
Technical Data _______ CD54/74AC646, CD54/74AC648 CD54/74ACT646, CD54/74ACT648

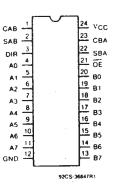
Octal-Bus Transceiver/Registers, 3-State

CD54/74AC/ACT646 - Non-Inverting CD54/74AC/ACT648 - Inverting

Type Features:

- Buffered inputs
- Typical propagation delay:
 - 5.3 ns @ Vcc = 5 V, TA = 25° C, CL = 50 pF

The RCA CD54/74AC646 and CD54/74AC648 and the CD54/74ACT646 and CD54/74ACT648 3-state, octal-bus transceiver/registers use the RCA ADVANCED CMOS technology. The CD54/74AC648 and CD54/74ACT648 have inverting outputs. The CD54/74AC646 and CD54/74ACT646 have non-inverting outputs. These devices are bus transceivers with D-type flip-flops which act as internal storage registers on the LOW-to-HIGH transition of either CAB or CBA clock inputs. Output Enable (OE) and Direction (DIR) inputs control the transceiver functions. Data present at the high-impedance output can be stored in either register or both but only one of the two buses can be enabled as outputs at any one time. The Select controls (SAB and SBA) can multiplex stored and transparent (real time) data. The Direction control determines which data bus will receive data when the Output Enable (OE) is LOW. In the highimpedance mode (Output Enable HIGH), A data can be stored in one register and B data can be stored in the other register. The clocks are not gated with the Direction (DIR) and Output Enable (OE) terminals; data at the A or B terminals can be clocked into the storage flip-flops at any time.


The CD74AC/ACT646 and CD74AC/ACT648 are supplied in 24-lead dual-in-line narrow-body plastic packages (EN suffix) and in 24-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70° C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 o +125°C).

The CD54AC/ACT646 and CD54AC/ACT648, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:

- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
- ± 24-mA output drive current
 Fanout to 15 FAST* ICs
 Drives 50-ohm transmission lines

*FAST is a Registered Trademark of Fairchild Semiconductor Corp.

TERMINAL ASSIGNMENT

This data sheet is applicable to the CD74AC646 and CD74ACT646. The CD54AC646, CD54/74AC648, CD54ACT646, and CD54/74ACT648 were not acquired from Harris Semiconductor.

File Number 1970

CD54/74AC646, CD54/74AC648 CD54/74ACT646, CD54/74ACT648

FUNCTION TABLE

		IN	PUTS			DATA	I/O#	OPERATION OR FUNCTION			
ŌĒ	DIR	CAB	CBA	SAB	SBA	A0 THRU A7	B0 THRU B7	646	648		
X	X	 X	· x	X X	X X	Input Not specified	Not specified Input	Store A, B unspecified Store B, A unspecified	Store A, B unspecified Store B, A unspecified		
H	X X	⊥/¯ HorL	_/_ H or L	X · X	- X X	Input	Input	Store A and B Data Isolation, hold storage	Store A and B Data Isolation, hold storage		
L	L	X X	X H or L	X X	L H	Output	Input	Real-Time B Data to A Bus Stored B Data to A Bus	Real-Time B Data to A Bus Stored B Data to A Bus		
L	H H	X Hor L	X X	L H	X X	Input	Output	Real-Time A Data to B Bus Stored A Data to B Bus	Real-Time A Data to B Bus Stored A Data to B Bus		

#The data output functions may be enabled or disabled by various signals at the OE and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

To prevent excess currents in the High-Z modes, all I/O terminals should be terminated with 10 k Ω resistors.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE (V _{cc}) DC INPUT DIODE CURRENT, I _{IK} (for V ₁ $<$ -0.5 V or V ₁ $>$ V _{cc} + 0.5 V) DC OUTPUT DIODE CURRENT, I _{ok} (for V ₀ $<$ -0.5 V or V ₀ $>$ V _{cc} + 0.5 V)	±20 mA ±50 mA
DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, I_0 (for $V_0 > -0.5$ V or V_0	
DC Vcc or GROUND CURRENT (lcc or Igno)	±100 mA*
POWER DISSIPATION PER PACKAGE (PD):	
For $T_A = -55$ to $\pm 100^{\circ}$ C (PACKAGE TYPE E)	
For T _A = +100 to +125°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For $T_A = -55$ to $+70^{\circ}$ C (PACKAGE TYPE M)	
For $T_A = +70$ to $+125^{\circ}C$ (PACKAGE TYPE M)	. Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A)	
	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum	+265°C
Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contactin	ng lead tips only +300°C
*For up to 4 outputs per device; add \pm 25 mA for each additional output.	

