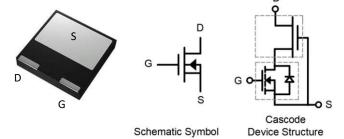


650V GaN Power Transistor (FET)


Features

- Easy to use, compatible with standard gate drivers
- Excellent Q_G x R_{DS(on)} figure of merit (FOM)
- Low Q_{RR}, no free-wheeling diode required
- Low switching loss
- · RoHS compliant and Halogen-free

Product Summary			
V _{DSS} 650 V			
R _{DS(on), typ}	120	mΩ	
Q _{G, typ}	21	nC	
Q _{RR, typ}	26	nC	

Applications

- High efficiency power supplies
- Telecom and datacom
- Automotive
- Servo motors

Packaging

Part Number	Package	Packaging	Base QTY
RX65T125HS2A	DFN 8 x 8	Tape and Reel	2500

Maximum ratings, at $T_C=25~$ °C, unless otherwise specified

Symbol	Parameter	Limit Value	Unit	
	Continuous drain current @T _C =25℃		18	Α
I _D	Continuous drain current @T _C =100°C		11.5	Α
	Pulsed drain current @T _C =25℃ (puls	e width: 10us)	80	Α
I _{DM}	Pulsed drain current @T _c =150℃ (pul	se width: 10us)	58	Α
V _{DSS}	Drain to source voltage (T₁ = -55°C to	650	V	
V _{TDSS}	Transient drain to source voltage ^a		800	V
V_{GSS}	Gate to source voltage	±20	V	
P _D	Maximum power dissipation @T _C =25℃		67.5	W
T _C	0	Case	-55 to 150	°C
T _J	Operating temperature	Junction	-55 to 150	°C
T _S	Storage temperature		-55 to 150	°C
T _{CSOLD}	Soldering peak temperature		260	°C

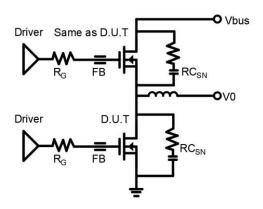
Thermal Resistance

Symbol	Parameter	Typical	Unit
Rөлс	Junction-to-case	1.85	%/W
Roja	Junction-to-ambient ^b	50	℃/W

Notes:

- a. Off-state spike duty cycle < 0.01, spike duration < 2us
- b. Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm² copper area and 70μm thickness)

Electrical Parameters, at T_J =25 $^{\circ}$ C, unless otherwise specified


Symbol	Min	Тур	Max	Unit	Test Conditions
Forward Chara	cteristics		I	1	
$V_{DSS\text{-MAX}}$	650	-	-	V	V _{GS} =0V
BV_{DSS}	-	1000	-	V	V _{GS} =0V, I _{DSS} =250μA
$V_{GS(th)}$	3	4	5	V	$V_{DS}=V_{GS}$, $I_D=500\mu A$
D C	-	120	150	mΩ	V _{GS} =8V, I _D =4A, T _J =25℃
$R_{DS(on)}^{c}$	-	240	-	11122	V _{GS} =8V, I _D =4A, T _J =150℃
1	-	5	20	μΑ	V _{DS} =700V, V _{GS} =0V, T _J =25℃
I _{DSS}	-	50	-	μΑ	V_{DS} =700V, V_{GS} =0V, T_J =150 $^{\circ}$ C
1	-	-	150	nA	V _{GS} =20V
I_{GSS}	-	-	-150	nA	V _{GS} =-20V
C _{ISS}	-	606	-	pF	
C _{OSS}	-	40	-	pF	V _{GS} =0V, V _{DS} =650V, f=1MHz
C _{RSS}	-	3	-	pF	
C _{O(er)}	-	57	-	pF	V -0V V -0 CF0V
C _{O(tr)}	-	109	-	pF	V _{GS} =0V, V _{DS} =0 - 650V
Q_{G}	-	21	-		
Q_{GS}	-	6.7	-	nC	V _{DS} =400V, V _{GS} =0 - 12V, I _D =10A
Q_{GD}	-	5	-		
t _{D(on)}	-	44	-		
t _R	-	16	-		V -400V V -0 13V L-10A B -40O
t _{D(off)}	-	40	-	ns	V_{DS} =400V, V_{GS} =0 - 12V, I_{D} =10A, R_{G} =40 Ω
t _F	-	12	-		
Reverse Chara	cteristics				
	-	1.3	-		V _{GS} =0V, I _S =5A, T _J =25℃
V_{SD}	-	1.9	-	V	V _{GS} =0V, I _S =10A, T _J =25℃
	-	3	-		V _{GS} =0V, I _S =10A, T _J =150℃
t _{RR}	-	16	-	ns	
Q_{RR}	-	26	-	nC	I_S =10A, V_{GS} =0V, d_i/d_t =1000A/us, V_{DD} =400V

Notes:

c. Dynamic on-resistance; see Figure 17 and 18 for test circuit and configurations

Circuit Implementation

Recommended Single Ended Drive Circuit

Recommended gate drive: (0 V, 12 V) with $R_{G(tot)}$ = 34 Ω , where $R_{G(tot)}$ = R_G + R_{Driver}

Gate Ferrite Bead	Gate Resistance1	RC Snubber
(FB)	(R _G)	(RC _{SN})
MPZ1608S471ATA00	33 Ω	69 pF+ 15 Ω

Notes:

- d. RCsn should be placed as close as possible to the drain pin
- e. The layout and wiring of the drive circuit should be as short as possible

Typical Characteristics, at T_C=25 ℃, unless otherwise specified

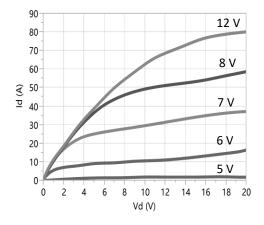
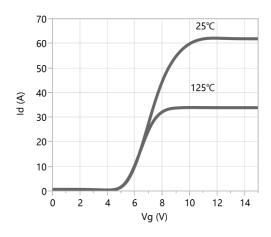



Figure 1. Typical Output Characteristics T₁=25℃

Figure 2. Typical Output Characteristics T₁=150°C

Figure 3. Typical Transfer Characteristics

V_{DS}=10V, Parameter: T_J

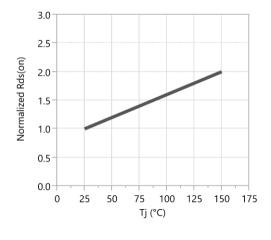


Figure 4. Normalized On-resistance

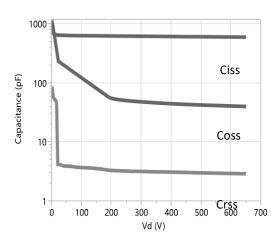


Figure 5. Typical Capacitance

V_{GS}=0V, f=1MHZ

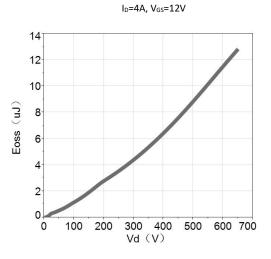


Figure 6. Typical Coss Stored Energy

Typical Characteristics, at T_C=25 ℃, unless otherwise specified

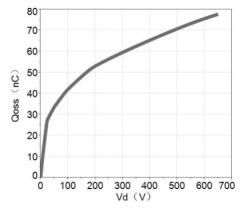
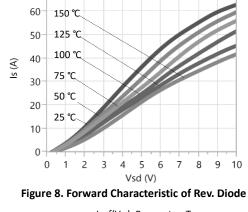



Figure 7. Typical Qoss

70

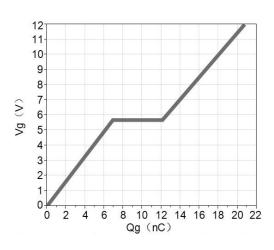


Figure 9. Typical Gate Charge

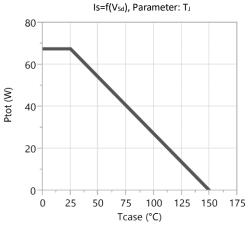


Figure 10. Power Dissipation

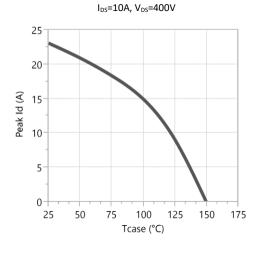


Figure 11. Current Derating

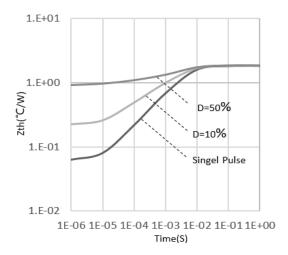


Figure 12. Transient Thermal Resistance

Typical Characteristics, at $T_C=25~^{\circ}C$, unless otherwise specified

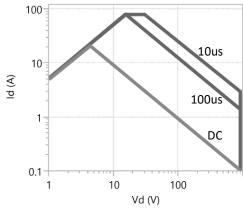


Figure 13. Safe operating Area T_c =25 $^{\circ}$ C

(calculated based on thermal limits)

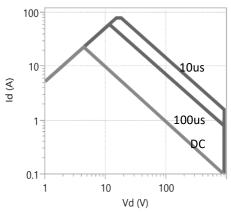


Figure 14. Safe operating Area T_c =80 °C

(calculated based on thermal limits)

Test Circuits and Waveforms

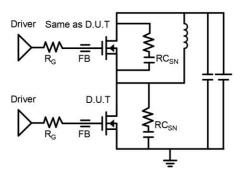


Figure 15. Switching Time Test Circuit

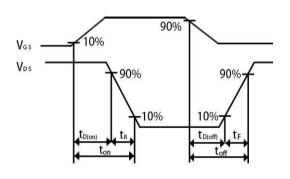


Figure 16. Switching Time Waveform

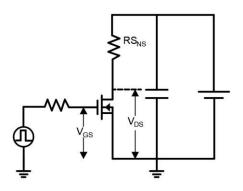


Figure 17. Dynamic $R_{DS(on)}$ Test Circuit

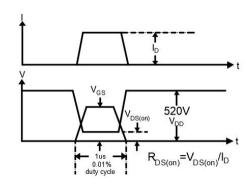


Figure 18. Dynamic $R_{DS(on)}$ Waveform

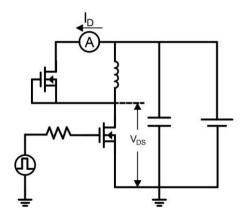


Figure 19. Diode Characteristic Test Circuit

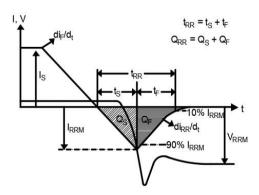
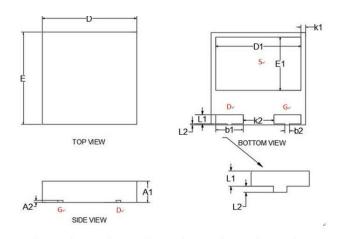


Figure 20. Diode Recovery Waveform

Design Considerations

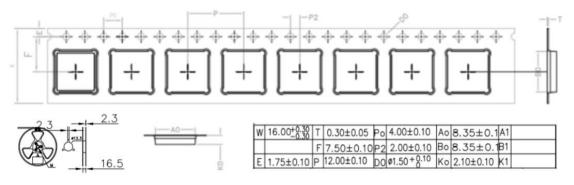
Fast switching GaN device can reduce power conversion losses, and thus enable high frequency operations. Certain PCB design rules and instructions, however, need to be followed to take full advantages of fast switching GaN devices.

Before evaluating Runxin Micro's GaN devices, please refer to the table below which provides some practical rules that should be followed during the evaluation.

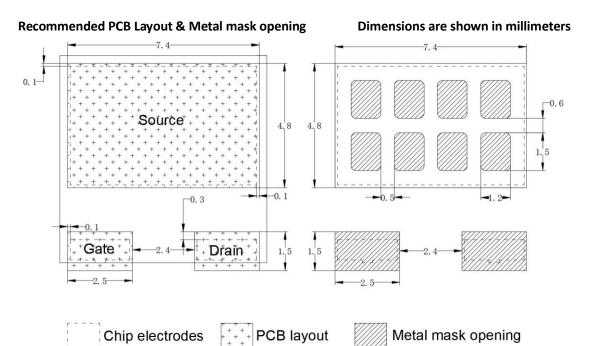

When Evaluating Runxin Micro's GaN Devices:

DO	DO NOT
Make sure the traces are as short as possible for both	Using Runxin Micro's devices in GDS board layouts
drive and power loops to minimize parasitic inductance	
Use the test tool with the shortest inductive loop, and	Use differential mode probe or probe ground clip with
make sure test points should be placed close enough	long wires
Minimize the lead length of TO packages when	Use long traces in drive circuit, or long lead length of
installing them to PCB	the devices

Package Outline



DFN 8 x 8mm (HS) Package


Cumbal	Dimensions in Millimeters			
Symbol	MIN	NOM	MAX	
A1	0.850	0.900	0.950	
A2	0.185	0.203	0.230	
D	7.000	8.000	9.000	
E	7.950	8.000	8.050	
D1	7.050	7.200	7.350	
E1	4.450	4.600	4.750	
K1	0.375	0.400	0.425	
K2	2.575	2.600	2.625	
b1	2.250	2.300	2.350	
b2	0.375	0.400	0.425	
L1	0.700	0.800	0.900	
L2	0.075	0.100	0.125	

Tape and Reel Information

Dimensions are shown in millimeters

Revision History

Version	Date	Change(s)
1.0	06/24/2021	Release formal datasheet
1.1	10/27/2022	Revise $C_{O(er)}$ 、 $C_{O(tr)}$ 、 Q_G 、 Q_{GS} 、 Q_{GD}
1.2	02/01/2023	Add BV _{DSS}