FEATURES

- Operate From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 7.4 ns at 3.3 V
- Typical $\mathrm{V}_{\text {olp }}$ (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Typical $\mathrm{V}_{\mathrm{OHV}}$ (Output V_{OH} Undershoot) $>2 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SN54LVC652A... JT OR W PACKAGE
SN74LVC652A... DB, DW, NS, OR PW PACKAGE (TOP VIEW)

CLKAB [$1 \cup_{24}$	V_{CC}
SAB [223	CLKBA
OEAB [322	SBA
A1	421	$\overline{O E B A}$
A2	$5 \quad 20$	B1
A3	$6 \quad 19$	B2
A4	$7 \quad 18$	B3
A5	$8 \quad 17$	B4
A6	$9 \quad 16$	B5
A7	$10 \quad 15$	B6
A8	$11 \quad 14$	B7
GND	$12 \quad 13$	B8

- Support Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{cc})
- $I_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

SN54LVC652A... FK PACKAGE
(TOP VIEW)

NC - No internal connection

DESCRIPTION/ORDERING INFORMATION

The SN54LVC652A octal bus transceiver and register is designed for $2.7-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation, and the SN74LVC652A octal bus transceiver and register is designed for $1.65-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.

ORDERING INFORMATION

TA	PACKAGE ${ }^{(1)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOIC - DW	Tube of 25	SN74LVC652ADW	LVC652A
		Reel of 2000	SN74LVC652ADWR	
	SOP - NS	Reel of 2000	SN74LVC652ANSR	LVC652A
	SSOP - DB	Reel of 2000	SN74LVC652ADBR	LC652A
	TSSOP - PW	Tube of 60	SN74LVC652APW	LC652A
		Reel of 2000	SN74LVC652APWR	
		Reel of 250	SN74LVC652APWT	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - JT	Tube of 15	SNJ54LVC652AJT	SNJ54LVC652AJT
	CFP - W	Tube of 85	SNJ54LVC652AW	SNJ54LVC652AW
	LCCC - FK	Tube of 42	SNJ54LVC652AFK	SNJ54LVC652AFK

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SCAS303L-JANUARY 1993-REVISED SEPTEMBER 2005

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers.
Output-enable (OEAB and $\overline{O E B A}$) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A low input selects real-time data, and a high input selects stored data. Figure 1 illustrates the four fundamental bus-management functions that are performed with the 'LVC652A devices.
Data on the A or B data bus, or both, is stored in the internal D-type flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs, regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. When all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remains at its last state.

Inputs can be driven from either $3.3-\mathrm{V}$ or $5-\mathrm{V}$ devices. This feature allows the use of these devices as translators in a mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ system environment.
These devices are fully specified for partial-power-down applications using $\mathrm{I}_{\text {off. }}$. The $\mathrm{I}_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.
To ensure the high-impedance state during power up or power down, $\overline{O E B A}$ should be tied to V_{CC} through a pullup resistor and OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

FUNCTION TABLE

INPUTS						DATA I/O ${ }^{(1)}$		OPERATION OR FUNCTION
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1-A8	B1-B8	
L	H	H or L	H or L	X	X	Input	Input	Isolation
L	H	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
X	H	\uparrow	H or L	X	X	Input	Unspecified ${ }^{(2)}$	Store A, hold B
H	H	\uparrow	\uparrow	$\mathrm{X}^{(2)}$	X	Input	Output	Store A in both registers
L	X	H or L	\uparrow	X	X	Unspecified ${ }^{(2)}$	Input	Hold A, store B
L	L	\uparrow	\uparrow	X	$\mathrm{X}^{(2)}$	Output	Input	Store B in both registers
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	X	H or L	X	H	Output	Input	Stored B data to A bus
H	H	X	X	L	X	Input	Output	Real-time A data to B bus
H	H	H or L	X	H	X	Input	Output	Stored A data to B bus
H	L	H or L	H or L	H	H	Output	Output	Stored A data to B bus and stored B data to A bus

(1) The data-output functions can be enabled or disabled by a variety of level combinations at OEAB or OEBA. Data-input functions always are enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.
(2) Select control = L; clocks can occur simultaneously. Select control $=\mathrm{H}$; clocks must be staggered to load both registers.

