Description

The HSH0139 uses advanced trench MOSFET technology to provide excellent $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ and gate charge for use in a wide variety of other applications.
The HSH0139 meet the RoHS and Green Product requirement, 100\% EAS guaranteed with full function reliability approved.

- 100\% EAS Guaranteed
- Green Device Available
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

P-Ch 100V Fast Switching MOSFETs
Product Summary

$V_{D S}$	-100	V
$R_{D S(O N), \max }$	50	$\mathrm{~m} \Omega$
I_{D}	-35	A

TO-263 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	-100	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate-Source Voltage	± 20	V
$\mathrm{I}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Continuous Drain Current, $\mathrm{V}_{\mathrm{GS}} @-10 \mathrm{~V}^{1}$	-35	A
$\mathrm{I}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	Continuous Drain Current, $\mathrm{V}_{\mathrm{GS}} @-10 \mathrm{~V}^{1}$	-23	A
I_{CM}	Pulsed Drain Current ${ }^{2}$	-100	A
EAS	Single Pulse Avalanche Energy ${ }^{3}$	345	mJ
I_{AS}	Avalanche Current	28	A
$\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{C}=25^{\circ} \mathrm{C}}$	Total Power Dissipation ${ }^{4}$	104	W
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$

Thermal Data

Symbol	Parameter	Typ.	Max.	Unit
RөコA $^{\circ}$	Thermal Resistance Junction-Ambient ${ }^{1}$	---	62	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rөコc	Thermal Resistance Junction-Case ${ }^{1}$	---	1.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics ($\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
BV ${ }_{\text {DSs }}$	Drain-Source Breakdown Voltage	$V_{G S}=0 \mathrm{~V}$, ID=-250uA	-100	---	---	V
$\mathrm{R}_{\text {ds(on) }}$	Static Drain-Source On-Resistance ${ }^{2}$	$V_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~A}$	---	42	50	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{G} S}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-8 \mathrm{~A}$	---	46	55	
$\mathrm{VGS}_{\text {(th) }}$	Gate Threshold Voltage	$V_{G S}=V_{\text {dS }}, l_{D}=-250 u A$	-1.2	-1.8	-2.5	V
Idss	Drain-Source Leakage Current	$\mathrm{V}_{\mathrm{DS}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	---	---	-50	uA
IGSS	Gate-Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	---	---	± 100	nA
gfs	Forward Transconductance	$V_{\text {DS }}=-10 \mathrm{~V}, \mathrm{ID}=-10 \mathrm{~A}$	---	32	---	S
Q_{g}	Total Gate Charge	$V_{\text {DS }}=-80 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-14 \mathrm{~A}$	---	92	---	nC
$\mathrm{Qgs}_{\text {g }}$	Gate-Source Charge		---	17.5	---	
Q_{gd}	Gate-Drain Charge		---	14	---	
$\mathrm{Td}_{\text {(on) }}$	Turn-On Delay Time	$\begin{aligned} & V_{D D}=-50 \mathrm{~V}, V_{G S}=-10 \mathrm{~V}, R_{G}=3.3 \Omega, \\ & I_{D}=-14 \mathrm{~A} \end{aligned}$	---	20.5	---	ns
T_{r}	Rise Time		---	32.2	---	
$\mathrm{T}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time		---	123	---	
T_{f}	Fall Time		---	63.7	---	
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	---	6516	---	pF
Coss	Output Capacitance		---	223	---	
Crss	Reverse Transfer Capacitance		---	125	---	

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Is_{S}	Continuous Source Current ${ }^{1,5}$	$\mathrm{~V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$, Force Current	---	---	-35	A
$\mathrm{~V}_{\mathrm{SD}}$	Diode Forward Voltage ${ }^{2}$	$\mathrm{~V}_{\mathrm{G} S}=0 \mathrm{~V}, \mathrm{Is}=-1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	---	---	1.2	V
t_{rr}	Reverse Recovery Time	$\mathrm{IF}=-14 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=-100 \mathrm{~A} / \mu \mathrm{s}$,	---	31.2	---	nS
Q_{rr}	Reverse Recovery Charge	$\mathrm{T}_{\mathrm{J}=}=25^{\circ} \mathrm{C}$	---	31.97	---	nC

Note :
1.The data tested by surface mounted on a 1 inch 2 FR-4 board with 2 OZ copper.
2.The data tested by pulsed, pulse width $\leqq 300$ us, duty cycle $\leqq 2 \%$
3.The EAS data shows Max. rating . The test condition is $\mathrm{V}_{\mathrm{DD}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~L}=0.88 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=-28 \mathrm{~A}$
4. The power dissipation is limited by $150^{\circ} \mathrm{C}$ junction temperature
5. The data is theoretically the same as I_{D} and $I_{D M}$, in real applications, should be limited by total power dissipation.

P-Ch 100V Fast Switching MOSFETs

Fig. 2 On-Resistance vs. G-S Voltage

Fig. 4 Gate-Charge Characteristics

Fig. 6 Normalized R dson vs. T_{J}

P-Ch 100V Fast Switchina MOSFETs

Fig. 7 Capacitance

Fig. 8 Safe Operating Area

Fig. 9 Normalized Maximum Transient Thermal Impedance

Fig. 10 Switching Time Waveform

Fig. 11 Unclamped Inductive Waveform

P-Ch 100V Fast Switching MOSFETs

SYMBOLS	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.370	4.770	0.172	0.188
A1	1.220	1.420	0.048	0.056
A2	2.200	2.890	0.087	0.114
A3	0.000	0.250	0.000	0.010
b	0.700	0.960	0.028	0.038
b1	1.170	1.470	0.046	0.058
c	0.300	0.530	0.012	0.021
D1	8.500	9.300	0.335	0.366
D4	6.600	-	0.260	-
E	9.860	10.36	0.388	0.408
E5	7.060	-	0.278	-
e	2.540 BSC		0.100 BSC	
H	14.70	15.70	0.579	0.618
H2	1.070	1.470	0.042	0.058
L	2.000	2.600	0.079	0.102
L1	1.400	1.750	0.055	0.069
L4	0.250 BSC		0.010 BSC	
\bigcirc	0°	$9{ }^{\circ}$	0°	$9{ }^{\circ}$

