- Member of Texas Instruments' Widebus ${ }^{\mathrm{TM}}$ Family
- State-of-the-Art Advanced Low-Voltage BiCMOS (ALB) Technology Design for 3.3-V Operation
- Schottky Diodes on All Inputs to Eliminate Overshoot and Undershoot
- Industry Standard '16244 Pinout
- Distributed V ${ }_{\mathrm{CC}}$ and GND Pins Minimize High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout

description

The SN74ALB16244 16-bit buffer and line driver is designed for high-speed, low-voltage (3.3-V) V_{CC} operation. This device is intended to replace the conventional driver in any speed-critical path. The small propagation delay is achieved using a unity-gain amplifier on the input and feedback resistors from input to output, which allows the output to track the input with a small offset voltage.
The device can be used as four 4-bit buffers, two 8 -bit buffers, or one 16 -bit buffer. This device provides true outputs and symmetrical active-low output-enable ($\overline{\mathrm{OE}})$ inputs.

DGG, DGV, OR DL PACKAGE
(TOP VIEW)

1可 1		$2 \overline{O E}$
$1 \mathrm{Y} 1{ }^{2}$	47	1A1
1 Y 2 [3	46	1A2
GND [4	45	GND
1Y3 [5	44	1A3
1Y4 [6	43	1A4
$\mathrm{V}_{\text {CC }} 7$	42	V_{CC}
2 Y 1 [8	41	2A1
2 Y 2 [9	40	2A2
GND [10	039	GND
2 Y 311	138	2 A 3
2 Y 4 [12	237	2A4
$3 \mathrm{Y} 1{ }^{13}$	$3 \quad 36$	3A1
3 Y 2 [14	435	3A2
GND 15	$5 \quad 34$	GND
3 Y 3 [16	$6 \quad 33$	3A3
$3 \mathrm{Y} 4{ }^{17}$	$7 \quad 32$	3A4
$\mathrm{V}_{\text {CC }} 18$	831	V_{cc}
4Y1 19	930	4A1
4 Y 2 20	20	4A2
GND 21	128	GND
$4 \mathrm{Y} 3{ }^{2}$	22	4A3
$4 \mathrm{Y} 4{ }^{2}$	23	4A4
4 $\overline{\mathrm{OE}}$ 24	25	$3 \overline{O E}$

ORDERING INFORMATION

TA	PACKAGEt		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		SSOP - DL	Tube	

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE
(each buffer)

INPUTS		OUTPUT
$\overline{\mathbf{O E}}$	\mathbf{A}	
L	H	H
L	L	L
H	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger
 Input voltage range, V_{1} : Except I/O ports (see Note 1) 0.5 V to 4.6 V

Continuous current through each V_{CC} or GND .. $\pm 100 \mathrm{~mA}$
Package thermal impedance, θ_{JA} (see Note 3): DGG package $70^{\circ} \mathrm{C} / \mathrm{W}$
DGV package $58^{\circ} \mathrm{C} / \mathrm{W}$
DL package ... $63^{\circ} \mathrm{C} / \mathrm{W}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This value is limited to 4.6 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions

			MIN	MAX	UNIT
V_{CC}	Supply voltage		3	3.6	V
${ }^{1} \mathrm{OH}^{\dagger}$	High-level output current			-25	mA
IOL^{\dagger}	Low-level output current			25	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		5	ns / V
T_{A}	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

\dagger See Figures 1 and 2 for typical I/O ranges.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP\#	MAX	UNIT
VIK	Data inputs	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	$\mathrm{I}_{\mathrm{I}}=18 \mathrm{~mA}$			3.6	$\mathrm{V}_{\mathrm{CC}}-1.2$	V
			$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-0.9	-1.2	
1	Control inputs	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or				± 10	$\mu \mathrm{A}$
	Data inputs	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	$V_{1}=V_{C C}$	$\overline{\text { OE }}$ low		0.4	0.6	mA
				$\overline{\mathrm{OE}}$ high			25	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{I}}=0$	$\overline{\text { OE }}$ low		-0.8	-1	mA
				$\overline{\mathrm{OE}}$ high			-60	$\mu \mathrm{A}$
IOZH		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$			0.6	20	$\mu \mathrm{A}$
IOZL		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-0.1	-50	$\mu \mathrm{A}$
ICC/buffer		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{l}=0$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND		3.7	5.6	mA
ICCZ		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	Control inputs $=\mathrm{V}_{\mathrm{CC}}$ or GND				0.8	mA
$\Delta_{\mathrm{CCC}}{ }^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V , One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND					600	$\mu \mathrm{A}$
C_{i}		$\mathrm{V}_{1}=3 \mathrm{~V}$ or 0				4.5		pF
C_{0}		$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0				5.5		pF

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S This is the increase in supply current for each input that is at the specified $T T L$ voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 3)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			UNIT
			MIN	TYP \ddagger	MAX	
$t_{\text {pd }}$	A	Y	0.6	1.3	2	ns
ten	$\overline{\mathrm{OE}}$	Y	1.3	2.5	4.7	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	Y	1.8	2.8	4.2	ns

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Figure 1. V_{OH} Over Recommended Free-Air Temperature Range

Figure 2. V_{OL} Over Recommended Free-Air Temperature Range

PARAMETER MEASUREMENT INFORMATION

TEST	S1
$\mathbf{t}_{\text {pd }}$	Open
tPLZ/t $^{\text {PRZ }}$	6 V
tPHZ/tPZH	GND

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. tpZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN74ALB16244DGGR	ACTIVE	TSSOP	DGG	48	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALB16244	Samples
SN74ALB16244DL	ACTIVE	SSOP	DL	48	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALB16244	Samples
SN74ALB16244DLR	ACTIVE	SSOP	DL	48	1000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALB16244	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: |
| SN74ALB16244DGGR | TSSOP | DGG | 48 | 2000 | 330.0 | 24.4 | 8.6 | 13.0 | 1.8 | 12.0 | 24.0 | Q1 |
| SN74ALB16244DLR | SSOP | DL | 48 | 1000 | 330.0 | 32.4 | 11.35 | 16.2 | 3.1 | 16.0 | 32.0 | Q1 |

PACKAGE MATERIALS INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length $(\mathbf{m m})$	Width (mm)	Height $(\mathbf{m m})$
SN74ALB16244DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74ALB16244DLR	SSOP	DL	48	1000	367.0	367.0	55.0

TUBE

B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W $(\mathbf{m m})$	T $(\boldsymbol{\mu m})$	B (mm)
SN74ALB16244DL	DL	SSOP	48	25	473.7	14.24	5110	7.87

DL (R-PDSO-G48)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. Reference JEDEC registration MO-153.

SOLDER MASK DEFINED

SOLDER MASK DETAILS

NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:6X

NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