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

000000000000000000000000000000000000000	LIN	LINUTO	
CHARACTERISTICS	MIN.	MAX.	
Supply-Voltage Range, Vcc*:			
(For $T_A = Full Package-Temperature Range)$			
AC Types	1.5	5.5	V
ACT Types	4.5	5.5	V V
DC Input or Output Voltage, Vi, Vo	0	Vcc	V
Operating Temperature, T _A	-55	+125	°C
Input Rise and Fall Slew Rate, dt/dv		1	
at 1.5 V to 3 V (AC Types)	0	50	ns/V
at 3.6 V to 5.5 V (AC Types)	0	20	ns/V
at 4.5 V to 5.5 V (ACT Types)	0	10	ns/V

*Unless otherwise specified, all voltages are referenced to ground.

9

Technical Data CD54/74AC646, CD54/74AC648 CD54/74ACT646, CD54/74ACT648

STATIC ELECTRICAL CHARACTERISTICS: AC Series

			,			AMBIENT	ТЕМРЕ	RATURE	(T _A) - ° (>	I
CHARACTERIST	ICS	TEST CON	DITIONS	V _{cc}	+;	25	-40 te	o +85	-55 to +125		UNITS
		V, (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX:	MIN.	MAX.	
High-Level Input Voltage	Vin			1.5 3 5.5	1.2 2.1 3.85		1.2 2.1 3.85		1.2 2.1 3.85	-	* v
Low-Level Input Voltage	ViL			1.5 3 5.5	-	0.3 0.9 1.65		0.3 0.9 1.65		0.3 0.9 1.65	v
High-Level Output			-0.05	1.5	1.4	- 1	1.4		1.4		
Voltage	Vон	VIH	-0.05	3	2.9		2.9	_	2.9	—	
		or	-0.05	4.5	4.4	-	4.4	·	4.4		
		ViL	-4	3	2.58		2.48		2.4		V
			-24	4.5	3.94	-	3.8		3.7		
		(-75	5.5	<u></u>		3.85	_		·	
		#, * {	-50	5.5	—	—			3.85		
Low-Level Output			0.05	1.5	—	0.1	·	0.1		0.1	1
Voltage	ر Vol	ViH	0.05	3	_	0.1		0.1		0.1	
		or	0.05	4.5		0.1		0.1		0.1	
		V _{IL}	12	3	_	0.36		0.44	<u> </u>	0.5	V
			24	4.5		0.36	—	0.44	-	0.5	
		#, ★ {	75	5.5	_	—		1.65	-		
		<i>"</i> , " {	50	5.5		—	-	<u> </u>		1.65	
Input Leakage Current	ł,	V _{cc} or GND		5.5		±0.1	-	±1	_	±1	μA
3-State Leakage Current	loz	VIH Or VIL Vo= Vcc Or GND		5.5		±0.5		±5	_	±10	μΑ
Quiescent Supply Current, MSI	lcc	V _{cc} or GND	0	5.5	_	8	-	80	-	160	μA

#Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. *Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

