

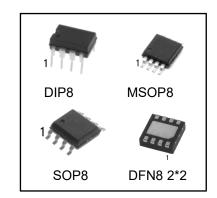
1MHZ CMOS Rail-to-Rail IO Opamp with RF Filter

Features

Single-Supply Operation from +2.1V ~ +5.5V

Rail-to-Rail Input / Output

Gain-Bandwidth Product: 1MHz (Typ.)


Low Input Bias Current: 1pA (Typ.)

Low Offset Voltage: 3.5mV (Max.)

Quiescent Current: 40µA per Amplifier (Typ.)

Operating Temperature: -40°C ~ +125°C

Embedded RF Anti-EMI Filter

Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty
LMV602N	DIP8	LMV602	TUBE	2000pcs/Box
LMV602M/TR	SOP8	LMV602	REEL	2500pcs/Reel
LMV602MM/TR	MSOP8	LMV602	REEL	3000pcs/Reel
LMV602DQ/TR	DFN-8 2*2	LMV602	REEL	2500pcs/Reel

General Description

The LMV602 have a high gain-bandwidth product of 1MHz, a slew rate of $0.6V/\mu s$, and a quiescent current of $40\mu A/amplifier$ at 5V. The LMV602 is designed to provide optimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 3.5mV for LMV602. They are specified over the extended industrial temperature range (-40% to+125%). The operating range is from 2.1V to 5.5V. The LMV602 Dual is available in Green SOP-8, MSOP8, DIP-8 and DFN-8 packages.

1/10

Applications

- ASIC Input or Output Amplifier
- Sensor Interface
- Medical Communication
- Smoke Detectors
- Audio Output
- Piezoelectric Transducer Amplifier
- Medical Instrumentation
- Portable Systems

Pin Configuration

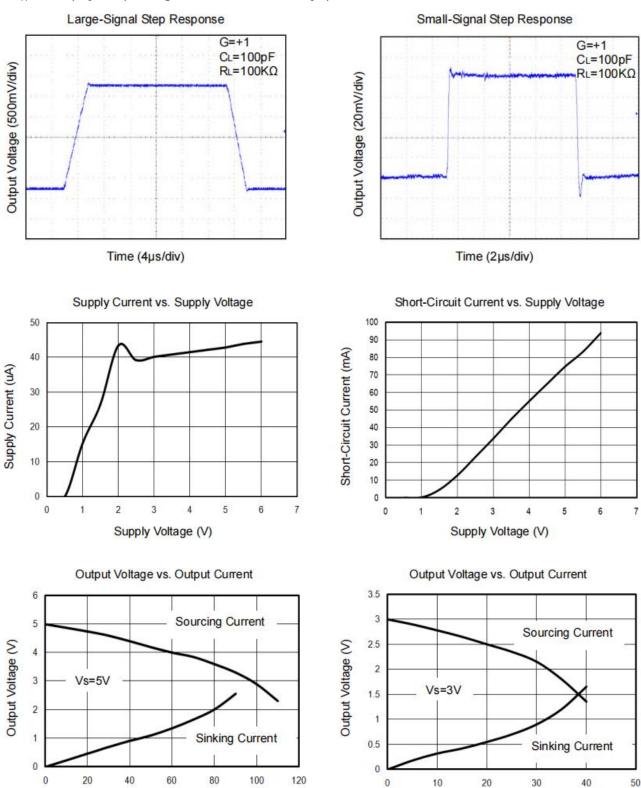
Figure 1. LMV602 Pin Assignment Diagram

Absolute Maximum Ratings

Condition	Min	Max				
Power Supply Voltage (V _{DD} to Vss)	-0.5V	+7.5V				
Analog Input Voltage (IN+ or IN-)	Vss-0.5V	V _{DD} +0.5V				
PDB Input Voltage	Vss-0.5V	+7V				
Operating Temperature Range	-40°C	+125°C				
Junction Temperature	+160°C					
Storage Temperature Range	-55°C	+150°C				
Lead Temperature (soldering, 10sec)	+260°C					
Package Thermal Resistance (TA=+25℃)						
SOP-8, θJA	125°C/W					
MSOP-8, θJA	216°C/W					
ESD Susceptibility						
НВМ	6KV					
MM	300V					

