General Description

The SN74LVC2G14 is a high performance dual inverter with Schm itt-Trigge r inputs operating from a 1.65 to 5.5 V supply. Pin configuration and function are the same as the SN74LVC2G04, but the inputs ha ve hysteresis and, with its Schmitt trigger function, the SN74LVC2G14 can be used as a line receiver which will receive slow input signals.

The SN74LVC2G14 is capable of transforming slowly changing input signals into sharply defined, jitter-freeoutput signals. In addition, it has a greater noise margin than conventional inverters.

The SN74LVC2G14 has hysteresis between the positive–going and the negativ e–going input thresholds (typically 1V) which is determined internally by transistor radios and is essentially insensitive to temperature and supply voltage variations.

Features

- Designed for 1.65V to 5.5V & Operation
- Over Voltage Tolerant Inputs and Outputs
- LVTTL Compatible Interface Capability with 5V TTL Logic with V_{CC} = 3V
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current Substantially Reduces System Power Requirements
- CurrentDrive Capability is 24 mA at the Outputs
- Chip Complexity: FET = 72
- These Devices are Pb-Free and are RoHS Compliant

Pin Configuration

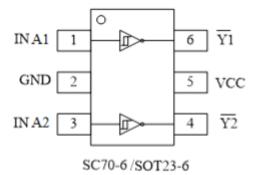


Figure1. Pinouts (Top View)

Pin Function

PIN	ASSIGNMENT
1	IN A1
2	GND
3	IN A2
4	Ŷ2
5	VCC
6	Ϋ́1

SN74LVC2G14

Block Diagram

Figure2.Logic symbol

Functional Description

Function Table

A Input	Y Output
L	Н
Н	L

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Vcc	DC Supply Voltage	0.5 to 7.0	V
VI	DC Input Voltage	-0.5≤V _I ≤+7.0	V
Vo	DC Output Voltage Output in Higher or Low State (Note 1)	0.5 to V _{CC} + 0.5	V
l _{ік}	DC Input Diode Current VI < GND	50	mA
l _{ок}	DC Output Diode Current Vo <gnd, vo="">Vcc</gnd,>	±50	mA
lo	DC Output Sink Current	±50	mA
Icc	DC Supply Current per Supply Pin	±100	mA
IGND	DC Ground Currentper Supply Pin	±100	mA
T _{STG}	Storage Temperature Range	65 to 150	°C
T∟	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias	150	°C
JA	Thermal Resistance	333	°C/W
PD	Power Dissipation in Still Air at 85°C	200	mW
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index:28 to 34	UL94V-0@0.12in	
	ESD Classification Human Body Model (Note 2)	2000	
ESD	Machine Model (Note3)	200	V
	Charged Device Model (Note 4)	N/A	
ILatchup	Latchup Performance Above VCC and Below GND at 125°C (Note 5)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. IO absolute maximum rating must be observed.
- 2. Tested to EIA/JESD22-A114-A, rated to EIA/JESD22-A114-B.
- 3. Tested to EIA/JESD22-A115-A, rated to EIA/JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

Recommended OperatingConditions

Symbol	Parameter	Min	Max	Unit
Maa	DC Supply Voltage Operating	1.65	5.5	v
Vcc	Date Retention	1.5	5.5	v
V _{IN}	DC Input Voltage	0	5.5	V
Vout	DC Output Voltage (High or Low State)	0	5.5	V
TA	Operating Temperature Range	-55	125	°C
	Input Rise and Fall Time $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0	20	
t _r ,t _f	$V_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$	0	10	ns/V
	$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0	5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended

SN74LVC2G14

UMW ®®®&

Electrical Characteristics

DC ELECTRICAL CHARACTERISTICS

Questo	Devenueter	Condition		TA = 25 °C			-55°C ≤TA≤125°C		11
Symbol	Parameter	Condition	VCC(V)	Min	Тур	Max	Min	Max	Unit
N/	High-Level		1.65to1.95	0.75Vcc			0.75Vcc		V
V _{IH}	Input Voltage		2.3 to 5.5	0.7Vcc			0.7Vcc		V
	Low-Level		1.65to1.95			0.25Vcc		0.25Vcc	V
VIL	Input Voltage		2.3 to 5.5			0.3Vcc		0.3Vcc	
		I _{OH} =-100uA	1.65to5.5	Vcc-0.1	Vcc		Vcc-0.1		
	Likele Lavel	I _{OH} =-3mA	1.65	1.29	1.52		1.29		
	High-Level	I _{OH} =-8mA	2.3	1.9	2.1		1.9		
V _{OH}	Output Voltage V _N =	I _{он} =-12mA	2.7	2.2	2.4		2.2		V
	V_{IL}	I _{он} =-16mA	3.0	2.4	2.7		2.4		-
	VIL	I _{он} =-24mA	3.0	2.3	25		2.3		
	I _{он} =-32mA	4.5	3.8	4.0		3.8			
		I _{ОН} =100uA	1.65to5.5		0.0	0.1		0.1	V
		I _{OL} =3mA	1.65		0.08	0.24		0.24	
	Low-Level Output	I _{OL} =8mA	2.3		0.20	0.3		0.3	
V _{OL}	Voltage $V_{\rm IN} =$	I _{OL} =12mA	2.7		0.22	0.4		0.4	
	$V_{\rm IH}$	I _{OL} =16mA	3.0		0.28	0.4		0.4	
	V IH	I _{OL} =24mA	3.0		0.38	0.55		0.55	
		I _{OL} =32mA	4.5		0.42	0.55		0.55	
I _{IN}	Input Leakage Current	V _{IN} = 5.5V or GND	0 to 5.5		±0.1			±1.0	uA
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5V or V _{OUT} = 5.5V	0			1		10	uA
I _{CC}	Quiescent Supply Current	V _{IN} = 5.5V or GND	5.5					10	uA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACT ERISTICS tr=tf= 2.5ns; CL= 50pF;

R∟ = 500 Ω

Symbol	Parameter	Condition	V _{CC} (V)	TA = 25 °C			-55°C ≤TA≤125°C		Unit
			-	Min	Тур	Max	Min	Max	
		R _L = 1MΩ C _L = 15 pF	1.65	2.0	5.3	11.4	2.0	12.0	
		$R_L - 1002 C_L = 15 \text{ pm}$	1.8	2.0	4.4	9.5	2.0	10.0	
+	Propagation Dalay	R_L = 1M Ω C_L = 15 pF	2.5±0.2	0.2	3.5	6.5	0.8	4.1	
	Propagation Delay	R_L = 1M Ω C_L = 15 pF		0.8	2.1	4.5	0.5	3.7	ns
PHL	t _{PHL} (Figure3and4)	R_L = 500 Ω C_L =50 pF	3.3±0.3	1.2	2.9	5.5	1.5	5.2	
		R_L = 1M Ω C_L = 15 pF		0.5	1.8	3.9	0.5	4.1	
		R_L = 500 Ω C_L =50 pF	5.0±0.5	0.8	2.4	4.3	0.8	4.5	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
CIN	Input Capacitance	$V_{CC} = 5.5 \text{ V}, V_1 = 0 \text{ V or } V_{CC}$	>2.5	pF
6	Power Dissipation Capacitance	$10MHz, V_{CC} = 3.3 V, V_1 = 0 V or V_{CC}$	4	pF
C _{PD}	(Note 6)	$10MHz, V_{CC} = 5.5 V, V_1 = 0 V \text{ or } V_{CC}$	4	Ы

6. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)}=C_{PD}*V_{CC}*fin+I_{CC}*C_{PD}$ is used to determine the no-load dynamic power consumption; $P_{D}=C_{PD}*V_{CC}^{2*}fin+I_{CC}*V_{CC}*Fig$.