____ Technical Data

CD54/74AC646, CD54/74AC648 CD54/74ACT646, CD54/74ACT648

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

						AMBIEN	Т ТЕМРЕ	RATURE	E (T _A) - ° (C	UNITS
CHARACTERIST	ICS	TEST CON	DITIONS	V _{cc}	+:	25	-40 t	o +85	-55 to	o +125	
		V _i (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input Voltage	Vie			4.5 to 5.5	2		2	_	2		v
Low-Level Input Voltage	VIL			4.5 to 5.5		0.8	-	0.8		0.8	V
High-Level Output		V _{IH}	-0.05	4.5	4.4	<u> </u>	4.4	-	4.4	-	
Voltage	V _{он}	or Vi∟	-24	4.5	3.94		3.8	—	3.7	—]
		#. * {	-75	5.5		—	3.85	-		_] V
		<u>"·</u>)	-50	5.5					3.85]
Low-Level Output		ViH	0.05	4.5		0.1	-	0.1	_	.0.1	
Voltage	Vol	or ViL	24	4.5		0.36		0.44	_	0.5	l v
		#, * {	• 75	5.5	_	-	—	1.65	, —	_	1
		"' `` · ∖	50	5.5	_	—				1.65	1
Input Leakage Current	li.	V _{cc} or GND		5.5	_	±0.1		±1	_	±1	μA
3-State Leakage Current	łoz	V _{IH} or V _{IL} Vo= Vcc or GND		5.5		±0.5		±5		±10	μΑ
Quiescent Supply Current, MSI	lcc	V _{cc} or GND	0	5.5	_	8		80		160	μA
Additional Quiescent Current per Input P TTL Inputs High 1 Unit Load		V _{cc} -2.1		4.5 to 5.5	_	2.4	_	2.8	_	3	mA

#Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. *Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C. 75 ohms at +125°C.

INPUT	UNIT LOAD*
CAB, CBA	1.25
SAB, SBA	1.2
DIR	0.67
ŌĒ	1.17
An, Bn	0.4

ACT INPUT LOADING TABLE

*Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25°C.

303

9

Technical Data ______ CD54/74AC646, CD54/74AC648 CD54/74ACT646, CD54/74ACT648

PREREQUISITE FOR SWITCHING: AC Series

			AMBI	ENT TEMPE	RATURE (1	Γ _A) - °C	
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 t	o +85	-55 to	UNITS	
			MIN.	MAX.	MIN.	MAX.]
Max. Frequency	fmax	1.5 3.3* 5†	11 101 143		10 89 125		MHz
Setup Time Data to Clock	tsu	1.5 3.3 5	27 3.1 2.2		31 3.5 2.5		ns
Hold Time Data to Clock	tH	1.5 3.3 5	2 2 2	-	2 2 2		ns
Clock Pulse Width	tw	1.5 3.3 5	44 4.9 3.5	_	50 5.6 4		ns

*3.3 V: min. is @ 3 V

†5 V: min is @ 4.5 V

SWITCHING CHARACTERISTICS: AC Series; t,, tr = 3 ns, CL = 50 pF

and the second s			AMBIE	ENT TEMPE	RATURE (T) - °C	
0110040750107100	SYMBOL	Vcc		o +85		+125	
CHARACTERISTICS	STMOOL	(V)	MIN.	MAX.	MIN.	MAX.	
Propagation Delays:		·····				100	
Store A Data to B Bus	Тесн	1.5	-	154		169	
Store B Data to A Bus	Тень	3.3*	4.8	17.1	4.7	18.9	ns
646	UPHL	5†	3.5	12.3	3.4	13.5	
Store A Data to B Bus		1.5	—	154	—	169	
Store B Data to A Bus	t _{РLН}	3.3	4.8	17.1	4.7	18.9	ns
648	t _{PHL}	5	3.5	12.3	3.4	13.5	
A Data to B Bus		1.5		125	- 1	138	
B Data to A Bus	t _{PLH}	3.3	4	14	3.9	15.4	ns
646	tрнс	5	2.8	10	2.8	11	
Ā Data to B Bus		1.5		125	—	138	-
B Data to A Bus	tецн	3.3	4	14	3.9	15.4	ns
648	t _{PHL}	5	2.8	10	2.8	11	
Select to Data		1.5		136	_	150	
646	t _{PLH}	3.3	4.3	15.3	4.2	16.8	ns
040	t _{PHL}	5	3.1	10.9	3	12	
Select to Data		1.5	<u>+</u>	136		150	
648	tеьн	3.3	4.3	15.3	4.2	16.8	ns
048	tень	5	3.1	10.9	3	12	
3-State Enabling/	tezi			154		169	1
Disabling Time	tezh	1.5	-	18.4	5.1	20.2	ns
Bus to Output or	telz	3.3	5.2 3.5	12.3	3.4	13.5	113
Register to Output	tенz	5	3.5	12.5	3.4	10.0	
Power Dissipation Capacitance	CPD§		150	Тур.	150	Тур.	pF
	он				A		1
During Switching of	Vону						
Other Outputs (Output	See	5	1	4 Typ.	@ 25° C		
Under Test Not	Fig. 1						
Switching)	J						
During Switching of	VOLP						
Other Outputs (Output	See	5		1 Typ.	@ 25° C		V
Under Test Not	Fig. 1						
Switching)	-		1				
Input Capacitance	C ₁		-	10	-	10	pF
3-State Output Capacitance	Co	_		15	T —	15	pF

