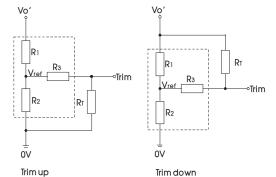

DPlease pay attention to the ambient temperature of the product when using an external capacitor, increase the electrolytic capacitor values to at least 1.5 times the original parameter if the ambient temperature is low.

Fig. 2

Components	Recommended Component value	Components function	
C1	1000 µ F electrolytic capacitor		
C7	330 µ F electrolytic capacitor	Meet EFT and Surge	
C1	1000 μ F electrolytic capacitor		
C7	330 µ F electrolytic capacitor		
C8	100 µ F electrolytic capacitor		
C2, C3, C4, C5, C6	4.7 µF electrolytic capacitor	Meet CE and RE	
LCM1, LCM2	47 µH common mode inductor (TN120L T-12.7-7-7.9-CPY)		

2. Trim Function for Output Voltage Adjustment (open if unused)

TRIM resistor connection (dashed line shows internal resistor network)

Calculation formula of Trim resistance:

up: $R_T = \frac{aR_2}{R_2-a} - R_3$

$$= \frac{\text{Vref}}{\text{Vo'-Vref}} \cdot R^2$$

a

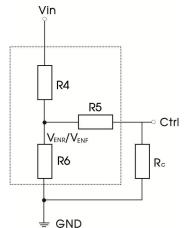
down: $R_{T} = \frac{aR_1}{R_1 - a} - R_3$

$$a = \frac{Vo' - Vref}{Vref} \cdot Ra$$

RT = Trim Resistor value;

a =

Vo'= desired output voltage (±10% max.)



Vout(VDC)	R1(KΩ)	R2(K Ω)	R3(K Ω)	Vref(V)
12	330	23.48	120	0.8
24	330	11.38	91	0.8

Note: When using the Trim down function make sure that the RT resistor value is calculated correctly. If the Trim pin is shorted with +Vo, or its value is too low, then the output voltage Vo would be lower, which may cause the product to fail.

3. Adjustable input Starting (Under-voltage) Voltage and Resistor calculation

Calculation resistor of Adjustable input Starting (Under-voltage) Voltage:

$$R_{C} = \frac{bR_{5}}{R_{5}-b} - R_{6} \qquad b = \frac{V_{EN}}{Vin - V_{EN}} \cdot R_{4}$$

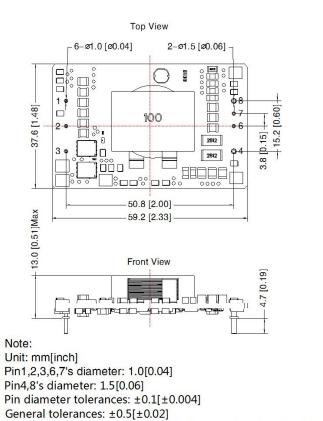
R_C: resistor of Adjustable input Starting (Under-voltage) Voltage: B:self-defined parameter

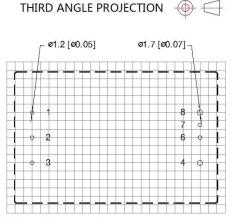
When $V_{EN}=V_{ENR}$, Vin is actual starting voltage required for input; When $V_{EN}=V_{ENF}$, Vin is actual under-voltage required for input;

Adjustable input Starting (Under-voltage) Voltage resistor connection (dashed line shows internal resistor network)

Vout(VDC)	R4(K Ω)	R5(K Ω)	R6(K Ω)	V _{ENR} (V)	V _{ENF} (V)
12	100	8.93	0.1	1.22	1.09
24	100	4.32	0.1	1.22	1.09

4. The products do not support parallel connection of their output.


5. For additional information please refer to DC-DC converter application notes on <u>www.mornsun-power.com</u>


DC/DC Converter KUB48_QB-10A Series

MORNSUN®

Dimensions and Recommended Layout(KUB48XXQB-10A)

Device layout is for reference only, the specific object shall prevail

Note: Grid 2.54*2.54mm

Pin-Out						
Pin	Function	Pin	Function			
1	+Vin	4	0V			
2	Ctrl	6	Trim			
3 –Vin		7	Sense+			
		8	+Vo			

Notes:

- 1. For additional information on Product Packaging please refer to <u>www.mornsun-power.com</u>. Packaging bag number: 58010113;
- 2. The maximum capacitive load offered were tested at input voltage range and full load;
- 3. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load;
- 4. All index testing methods in this datasheet are based on company corporate standards;
- 5. We can provide product customization service, please contact our technicians directly for specific information;
- 6. Products are related to laws and regulations: see "Features" and "EMC";
- 7. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

MORNSUN Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. ChinaTel: 86-20-38601850Fax: 86-20-38601272E-mail: info@mornsun.cnwww.mornsun-power.com

MORNSUN®

MORNSUN Guangzhou Science & Technology Co., Ltd.

2019.11.30-A/1 Page 7 of 7