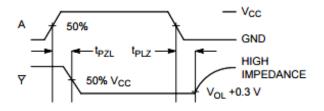
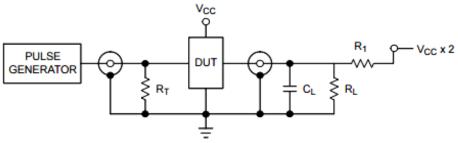
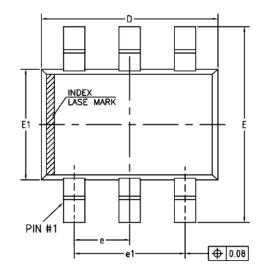
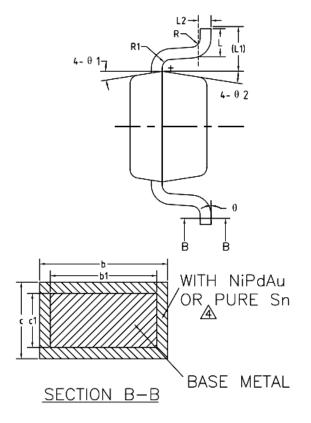
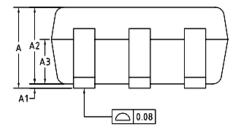



Figure 3. Switching Waveforms

R_T = Z_{OUT} of pulse generator (typically 50 Ω)

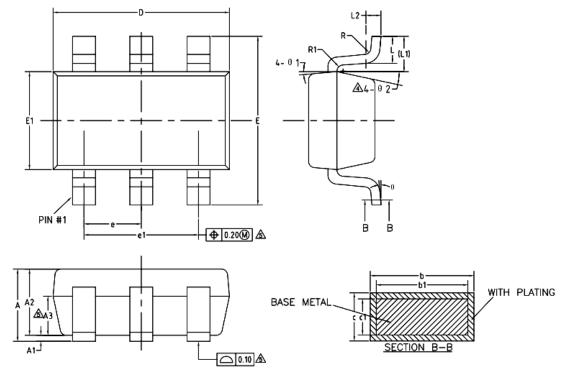

Figure 4. Test Circuit




SN74LVC2G14

Package Dimension

SC70-6


COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	0.85	-	1.05
A1	0	-	0.10
A2	0.80	0.90	1.00
A3	0.47	0.52	0.57
b NiPdAu	0.22	_	0.29
PURE Sn	0.23	-	0.33
b1	0.22	0.25	0.28
c NiPdAu	0.115	-	0.15
PURE Sn	0.12	-	0.18
c1	0.115	0.13	0.14
D	2.02	2.07	2.12
E	2.20	2.30	2.40
E1	1.25	1.30	1.35
e	0.60	0.65	0.70
e1	1.20	1.30	1.40
L	0.28	0.33	0.38
L1		0.50REF	
L2		0.15BSC	
R	0.10	-	-
R1	0.10	-	0.25
θ	0.	-	8'
θ1	6'	9.	12'
θŹ	6'	9*	12"

www.umw-ic.com

SOT23-6

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

	SYMBOL	MIN	NOM	MAX
	A	-	-	1.25
	A1	0	-	0.15
	A2	1.00	1.10	1.20
	A3	0.60	0.65	0.70
	Р	0.36	-	0.50
	b1	0.36	0.38	0.45
	c	0.14	-	0.20
	c1	0.14	0.15	0.16
	D	2.826	2.926	3.026
	E	2.60	2.80	3.00
	E1	1.526	1.626	1.726
∕ ∕ ▲	e	0.90	0.95	1.00
▲	e1	1.80	1.90	2.00
	L	0.35	0.45	0.60
	L1		0.59REF	
	L2		0.25BSC	
◬	R	0.10	-	-
la A	R1	0.10	-	0.20
	θ	0.	-	8*
	θ1	3.	5*	7'
▲	θ2	6'	-	14'

Orderinginformation

Order Code	Marking code	Package	Baseqty	Deliverymode
UMW SN74LVC2G14DBVR	C145	SOT23-6	3000	Tape and reel
UMW SN74LVC2G14DCKR	CF5	SC70-6	3000	Tape and reel