*3.3 V: min. is @ 3.6 V

max. is @ 3 V

t5 V: min. is @ 5.5 V max. is @ 4.5 V C_{PD} is used to determine the dynamic power consumption, per package. $P_D = V_{CC}^2 C_{PD} f_i + \Sigma (V_{CC}^2 C_L f_o)$ where f_i = input frequency

 $f_o = output frequency$

CL = output load capacitance

V_{cc} = supply voltage.

_ Technical Data

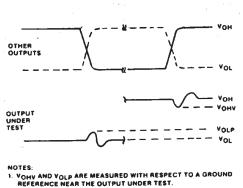
CD54/74AC646, CD54/74AC648 CD54/74ACT646, CD54/74ACT648

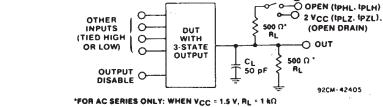
PREREQUISITE FOR SWITCHING: ACT Series

		AMBI					
SYMBOL	V _{cc}	-40 1	o +85	-55 to	UNITS		
· · · ·	(•)	MIN.	MAX.	MIN.	MAX.	1	
fmax	5*	125	<u> </u>	110		MHz	
tsu	. 5	2.2	_	2.5		ns	
t _H	5	2		· 2	_	ns	
tw	5	3.9	_	4.5	_	ns	
	fmax tsu t _H	fmax 5* tsu 5 t _H 5	SYMBOL V _{CC} (V) -40 t MIN. fmax 5° 125 tsu 5 2.2 tH 5 2	SYMBOL V _{cc} (V) -40 to +85 fmax 5* 125 tsu 5 2.2 tH 5 2	SYMBOL V_{cc} (V) -40 to +85 -55 to -55 to MIN. f_{max} 5° 125 — 110 t_{su} 5 2.2 — 2.5 t_{H} 5 2 — 2	fmax 5* 125 MIN. MAX. MIN. MAX. f_{max} 5* 125 — 110 — t_{SU} 5 2.2 — 2.5 — t_H 5 2 — 2 —	

*5 V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: ACT Series; t, tr = 3 ns, CL = 50 pF


	· · ·		AMB	AMBIENT TEMPERATURE (TA) - °C					
CHARACTERISTICS	SYMBOL	V _{cc}	-40	to +85	-55 t	o +125			
		(V)	MIN.	MIN. MAX.		MAX.			
Propagation Delays: Store A Data to B Bus Store B Data to A Bus 646	tрін tрні	5*	4	14.1	3.9	15.5	ns		
Store Ā Data to B Bus Store B Data to A Bus 648	t _{есн} t _{енс}	5	4	14.1	3.9	15.5	ns		
A Data to B Bus B Data to A Bus 646	telн tehl	5	3.2	11.4	3.1	12.5	ns		
A Data to B Bus B Data to A Bus 648	tесн tень	5	3.2	11.4	3.1	→ 12.5	ns		
Select to Data 646	tецн тенц	5	3.7	13.2	3.6	14.5	ns		
Select to Data 648	tрін Трні	5	4	14.1	3.9	15.5	ns		
3-State Enabling/ Disabling Time Bus to Output or Register to Output	tezi tezi telz telz	5	4	14.1	3.9	15.5	ns		
Power Dissipation Capacitance	Cpd§	_	150	Тур.	150	pF			
Min. (Valley) N During Switching of Other Outputs (Output Under Test Not Switching)	Ион Voнv See Fig. 1	5	4 Typ. @ 25°C				v		
Max. (Peak) During Switching of Other Outputs (Output Under Test Not Switching)	Vol P See Fig. 1	5	1 Тур. @ 25°С				v		
Input Capacitance	Cı		-	10		10	pF		
3-State Output Capacitance	Co	_		15		15	рF		