Figure 1. Bus-Management Functions

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers shown are for the DB, DW, JT, NS, PW, and W packages.

OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

www.ti.com

Absolute Maximum Ratings ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
V_{1}	Input voltage range		-0.5	6.5	V
V_{0}	Voltage range applied to any output in the high-impedance or power-off state ${ }^{(2)}$		-0.5	6.5	V
V_{O}	Voltage range applied to any output in the high or low state ${ }^{(2)(3)}$		-0.5	$\mathrm{V}_{C C}+0.5$	V
I_{1}	Input clamp current	$\mathrm{V}_{1}<0$		-50	mA
l OK	Output clamp current	$\mathrm{V}_{\mathrm{O}}<0$		-50	mA
I_{0}	Continuous output current			± 50	mA
Continuous current through V_{CC} or GND				± 100	mA
θ_{JA}	Package thermal impedance ${ }^{(4)}$	DB package		63	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		DW package		46	
		NS package		65	
		PW package		88	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
(3) The value of V_{cc} is provided in the recommended operating conditions table.
(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions ${ }^{(1)}$

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		V_{cc}	SN54LVC652A			SN74LVC652A			UNIT		
		MIN	TYP(1)		MAX	MIN	TYP(1)	MAX					
V_{OH}				$\mathrm{IOH}^{\text {a }}=-100 \mu \mathrm{~A}$		1.65 V to 3.6 V				$\mathrm{V}_{\text {CC }}-0.2$			V
		2.7 V to 3.6 V	$\mathrm{V}_{\mathrm{CC}}-0.2$										
		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$		1.65 V				1.2					
		$\mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$		2.3 V				1.7					
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$		2.7 V	2.2			2.2					
		3 V	2.4			2.4							
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$		3 V	2.2			2.2					
$\mathrm{V}_{\text {OL }}$				$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		1.65 V to 3.6 V						0.2	V
		2.7 V to 3.6 V	0.2										
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$				1.65 V						0.45	
		$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$		2.3 V						0.7			
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		2.7 V			0.4			0.4			
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		3 V			0.55			0.55			
1	Control inputs	$\mathrm{V}_{1}=0$ to 5.5 V		3.6 V			± 5			± 5	$\mu \mathrm{A}$		
$\mathrm{I}_{\text {off }}$		V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		0						± 10	$\mu \mathrm{A}$		
$\mathrm{IOz}^{(2)}$		$\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V		3.6 V			± 15			± 10	$\mu \mathrm{A}$		
$I_{\text {cc }}$		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	$\mathrm{I}_{0}=0$	3.6 V			10			10	$\mu \mathrm{A}$		
		$3.6 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}^{(3)}$					10			10			
$\Delta l_{\text {CC }}$		One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at $V_{C C}$ or GND		2.7 V to 3.6 V			500			500	$\mu \mathrm{A}$		
C_{i}	Control inputs	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND		3.3 V		4.5			4.5		pF		
C_{io}	A or B port	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND		3.3 V		7.5			7.5		pF		

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) For I/O ports, the parameter I_{Oz} includes the input leakage current.
(3) This applies in the disabled state only.

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

		SN54LVC652A				UNIT
		$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		
		MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency		80		100	MHz
t_{w}	Pulse duration	3.3		3.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CLK \uparrow	1.6		1.5		ns
$\mathrm{th}^{\text {r }}$	Hold time, data after CLK \uparrow	0.5		1.5		ns

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

		SN74LVC652A								UNIT
		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V} \\ \pm 0.15 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency		(1)		(1)		80		100	MHz
t_{w}	Pulse duration	${ }^{(1)}$		(1)		3.3		3.3		ns
	Setup time, data before CLK \uparrow	${ }^{(1)}$		${ }^{(1)}$		1.9		1.9		ns
	Hold time, data after CLK \uparrow	(1)		(1)		1.5		1.7		ns

(1) This information was not available at the time of publication.

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	SN54LVC652A			UNIT
			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		
			MIN MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$			80	100		MHz
t_{pd}	A or B	B or A	7.8	1	7.4	ns
	CLK	A or B	8.4	1	8	
	SAB or SBA	B or A	9.6	1	8.7	
$t_{\text {en }}$	OEBA	A	8.9	1	7.4	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\text { OEBA }}$	A	8.1	1	7.5	ns
$\mathrm{t}_{\text {en }}$	OEAB	B	8.6	1	7.1	ns
$\mathrm{t}_{\text {dis }}$	OEAB	B	7.7	1	7.4	ns

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	SN74LVC652A								UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V} \\ \pm 0.15 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$			(1)		(1)		80		100		MHz
$\mathrm{t}_{\text {pd }}$	A or B	B or A	(1)	(1)	(1)	(1)		7.8	1.5	7.4	ns
	CLK	A or B	(1)	(1)	(1)	(1)		8.4	1.5	8	
	SAB or SBA	B or A	(1)	(1)	(1)	(1)		9.6	1.5	8.7	
$\mathrm{t}_{\text {en }}$	$\overline{\text { OEBA }}$	A	(1)	(1)	(1)	(1)		8.9	1.5	7.4	ns
$\mathrm{t}_{\text {dis }}$	OEBA	A	(1)	(1)	(1)	(1)		8.1	1.5	7.5	ns
$\mathrm{t}_{\text {en }}$	OEAB	B	(1)	(1)	(1)	(1)		8.6	1.5	7.1	ns
$\mathrm{t}_{\text {dis }}$	OEAB	B	${ }^{(1)}$	(1)	${ }^{(1)}$	(1)		7.7	1.5	7.4	ns

(1) This information was not available at the time of publication.

SN54LVC652A, SN74LVC652A
OCTAL BUS TRANSCEIVERS AND REGISTERS

WITH 3-STATE OUTPUTS
INSTRUMENTS
SCAS303L-JANUARY 1993-REVISED SEPTEMBER 2005

Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	UNIT	
			TYP	TYP	TYP			
C_{pd}	Power dissipation capacitance per transceiver	Outputs enabled		$\mathrm{f}=10 \mathrm{MHz}$	(1)	(1)	84	pF
		Outputs disabled	(1)		(1)	9.5		

(1) This information was not available at the time of publication.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

Voltage waveforms SETUP AND HOLD TIMES

[^0]NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
D. The outputs are measured one at a time, with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $\mathrm{t}_{\text {dis }}$.
F. tpzL and tPZH are the same as ten.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{\text {pd }}$.
H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN74LVC652ADW	ACTIVE	SOIC	DW	24	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC652A	Samples
SN74LVC652ADWR	ACTIVE	SOIC	DW	24	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC652A	Samples
SN74LVC652APW	ACTIVE	TSSOP	PW	24	60	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC652A	Samples
SN74LVC652APWR	ACTIVE	TSSOP	PW	24	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC652A	Samples
SN74LVC652APWT	ACtive	TSSOP	PW	24	250	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC652A	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000$ ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

Reel Width (W1)
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74LVC652ADWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
SN74LVC652APWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
SN74LVC652APWT	TSSOP	PW	24	250	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC652ADWR	SOIC	DW	24	2000	350.0	350.0	43.0
SN74LVC652APWR	TSSOP	PW	24	2000	356.0	356.0	35.0
SN74LVC652APWT	TSSOP	PW	24	250	356.0	356.0	35.0

TUBE

— B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	$\mathbf{W}(\mathbf{m m})$	T $(\boldsymbol{\mu m})$	$\mathbf{B}(\mathbf{m m})$
SN74LVC652ADW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74LVC652APW	PW	TSSOP	24	60	530	10.2	3600	3.5

DW (R-PDSO-G24) PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AD.

DW (R-PDSO-G24)

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Refer to IPC7351 for alternate board design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

[^0]: VOLTAGE WAVEFORMS
 ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

