OO E V ER
 COMNMLOG

2A, 1.5MHz, High Efficiency
Synchronous Buck Converter

General Description

The EA8105 is a high switching frequency, high efficiency synchronous buck regulator, designed to operate from 2.7 V to 5.5 V input voltage range. Built-in low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ high/low side Power-MOSFETS not only reduce external components and has up to 95% efficiency, ideal for 2A output current applications. The EA8105 features 100% duty cycle low dropout operation, extending battery life in portable systems. Besides, this device is designed to take into account the light load mode operation and can provide high efficiency over a wide range of the load current. The internal compensation design not only allows users to more simplified application, and can reduce the cost of external components. The EA8105 is available in the SOT-23-6 package and easy to use.

Features

- Built-in Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Power-MOSFETS
- Efficiency Up to 96%
- 2.7 V to 5.5 V Input Voltage Range
- Adjustable Output Voltage Range from 0.6V to Vin
- Fixed 1.5 MHz Switching Frequency
- 2A Continuous Load Current
- 100\% Duty Cycle Low Dropout Operation
- Internal Compensation
- Short Circuit Protection
- OTP Protection
- Available in SOT-23-6 Package

Applications

- Smart Phones
- Set-Top-Box
- LCD TVs and Flat TVs
- Digital Cameras

$$
\bigcirc \ominus \ominus \odot
$$

Pin Configurations

EA8105
SOT-23-6

2A, 1.5MHz High Efficiency Buck Converter

Pin Description

Pin Name	Function Description		Pin No.
RUN	The device turns on/turns off control input.	Don't leave this pin floating.	1
GND	Ground pin.	2	
SWITCH	Power switch output pin. Connect SWITCH pin to the switching node of the inductor.	3	
PWR	The EA8105 power input pin. It is recommended to use a 22uF MLCC capacitor between PWR pin and GND pin. The ceramic capacitor must be placed as close to the PWR pin as possible to avoid noise interference.	4	
NC	No Connect for EA8105.	5	
FBK	Feedback input. Connect FBK pin and GND pin with voltage dividing resistors to set the output voltage.	6	

Function Block Diagram

Figure 1. EA8105 internal function block diagram

Absolute Maximum Ratings

	Parameter	Value
Input Supply Voltage $\left(\mathrm{V}_{\text {PWR }}\right)$	-0.3 V to +6.5 V	
RUN Pin Input Voltage $\left(\mathrm{V}_{\text {RUN }}\right)$	-0.3 V to +6.5 V	
SWITCH Pin Voltage $\left(\mathrm{V}_{\text {SWITCH }}\right)$	-0.3 V to $\left(\mathrm{V}_{\text {PWR }}+0.3 \mathrm{~V}\right)$	
FBK Pin Voltage $\left(\mathrm{V}_{\mathrm{FBK}}\right)$	-0.3 V to +6.5 V	
PG Pin Voltage $\left(\mathrm{V}_{\mathrm{PG}}\right)$	-0.3 V to +6.5 V	
Ambient Temperature operating Range $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{Jmax}}\right)$	$+150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 seC$)$	$+260^{\circ} \mathrm{C}$	
Storage Temperature Range $\left(\mathrm{T}_{\mathrm{S}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

Note (1):Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to "Absolute Maximum Ratings" conditions for extended periods may affect device reliability and lifetime.

Package Thermal Characteristics

Parameter				Value
SOT-23-6 Thermal Resistance $\left(\theta_{\mathrm{JC}}\right)$	$125^{\circ} \mathrm{C} / \mathrm{W}$			
SOT-23-6 Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	$250^{\circ} \mathrm{C} / \mathrm{W}$			
SOT-23-6 Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\left({ }^{\circ}{ }^{\left(\mathrm{P}_{\text {max }}\right)}\right.$	0.5 W			

Note (1): $P_{D \max }$ is calculated according to the formula: $P_{D M A X}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$.

Recommended Operating Conditions

Parameter	Value
Input Supply Voltage ($\mathrm{V}_{\mathrm{PWR}}$)	+2.7 V to +5.5 V
Junction Temperature Range $\left(\mathrm{T}_{\mathrm{J}}\right)$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{V}_{\text {PWR }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Input Voltage	$V_{\text {PWR }}$		2.7		5.5	V
Shutdown Supply Current	$\mathrm{I}_{\text {SD }}$	$\mathrm{V}_{\text {RUN }}=0 \mathrm{~V}$		0.1	1	uA
Quiescent Current	l_{0}	$\begin{aligned} & \mathrm{V}_{\text {RUN }}=2 \mathrm{~V}, \mathrm{~V}_{\text {FBK }}= \\ & 105 \% \mathrm{~V}_{\text {REF }}, \mathrm{I}_{\text {LAAD }}= \\ & 0 \mathrm{~A} \end{aligned}$		40		$G A$
UVLO Threshold	Vuvio	$\mathrm{V}_{\text {PWR }}$ Rising	1.7	1.9	2.2	V
UVLO Hysteresis	$\mathrm{V}_{\text {UV-HYST }}$					V
Output Load Current	I LOAD				2	A
Reference Voltage	$\mathrm{V}_{\text {REF }}$		0.588		0.612	V
Switching Frequency	$\mathrm{F}_{\text {Sw }}$	$\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$	1.2	1.5	1.8	MHz
Short Frequency	$\mathrm{F}_{\text {SHORT }}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	- 240	300	360	KHz
PMOS On-Resistance	$\mathrm{R}_{\text {DS(ON)-P }}$	$\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$	J	100		$\mathrm{m} \Omega$
NMOS On-Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) \text {-N }}$	$\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$		90		$\mathrm{m} \Omega$
PMOS Current Limit	$\mathrm{I}_{\text {LIM }-\mathrm{P}}$		3	4		A
SWITCH Leakage Current	$I_{\text {LEAK-SWitch }}$	$\mathrm{V}_{\text {PWi }}=5 \mathrm{~V}, \mathrm{~V}_{\text {RUN }}=$ $0 \mathrm{~V}, \mathrm{~V}_{\text {Switch }}=0 \mathrm{~V}$ or 5 V	-1		1	uA
FBK Leakage Current		$V_{F B}=V_{\text {PWR }}$	-1		1	uA
RUN Pin Input Low Voltage	Vrun-L				0.4	V
RUN Pin Input High Voltage	$\mathrm{V}_{\text {RUN-H }}$		1.5			V
Power Good Rising Threshold	$\mathrm{V}_{\text {PG-rising }}$			93		\%
Power Good Falling Threshold	$\mathrm{V}_{\text {PG-falling }}$			88		\%
Power Good Sink Current	IPG	$\mathrm{V}_{\mathrm{PG}}=0.5 \mathrm{~V}$		1		mA
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$		100			\%
Thermal Shutdown Threshold	Totp			150		${ }^{\circ} \mathrm{C}$

Note (1):MOSFET on-resistance specifications are guaranteed by correlation to wafer level measurements.
(2): Thermal shutdown specifications are guaranteed by correlation to the design and characteristics analysis.

Application Circuit Diagram

Figure 2. EA8105 typical application circuit diagram

Ordering Information

Part Number Package Type Packing Information

Tape \& Reel / 3000
Note (1):"T6": Package type code
(2):"R": Tape \& Reel.

Typical Operating Characteristics

$\mathrm{V}_{\mathrm{PWR}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{~L} 1=2.2 \mathrm{uH}, \mathrm{C} 1=\mathrm{C} 2=22 \mathrm{uF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Application Information

Output Voltage Setting

The EA8105 output voltage can be set via a resistor divider (R1, R2). The output voltage is calculated by following equation:

$$
\text { Vout }=0.6 \times \frac{\mathrm{R} 1}{\mathrm{R} 2}+0.6 \mathrm{~V}
$$

The following table lists common output voltage and the corresponding R1, R2 resistance value for reference.

Output Voltage	R1 Resistance	R2 Resistance	Tolerance
3.3 V	$510 \mathrm{~K} \Omega$	$110 \mathrm{~K} \Omega$	1%
1.8 V	$200 \mathrm{~K} \Omega$	$100 \mathrm{~K} \Omega$	1%
1.2 V	$100 \mathrm{~K} \Omega$	$100 \mathrm{~K} \Omega$	1%
1 V	$68 \mathrm{~K} \Omega$	$100 \mathrm{~K} \Omega$	1%

Input / Output Capacitors Selection

The input capacitors are used to suppress the noise amplitude of the input voltage and provide a stable and clean DC input to the device. Because the ceramic capacitor has low ESR characteristic, so it is suitable for input capacitor use. It is recommended to use X5R or X7R MLCC capacitors in order to have better temperature performance and smaller capacitance tolerance. In order to suppress the output voltage ripple, the MLCC capacitor is also the best choice. The suggested part numbers of input / output capacitors are as follows:

Vendor	Part Number	Capacitance	Edc	Parameter	Size
TDK	C2012X5R1A226M	22 FF	10 V	X5R	0805
TDK	C3216X5R1A226M	22 FF	10 V	X5R	1206

Output Inductor Selection

The output inductor selection mainly depends on the amount of ripple current through the inductor $\Delta I_{\llcorner }$. Large $\Delta L_{\llcorner }$will cause larger output voltage ripple and loss, but the user can use a smaller inductor to save cost and space. On the contrary, the larger inductance can get smaller ΔI_{L} and thus the smaller output voltage ripple and loss. But it will increase the space and the cost. The inductor value can be calculated as:

$$
\mathrm{L}=\frac{\mathrm{V}_{\text {PWR }}-\mathrm{V}_{\text {out }}}{\Delta L_{L} \times \mathrm{F}_{\text {SW }}} \times \frac{\mathrm{V}_{\text {OUT }}}{V_{\text {PWR }}}
$$

For most applications, 1.2 uH to 4.7 uH inductors are suitable for EA8105.

PCB tayout Recommendations

For EA8105 PCB layout considerations, please refer to the following suggestions in order to get good performance.

- High current path traces need to be widened.
- Place the input capacitors as close as possible to the PWR pin to reduce noise interference.
- Keep the feedback path (from $\mathrm{V}_{\text {Out }}$ to FBK) away from the noise node (ex. SWITCH). SWITCH is a high current noise node. Complete the layout by using short and wide traces.

Package Information

SOT-23-6 Package

Top View

Side View

Recommended Layout Pattern

Front View

Unit: mm

Symbol	Dimension Max		Symbol	Dimension Typ
A	0.25	0.52	K	1.40
B	2.59	3.01	L	1.40
C	0.85	1.05	M	0.95
C1	1.70	2.10	N	0.65
D	1.40	1.80		
E	2.70	3.10		
F	0.30	0.62		
G	0.08	0.25		
H	0.89	1.35		
H1	0.89	1.20		
H2	0.00	0.15		