15 V: min. is @ 5.5 V max. is @ 4.5 V §CPD is used to determine the dynamic power consumption, per package. $P_D = C_{PD}V_{cc}^2 f_i + \Sigma (C_L V_{cc}^2 f_o) + V_{cc} \Delta I_{cc}$ where $f_i = input frequency$

Technical Data CD54/74AC646, CD54/74AC648 CD54/74ACT646, CD54/74ACT648

j,

PARAMETER MEASUREMENT INFORMATION

OUTPUTS

tei 2

TPHZ

t_r = 3 ns

OUTPUT: LOW

OUTPUT: HIGH TO OFF TO HIGH

OUTPUT

DISABLE

Fig. 2 - Three-state propagation delay waveforms and test circuit.

te 13 na

tp71

- tPZH

OUTPUTS

INPUT LEVEL 90 %

٧s

VOH (≠VCC)

GND

0.2 VCC VOL (#GND)

٧s

0.8 VCC

92CM-42405

٧s

OUTPUTS ENABLED O GND (IPHZ. IPZH)

1,=3.08 - t, = 3ns INPUT 90% ٧e DATA A(B) - 10% GND ٧o 8(A) AC/ACT 648 † PLH 1 PHE ¹PHL PLH --- V e 8 (A) VO AC/ACT 646 9205-42618

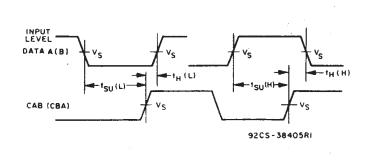


Fig. 4 - Data setup and hold times.

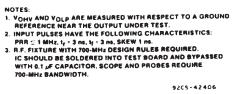

OUTPUT 8 500 Ω DUT C. OUTPUT 50 pF LOAD FOR AC SERIES ONLY: WHEN $V_{CC} = 1.5 V, R_L = 1 k\Omega$

Fig. 3 - Propagation delay times.

9205 - 42389

	CD54/74AC	CD54/74ACT		
Input Level	Vcc	3 V		
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V		
Output Switching Voltage, Vs	0.5 V _{cc}	0.5 V _{cc}		

Fig. 5 - Test circuit.

9205-42406

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
CD74AC646M	ACTIVE	SOIC	DW	24	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC646M	
CD74AC040W	ACTIVE	3010	DVV	24	25	Kulis & Gleen	NIFDAO		-55 10 125	AC04010	Samples
CD74AC646M96	ACTIVE	SOIC	DW	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC646M	Samples
											Samples
CD74ACT646M	ACTIVE	SOIC	DW	24	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT646M	Samples
CD74ACT646M96	ACTIVE	SOIC	DW	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT646M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

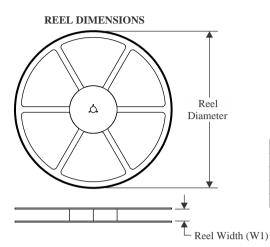
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

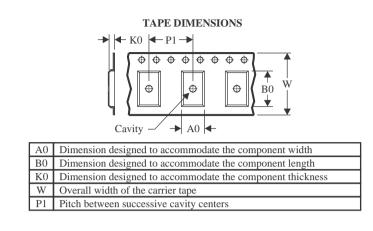
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

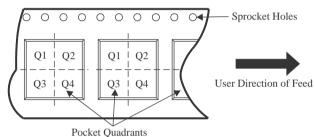
www.ti.com

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

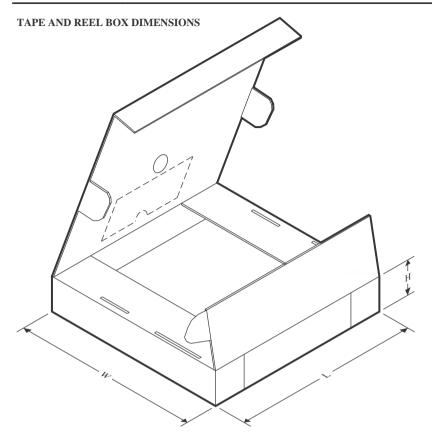


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

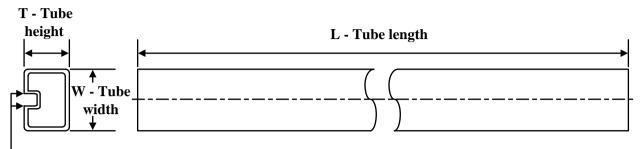

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74AC646M96	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
CD74ACT646M96	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