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

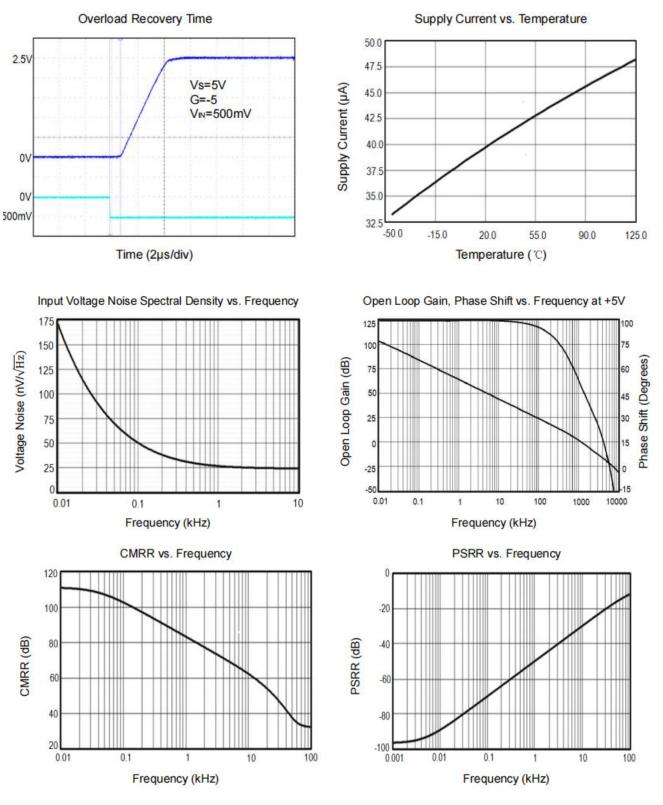
Electrical Characteristics


(At V_S = +5V, R_L = 100k Ω connected to $V_S/2$, and V_{OUT} = $V_S/2$, unless otherwise noted.)

DADAMETED	CVMPOL	CONDITIONS	TYP	MIN/MAX OVER TEMPERATURE					
PARAMETER	SYMBOL	CONDITIONS	+25℃	+25℃	-40℃to+85℃	UNITS	MIN/MAX		
INPUT CHARACTERISTIC	S						•		
Input Offset Voltage	Vos	V _{CM} = VS/2	0.4	3.5	5.6	mV	MAX		
Input Bias Current	I _B		1			pА	TYP		
Input Offset Current	los		1			pА	TYP		
Common-Mode		\/ - E E\/	-0.1 to			V	TVD		
Voltage Range	V _{CM}	V _S = 5.5V	+5.6			V	TYP		
Common-Mode	CMRR	V_S =5.5V, V_{CM} = -0.1V to 4V	70	62	62	dB	NAINI		
Rejection Ratio	CIVIRR	V _S =5.5V, V _{CM} = -0.1V to 5.6V	68	56	55		MIN		
Ones Leen Veltere Cain	_	$R_L=5k\Omega$, $V_O=+0.1V$ to +4.9V	80	70	70	dB	NAINI		
Open-Loop Voltage Gain	A _{OL}	$R_L=10k\Omega$, $V_O=+0.1V$ to +4.9V	100	90	85		MIN		
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta_T$		2.7			μV/°C	TYP		
OUTPUT CHARACTERIST	ics			1		l			
	V _{OH}	$R_L = 100k\Omega$	4.997	4.990	4.980	V	MIN		
Output Voltage	V _{OL}	$R_L = 100k\Omega$	3	10	20	mV	MAX		
Swing from Rail	Vон	R _L = 10kΩ	4.992	4.970	4.960	V	MIN		
	V _{OL}	R _L = 10kΩ	8	30	40	mV	MAX		
	I _{SOURCE}		84	60	45	- mA	MIN		
Output Current	I _{SINK}	$R_L = 10\Omega$ to VS/2	75	60	45				
POWER SUPPLY	1	I		1					
				2.1	2.5	V	MIN		
Operating Voltage Range				5.5	5.5	V	MAX		
Power Supply		V _S = +2.5V to +5.5V,							
Rejection Ratio	PSRR	V _{CM} = +0.5V	82	60	58	dB	MIN		
Quiescent Current /	_					_			
Amplifier	IQ		40	60	80	μA	MAX		
DYNAMIC PERFORMANCI	E (CL = 10	OpF)	I	1					
Gain-Bandwidth Product	GBP		1			MHz	TYP		
Slew Rate	SR	G = +1, 2V Output Step	0.6			V/µs	TYP		
Settling Time to 0.1%	ts	G = +1, 2V Output Step	5			μs	TYP		
Overload Recovery Time		V _{IN} ·Gain = VS	2.6			μs	TYP		
NOISE PERFORMANCE	ı	L	1	1		<u> </u>	1		
		f = 1kHz	27			nV /√Hz	TYP		
Voltage Noise Density	e _n	f = 10kHz	20			nV/√Hz	TYP		

Typical Performance characteristics

At T_A =+25°C, V_S =+5V, and R_L =100K Ω connected to V_S /2, unless otherwise noted.


Output Current (mA)

Output Current (mA)

Typical Performance characteristics

At T_A =+25°C, V_S =+5V, and R_L =100K Ω connected to V_S /2, unless otherwise noted.

Application Note

Power Supply Bypassing and Board Layout

LMV602 series operates from a single 2.1V to 5. 5V supply or dual ± 1.05 V to ± 2.75 V supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the VDD pin in single supply operation. For dual supply operation, both V_{DD} and VSS supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors.

Low Supply Current

The low supply current (typical 40uA per channel) of LMV602 will help to maximize battery life. They are ideal for battery powered systems

Operating Voltage

LMV602 operates under wide input supply voltage (2.1V to 5.5V). In addition, all temperature specifications apply from -40°C to +125°C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-lon battery lifetime

Rail-to-Rail Input

The input common-mode range of LMV602 extends 100mV beyond the supply rails (VSS-0.1V to VDD+0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of LMV602 can typically swing to less than 5 mV from supply rail in light resistive loads (>100k Ω), and 30mV of supply rail in moderate resistive loads (10k Ω).

Capacitive Load Tolerance

The LMV602 is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

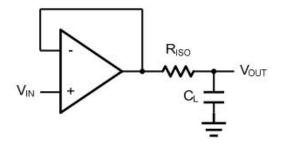
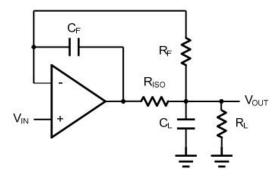
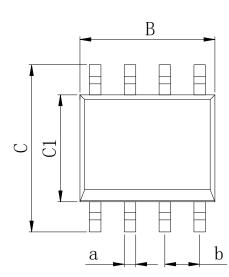
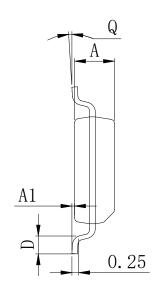


Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

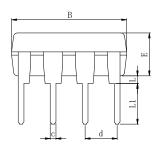
The bigger the RISO resistor value, the more stable VOUT will be. However, if there is a resistive load RL in parallel with the capacitive load, a voltage divider (proportional to RISO/RL) is formed, this will result in a gain error.

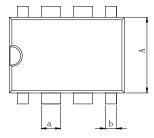
The circuit in Figure 3 is an improvement to the one in Figure 2. RF provides the DC accuracy by feed-forward the VIN to RL. CF and RISO serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of CF. This in turn will slow down the pulse response.


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

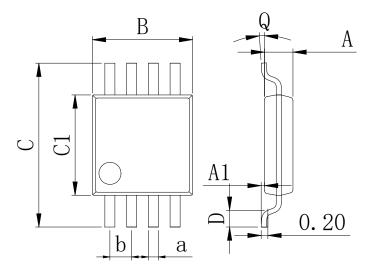
Physical Dimensions


SOP8

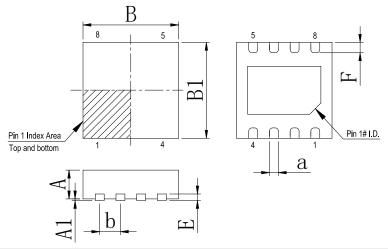


Dimensions In Millimeters(SOP8)										
Symbol:	Α	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC	
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.21 BSC	

DIP8



Dimensions In Millimeters(DIP8)											
Symbol:	Α	В	D	D1	Е	L	L1	а	b	С	d
Min:	6.10	9.00	8.40	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	9.50	9.00	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.04 BSC


Physical Dimensions

MSOP8

Dimensions In Millimeters(MSOP8)									
Symbol:	А	A1	В	С	C1	D	Q	а	b
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65 BSC
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	0.00 BSC

DFN-8 2*2

Dimensions In Millimeters(DFN-8 2*2)										
Symbol:	Α	A1	В	B1	Е	F	а	b		
Min:	0.85	0	1.90	1.90	0.15	0.25	0.18	0.50TYP		
Max:	0.95	0.05	2.10	2.10	0.25	0.45	0.30	0.5011P		

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.