9-Aug-2022

*All dimensions are nominal

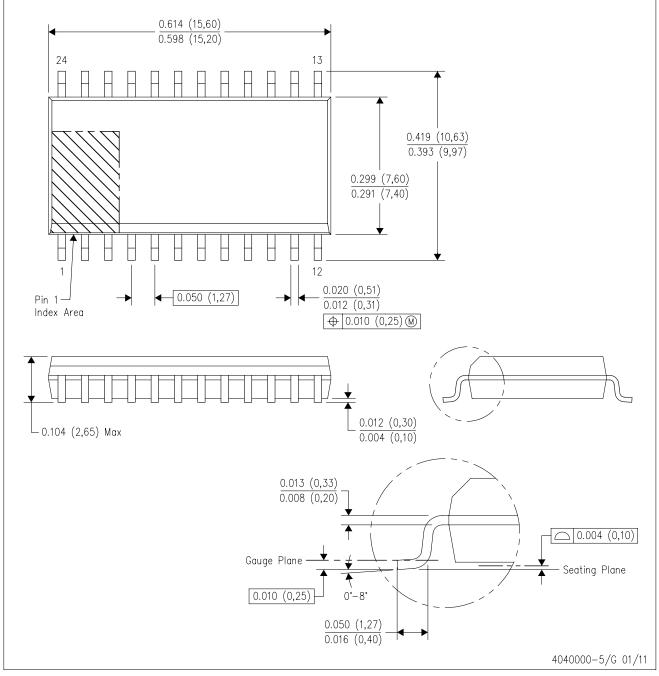

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74AC646M96	SOIC	DW	24	2000	350.0	350.0	43.0
CD74ACT646M96	SOIC	DW	24	2000	350.0	350.0	43.0

TEXAS INSTRUMENTS

www.ti.com

9-Aug-2022

TUBE


- B - Alignment groove width

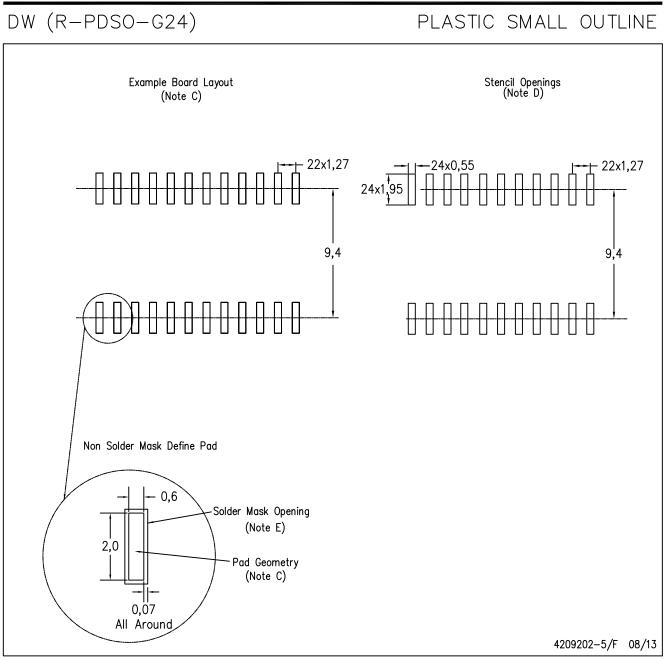
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
CD74AC646M	DW	SOIC	24	25	506.98	12.7	4826	6.6
CD74ACT646M	DW	SOIC	24	25	506.98	12.7	4826	6.6

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AD.

LAND PATTERN DATA

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated