

ADS8355

ZHCSKR7A - FEBRUARY 2020 - REVISED FEBRUARY 2020

ADS8355

双路、16位、1MSPS、同步采样,模数转换器

1 特性

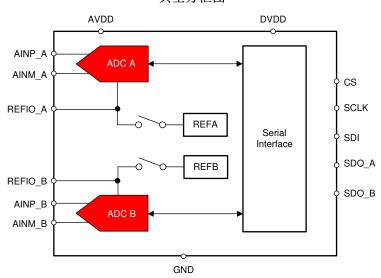
- 1MSPS 吞吐量、无延迟输出
- 两个通道同步采样
- 支持单端和伪差分输入
- 出色的直流和交流性能:
 - 16位 NMC DNL, ±1LSB INL
 - 88dB SNR, -97dB THD
- 双路、可编程2.5V内部基准电压
- 完整的扩展工业温度范围: -40°C 至 +125°C
- 小型封装: WQFN-16 (3mm × 3mm)

2 应用

- 伺服驱动器位置反馈
- 光学模块
- 多功能继电器
- 电能质量分析仪
- 三相 UPS
- 模拟输入模块

3 说明

ADS8355 是一款双路高速同步采样模数转换器 (ADC),可支持单端和伪差分模拟输入。


该器件支持灵活的串行接口,可以在宽电源电压范围内正常工作。通过灵活的接口可以方便地与各种主机控制器通信。该系列器件支持两种低功耗模式,可针对给定输出优化功耗。该器件可在完整的扩展工业温度范围(-40°C 至 +125°C)内正常工作,并采用 16 引脚WQFN(3mm × 3mm)封装。

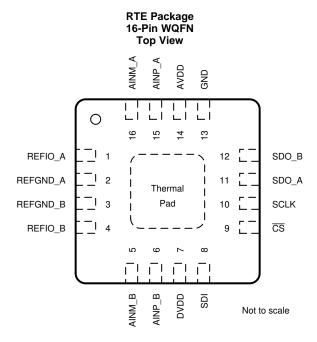
器件信息(1)

器件型号	封装	封装尺寸(标称值)
ADS8355	WQFN (16)	3.00mm × 3.00mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

典型方框图

目	录


1	特性1		7.5 Programming	21
2	应用 1		7.6 Register Map	<u>23</u>
3	说明 1	8	Application and Implementation	28
4	修订历史记录 2		8.1 Application Information	28
5	Pin Configuration and Functions		8.2 Typical Application	30
6	Specifications4	9	Power Supply Recommendations	33
٠	6.1 Absolute Maximum Ratings	10	Layout	33
	6.2 ESD Ratings		10.1 Layout Guidelines	
	6.3 Recommended Operating Conditions		10.2 Layout Example	34
	6.4 Thermal Information	11	器件和文档支持	35
	6.5 Electrical Characteristics		11.1 器件支持	35
	6.6 Timing Requirements 8		11.2 文档支持	35
	6.7 Switching Characteristics		11.3 接收文档更新通知	35
	6.8 Typical Characteristics		11.4 社区资源	35
7	Detailed Description 14		11.5 商标	35
	7.1 Overview		11.6 静电放电警告	35
	7.2 Functional Block Diagram		11.7 Glossary	35
	7.3 Feature Description	12	机械、封装和可订购信息	35
	7.4 Device Functional Modes			

4 修订历史记录

CI	nanges from Original (February 2020) to Revision A	Page
•	Deleted AVDD supply condition and MIN MAX specification for internal reference.	<u>6</u>
•	Deleted AVDD supply condition and MIN MAX specification for internal reference.	<u>6</u>

5 Pin Configuration and Functions

Pin Functions

NAME	NO.	TYPE	DESCRIPTION
AINM_A	16	Analog input	Negative analog input, channel A
AINM_B	5	Analog input	Negative analog input, channel B
AINP_A	15	Analog input	Positive analog input, channel A
AINP_B	6	Analog input	Positive analog input, channel B
AVDD	14	Power supply	Supply voltage for ADC operation
CS	9	Digital input	Chip-select signal; active low
DVDD	7	Digital I/O supply	Digital I/O supply
GND	13	Power supply	Device ground
REFGND_A	2	Power supply	Reference A ground
REFGND_B	3	Power supply	Reference B ground
REFIO_A	1	Analog input/output	Reference voltage input/output, channel A
REFIO_B	4	Analog input/output	Reference voltage input/output, channel B
SCLK	10	Digital input	Clock for serial communication
SDI	8	Digital input	Data input for serial communication
SDO_A	11	Digital output	Data output A for serial communication, channel A and channel B
SDO_B	12	Digital output	Data output B for serial communication, channel B
Thermal pad		Power supply	Exposed thermal pad. TI recommends connecting this pin to the printed circuit board (PCB) ground.

6 Specifications

6.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted)(1)

	MIN	MAX	UNIT
AVDD to REFGND_x ⁽²⁾ or GND	-0.3	6	V
DVDD to GND	-0.3	6	V
Analog (AINP_x and AINM_x) ⁽³⁾ and reference input (REFIO_x) voltage with respect to REFGND_x	REFGND_x - 0.3	AVDD + 0.3	V
Digital input voltage with respect to GND	GND - 0.3	DVDD + 0.3	V
REFGND_x	GND - 0.3	GND + 0.3	V
Input current to any pin except supply pins	-10	10	mA
Junction temperature, T _J	-40	125	°C
Storage temperature, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Rating* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Condition*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

REFGND_x refers to REFGND_A and REFGND_B. REFIO_x refers to REFIO_A and REFIO_B.

⁽³⁾ AINP_x refers AINP_A and AINP_B. AINM_x refers to AINM_A and AINM_B.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
POWER S	SUPPLY				,			
		V _{REF} range, internal reference	4.5	5	5.5			
		V _{REF} range, external reference V _{REF} < 4.5 V	4.5	5	5.5			
AVDD	Analog supply voltage (AVDD to AGND)	V _{REF} range, external reference V _{REF} > 4.5 V	V_{REF}	5	5.5	V		
	(11722 10110112)	2 x V _{REF} range, internal reference	5	5	5.5			
		2 x V _{REF} range, external reference	2 x V _{REF}	5	5.5			
DVDD	Digital supply voltage		1.65	3.3	5.5	V		
ANALOG	INPUTS (Single-Ended C	onfiguration)						
		CCD	Full-scale input range	V _{REF} range	0		V_{REF}	V
rsk	(AINP_x to AINM_x) ⁽¹⁾	2 x V _{REF} range	0		2 x V _{REF}	V		
	Absolute input voltage	V _{REF} range	0		V_{REF}			
V_{INP}	(AINP_x to REFGND_x) ⁽²⁾	2 x V _{REF} range, AVDD ≥ 2 x V _{REF}	0		2 x V _{REF}	V		
V _{INM}	Absolute input voltage (AINM_x to REFGND_x)		-0.1		0.1	V		
ANALOG	INPUTS (Pseudo-Differer	ntial Configuration)			,			
FSR	Full-scale input range	V _{REF} range	-V _{REF} / 2		V _{REF} / 2	V		
rok	(AINP_x to AINM_x) ⁽¹⁾	2 x V _{REF} range	-V _{REF}		V_{REF}	V		
	Absolute input voltage	V _{REF} range	0		V_{REF}			
V_{INP}	(AINP_x to REFGND_x)	2 x V _{REF} range	0		2 x V _{REF}	V		
V _{INM}	Absolute input voltage (AINM x -REFGND x)	V _{REF} range	V _{REF} / 2 – 0.1	V _{REF} / 2	V _{REF} / 2 + 0.1	V		
	(Alivivi_x -REFGIND_x)	2 x V _{REF} range	V _{REF} – 0.1	V_{REF}	V _{REF} + 0.1			
EXTERN	AL REFERENCE INPUT							
\/	REFIO_x ⁽³⁾ input	V _{REF} range	2.4	2.5	AVDD	V		
V _{REFIO}	voltage	2 x V _{REF} range	2.4	2.5	AVDD / 2	V		
TEMPER	ATURE RANGE	-						
T _A	Ambient temperature		-40	25	125	°C		

 ⁽¹⁾ AINP_x refers to analog input pins AINP_A and AINP_B. AINM_x refers to analog input pins AINM_A and AINM_B.
 (2) REFGND_x refers to reference ground pins REFGND_A and REFGND_B.
 (3) REFIO_x refers to voltage reference inputs REFIO_A and REFIO_B.

6.4 Thermal Information

		ADS8355	
	THERMAL METRIC ⁽¹⁾	RTE (WQFN)	UNIT
		16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	33.3	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	29.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	7.3	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.2	°C/W
Y_{JB}	Junction-to-board characterization parameter	7.4	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	0.9	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

at AVDD = 5 V, DVDD = 2.35 V to 5.5 V, $V_{REFIO_A} = V_{REFIO_B} = 5$ V (external) and $f_{SAMPLE} = 1$ MSPS (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}\text{C}$ to 125°C; typical values are at $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
RESOLUTIO	N					
	Resolution		16			Bits
DC ACCURA	ACY					
NMC	No missing codes		16			Bits
			-3	±1	3	
INL	Integral nonlinearity	V _{REF} input range, internal V _{REF} = 2.5 V		±1		LSB
			-0.99	±0.5	0.99	
DNL	Differential nonlinearity	V _{REF} input range, internal V _{REF} = 2.5 V		±0.5		LSB
_	Input offset error		-1	±0.5	1	\/
E _{IO}	E _{IO} match	ADC_A to ADC_B	-1	±0.5	1	mV
dE _{IO} /dT	Input offset thermal drift			1		μV/°C
E _G	Gain error	Referenced to the voltage at REFIO_x	-0.1	±0.05	0.1	%FS
	E _G match	ADC_A to ADC_B	-0.1	±0.05	0.1	
dE _G /dT	Gain error thermal drift	Referenced to the voltage at REFIO_x		±1		ppm/°C
AC ACCURA	ACY	•				
		V _{REF} input range	86	88		
SNR	Signal-to-noise ratio	AVDD = 3.3 V, V_{REF} input range, internal V_{REF} = 2.5 V		84		dB
		V _{REF} = 2.5 V internal / external, 2 x V _{REF} input range		84		
		V _{REF} input range		-97		
THD	Total harmonic distortion	AVDD = 3.3 V, V _{REF} input range, internal V _{REF} = 2.5 V		-97		dB
		V _{REF} = 2.5 V internal/external, 2 x V _{REF} input range		-97		

Electrical Characteristics (continued)

at AVDD = 5 V, DVDD = 2.35 V to 5.5 V, $V_{REFIO_A} = V_{REFIO_B} = 5$ V (external) and $f_{SAMPLE} = 1$ MSPS (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}\text{C}$ to 125°C; typical values are at $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		V _{REF} input range		87.5		
SINAD	Signal-to-noise +	$\label{eq:avdd} \begin{split} \text{AVDD} &= 3.3 \text{ V}, \text{ V}_{\text{REF}} \text{ input range,} \\ \text{internal V}_{\text{REF}} &= 2.5 \text{ V} \end{split}$		83		dB
		V _{REF} = 2.5 V internal / external, 2 x V _{REF} input range		83		
		V _{REF} input range		100		
SFDR	Spurious-free dynamic range	$\begin{array}{l} \text{AVDD} = 3.3 \text{ V, V}_{\text{REF}} \text{ input range,} \\ \text{internal V}_{\text{REF}} = 2.5 \text{ V} \end{array}$		100		dB
		V _{REF} = 2.5 V internal/external, 2 x V _{REF} input range		100		
ANALOG INPL	JTS	1				
C _i	Input capacitance	In sample mode		40		рF
<u> </u>	input capacitanice	In hold mode		4		Pi
l _{lkg}	Input leakage current			0.1		μΑ
INTERNAL VC	DLTAGE REFERENCE	1				
$V_{REFIO_{X}}$	Reference output voltage	REFDAC_x = 1FFh at 25°C		2.5		V
V _{REF-match}	VREF_A to VREF_B matching	REFDAC_x = 1FFh at 25°C		±3		mV
C _{REFIO}	Reference output capacitor			10		μF
t _{REFON}	Reference output settling time			8		ms
VOLTAGE RE	FERENCE INPUT					
I _{REF}	Average reference input current	Per ADC		300		μΑ
C _{REF}	External reference capacitor			10		μF
I _{lkg(dc)}	DC leakage current			±0.1		μΑ
SAMPLING DY	YNAMICS					
t_A	Aperture delay			8		ns
	t _A match	ADC_A to ADC_B		40		ps
t _{AJIT}	Aperture jitter			50		ps
DIGITAL INPU	TS					
V _{IH} ⁽¹⁾	High-level input voltage	DVDD ≥ 2.35 V	0.7 x DVDD	DV	DD + 0.3	V
VIH` ′	High-level input voltage	DVDD < 2.35 V	0.8 x DVDD	DV	DD + 0.3	V
V _{IL} ⁽¹⁾	Low-level input voltage	DVDD ≥ 2.35 V	-0.3	0.3	x DVDD	V
VIL`'	Low-level input voitage	DVDD < 2.35 V	-0.3	0.2	x DVDD	V
	Input current			±10		nA
DIGITAL OUT	PUTS					
V _{OH} ⁽¹⁾	High-level output voltage	I _{OH} = 500-μA source	0.8 x DVDD		DVDD	V
V _{OL} ⁽¹⁾	Low-level output voltage	I _{OL} = 500-μA sink	0	0.2	x DVDD	V

⁽¹⁾ Specified by design.

Electrical Characteristics (continued)

at AVDD = 5 V, DVDD = 2.35 V to 5.5 V, $V_{REFIO_A} = V_{REFIO_B} = 5$ V (external) and $f_{SAMPLE} = 1$ MSPS (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}\text{C}$ to 125°C; typical values are at $T_A = 25^{\circ}\text{C}$

P	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY	•					
				11	13	
		AVDD = 5 V, internal reference		12		
		AVDD = 5V, no conversion internal reference		8		
AIDD	Analog supply current	AVDD = 5 V, no conversion external reference (2)		7	7	mA
		AVDD = 5 V, STANDBY mode internal reference		2.5		
		AVDD = 5 V, STANDBY mode external reference ⁽²⁾		1		
		Power-down mode		10	50	μΑ
DIDD	Digital augusts augusts	DVDD = 3.3 V, C _{load} = 10 pF		0.5		A
DIDD	Digital supply current	DVDD = 5 V, C _{load} = 10 pF		1		mA

⁽²⁾ With internal reference powered down, REF_SEL = 1.

6.6 Timing Requirements

at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}\text{C}$ to +125°C; typical values at $T_A = 25^{\circ}\text{C}$.

			MIN	NOM	MAX	UNIT	
	Cuala tiasa	DVDD ≥ 2.35 V	1				
tCYCLE	Cycle time	1.65 V < DVDD < 2.35 V	1.5			μs	
f C	Carial alast francisco	DVDD ≥ 2.35 V			50	N.41.1-	
f _{CLK}	Serial clock frequency	1.65 V < DVDD < 2.35 V			24	MHz	
t _{CLK} Seria	Carial alast time mariad	DVDD ≥ 2.35 V	20				
	Serial clock time period	1.65 V < DVDD < 2.35 V	42			ns	
t _{PH_CK}	Clock high time		0.45		0.55	t _{CLK}	
t _{PL_CK}	Clock low time		0.45		0.55	t_{CLK}	
t _{ACQ}	Acquisition time		350			ns	
t _{PH_CS}	CS high time, NOP		40			ns	
	Setup time: CS falling edge to SCLK	DVDD ≥ 2.35 V	12				
t _{SU_CSCK}	falling edge	1.65 V < DVDD < 2.35 V	20			ns	
t _{D_CKCS}	Delay time: Last SCLK falling edge to $\overline{\text{CS}}$ rising edge		12			ns	
t _{SU_CKDI}	Setup time: DIN data valid to SCLK falling edge		2			ns	
t _{HT_CKDI}	Hold time: SCLK falling edge to (previous) data valid on DIN		2			ns	

6.7 Switching Characteristics

at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}\text{C}$ to +125°C; typical values at $T_A = 25^{\circ}\text{C}$.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{CONV}	Conversion time				650	ns
	Delay time: CS falling edge to data enable	DVDD ≥ 2.35 V			14.5	20
t _{DEN_CSDO}	Delay time: $\overline{\text{CS}}$ falling edge to data enable	1.65 V < DVDD < 2.35 V			14.5	ns
	Delay time: $\overline{\text{CS}}$ rising edge to data going to 3-state	DVDD ≥ 2.35 V			31	20
t _{DZ_CSDO}	Delay time: CS rising edge to data going to 3-state	1.65 V < DVDD < 2.35 V			37	ns
	Delay time: SCLK falling edge to next data valid	DVDD ≥ 2.35 V			19.5	20
t _{D_CKDO}	Delay time: SCLK falling edge to next data valid	1.65 V < DVDD < 2.35 V			19.5	ns

1 shows the details of the serial interface between the device and the digital host controller.

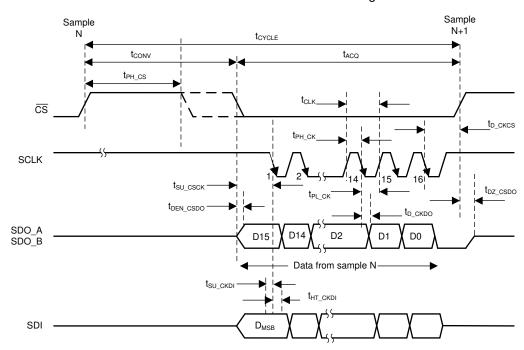
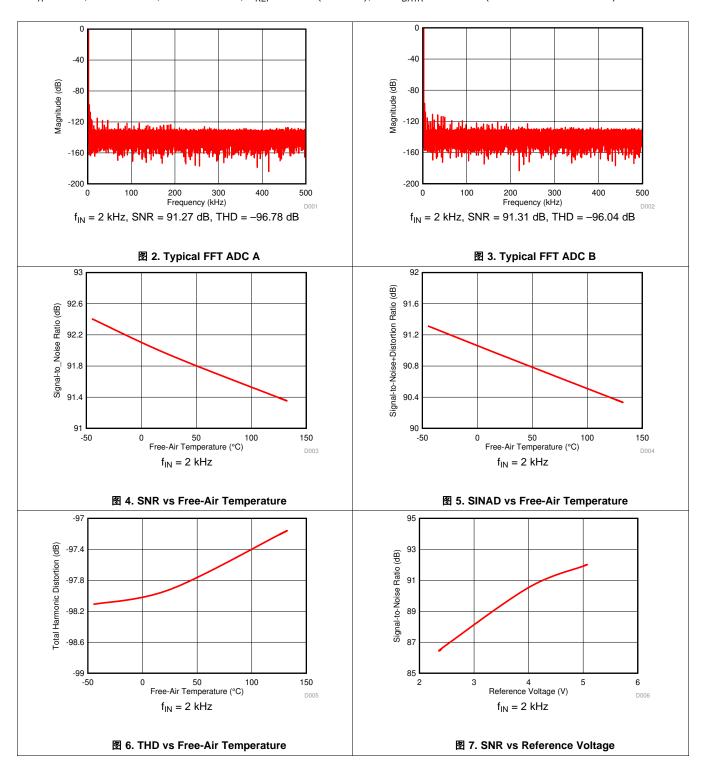
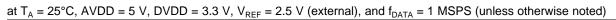
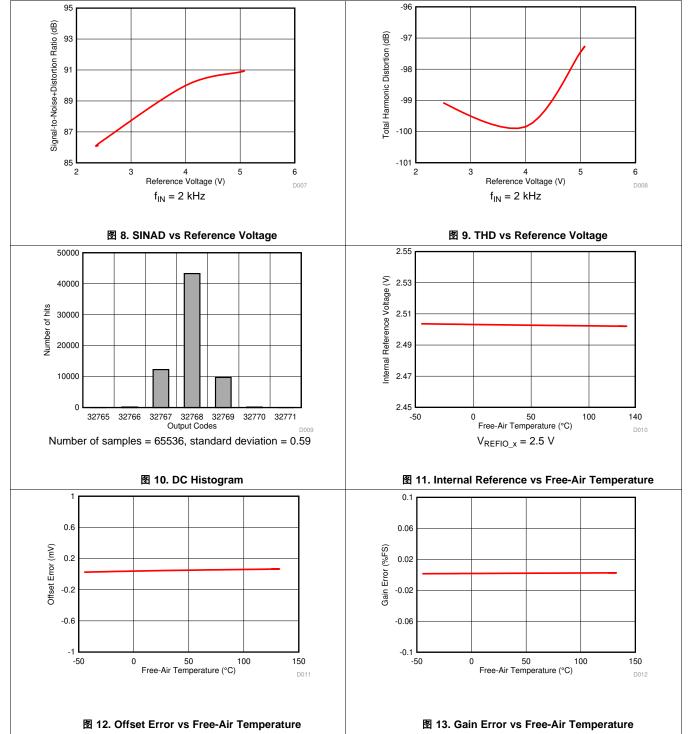



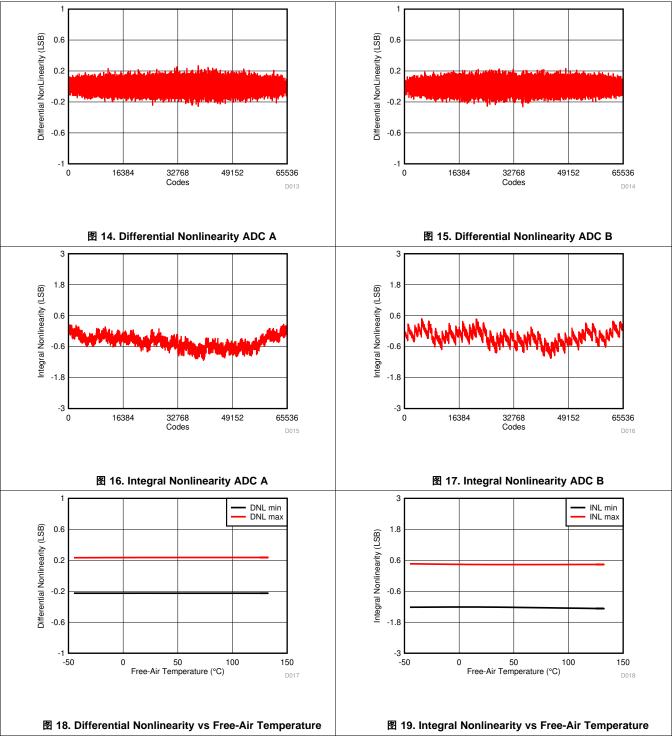
图 1. Serial interface Timing Diagram

TEXAS INSTRUMENTS


6.8 Typical Characteristics

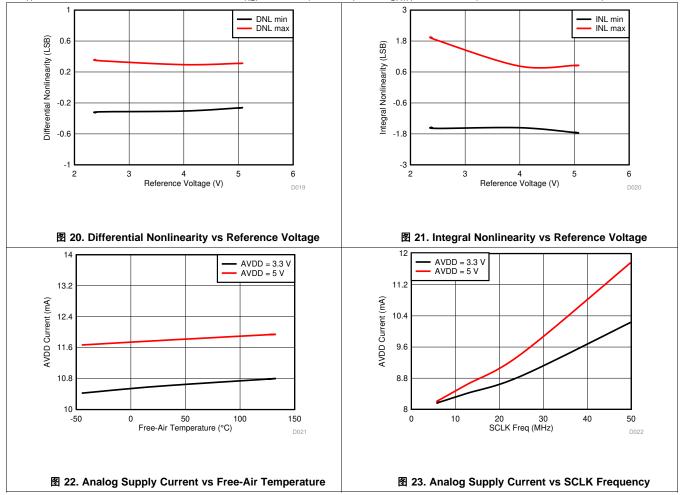

at $T_A = 25$ °C, AVDD = 5 V, DVDD = 3.3 V, $V_{REF} = 2.5$ V (external), and $f_{DATA} = 1$ MSPS (unless otherwise noted)

Typical Characteristics (接下页)



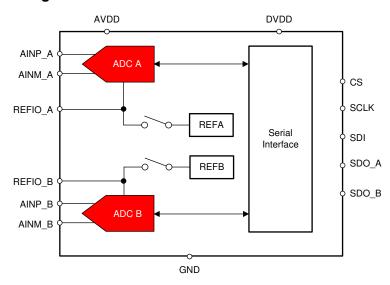
TEXAS INSTRUMENTS

Typical Characteristics (接下页)


at T_A = 25°C, AVDD = 5 V, DVDD = 3.3 V, V_{REF} = 2.5 V (external), and f_{DATA} = 1 MSPS (unless otherwise noted)

Typical Characteristics (接下页)

at $T_A = 25$ °C, AVDD = 5 V, DVDD = 3.3 V, $V_{REF} = 2.5$ V (external), and $f_{DATA} = 1$ MSPS (unless otherwise noted)



7 Detailed Description

7.1 Overview

The ADS8355 is a 16-bit, 1-MSPS, dual, simultaneous-sampling, analog-to-digital converter (ADC) with an integrated programmable reference. The ADS8355 supports single-ended and pseudo-differential input signals. The device provides a simple, serial interface to the host controller and operates over a wide range of analog and digital power supplies.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Reference

The device has two simultaneous sampling ADCs: ADC_A and ADC_B. ADC_A and ADC_B operate with reference voltages V_{REF_A} and V_{REF_B} present on the REFIO_A and REFIO_B pins, respectively. Decouple the REFIO_A and REFIO_B pins with the REFGND_A and REFGND_B pins, respectively, with 10- μ F decoupling capacitors.

As illustrated in 24, the device supports operation either with an internal or external reference source. The reference voltage source is determined by programming the INT_EXT bit of the REF_SEL register. This bit is common to ADC_A and ADC_B.

Feature Description (接下页)

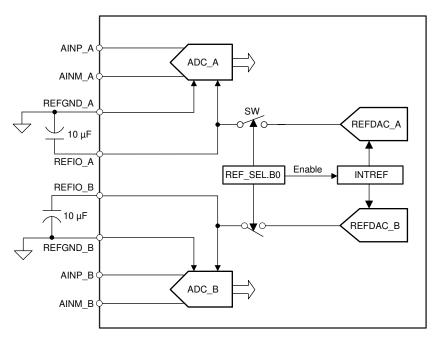


图 24. Reference Configurations and Connections

The default value of the REF_SEL register bit INT_EXT is set to 0. The device ADC_A and ADC_B operate with the external reference voltages provided on the REFIO_A and REFIO_B pins, respectively.

When the REF_SEL register bit INT_EXT is set to 1, the device operates with the internal reference source connected to REFIO_A and REFIO_B. The individual reference voltages can be set independently by programming the REFDAC_A and REFDAC_B values, respectively. For a 2.5-V internal reference, program REFDAC x with a 0x1FF value..

图 25 shows a typical transfer function for the internal REFDAC when the internal reference is enabled.

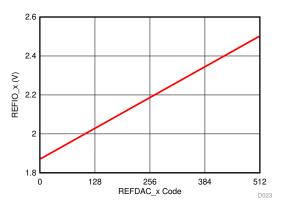


图 25. REFDAC Transfer Function

7.3.2 Analog Inputs

The ADS8355 supports single-ended or pseudo-differential analog input signals on both ADC channels. These inputs are sampled and converted simultaneously by the two ADCs, ADC_A and ADC_B. ADC_A samples and converts ($V_{AINP\ A} - V_{AINM\ A}$), and ADC_B samples and converts ($V_{AINP\ B} - V_{AINM\ B}$).

 \boxtimes 26 depicts equivalent circuits for the ADC_A and ADC_B analog input pins. Series resistance, R_S, represents the on-state sampling switch resistance (typically 50 Ω) and C_{SAMPLE} is the device sampling capacitor (typically 40 pF).

Feature Description (接下页)

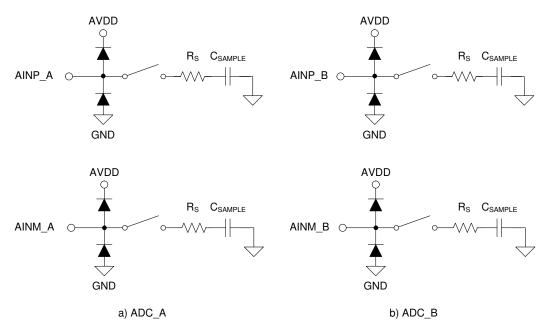


图 26. Equivalent Circuit for the Analog Input Pins

7.3.2.1 Analog Input: Full-Scale Range Selection

The full-scale range (FSR) supported at the analog inputs of the device is programmable with the RANGE_SEL bit of the INPUT_CONFIG register. The RANGE_SEL bit has a default value of low. This bit is common for both ADCs (ADC_A and ADC_B). 公式 1 and 公式 2 give the FSR.

$$RANGE_SEL = 0, FSR_ADC_A = 0 \text{ to } V_{REF_A} \text{ and } FSR_ADC_B = 0 \text{ to } V_{REF_B}$$
 (1)

For RANGE_SEL = 1, FSR_ADC_A = 0 to
$$2 \times V_{REF A}$$
 and FSR_ADC_B = 0 to $2 \times V_{REF B}$ (2)

 V_{REF_A} and V_{REF_B} are the reference voltages going to ADC_A and ADC_B, respectively (as described in the *Reference* section).

When operating with internal reference mode, the maximum dynamic range of the ADC can be used by programming the appropriate setting for the INPUT_CONFIG and REFDAC_x registers.

Ensure that the ADC analog supply (AVDD) meets the criteria defined in 公式 3 and 公式 4 when the RANGE_SEL bit is set to 1.

$$2 \times V_{RFF A} \le AVDD \le AVDD(max)$$
 (3)

$$2 \times V_{REF_B} \le AVDD \le AVDD(max)$$
 (4)

7.3.2.2 Analog Input: Single-Ended and Pseudo-Differential Configurations

The ADS8355 can support single-ended or pseudo-differential input configuration. The device operates in single-ended configuration by default.

The AINM_SEL bit in the INPUT_CONFIG register determines the input configuration used for the input pins. The selection is common for both input channels.

Program the AINM_SEL pin to logic low to operate the device in single-ended input configuration. Connect the AINM A and AINM B inputs to GND.

Program the AINM_SEL pin to logic high to operate the device in pseudo-differential input configuration. Connect the AINM_A and AINM_B inputs to a voltage equivalent to FSR_ADC_A / 2 and FSR_ADC_B / 2, respectively.

表 1 summarizes the analog input pin connections based on the various user settings.

Feature Description (接下页)

表 1. Input Configurations and Connections

INPUT RANGE SELECTION RANGE_SEL	INPUT CONFIGURATION SELECTION AINM_SEL	AINP_X	AINM_X
0	0	Input signal range 0 to V _{REF_X}	Connect to GND
1	0	Input signal range 0 to 2 X V _{REF_X}	Connect to GND
0	1	Input signal range 0 to V _{REF_X}	Connect to V _{REF_X} / 2
1	1	Input signal range 0 to 2 X V _{REF_X}	Connect to V _{REF_X}

7.3.3 Transfer Function

The device supports two input configurations:

- 1. Default, single-ended inputs, INPUT_CONFIG register bit 0 = 0
- 2. Pseudo-differential inputs, INPUT_CONFIG register bit 0 = 1

The device supports two output data formats:

- 1. Default, straight binary output, DATA_OUT_CTRL register bit 0 = 0
- 2. Two's compliment output, DATA_OUT_CTRL register bit 0 = 1

公式 5 calculates the device resolution:

 $1 LSB = (FSR_ADC_x) / (2^N)$

where:

- N = 16 and
- FSR_ADC_x is the full-scale input range of the ADC

(5)

表 2 and 表 3 show the different input voltages and the corresponding output codes from the device.

表 2. Transfer Characteristics for Straight Binary Output (Default)

		INPUT VOLTA	CE.	OUTPUT C	CODE (Hex)	
INPUT CONFIGURATION		INPUT VOLTA	NGE	STRAIGHT BINARY		
	AINP_x	AINM_x	AINP_x - AINM_x	CODE	ADS8355	
	≤1 LSB	0	≤ 1 LSB	ZC	0000	
Single-ended	FSR_ADC_x / 2		FSR_ADC_x / 2	MC	7FFF	
	≥ FSR_ADC_x - 1 LSB		≥ FSR_ADC_x - 1 LSB	FSC	FFFF	
	≤1 LSB		≤ -FSR_ADC_x / 2 + 1 LSB	ZC	0000	
Pseudo-differential	FSR_ADC_x / 2	FSR_ADC_x / 2	0	MC	7FFF	
	≥ FSR_ADC_x - 1 LSB		≥ FSR_ADC_x / 2 – 1 LSB	FSC	FFFF	

表 3. Transfer Characteristics for Twos Compliment Output

		INPUT VOLTA	.CF	оитрит с	ODE (Hex)
INPUT CONFIGURATION		INPUT VOLTA	TWO'S COMPLIMENT		
CONTIGURATION	AINP_x	AINM_x	AINP_x - AINM_x	CODE	ADS8355
	≤ 1 LSB	0	≤ 1 LSB	NFSC	8000
Single-ended	FSR_ADC_x / 2		FSR_ADC_x / 2	MC	0000
	≥ FSR_ADC_x - 1 LSB		≥ FSR_ADC_x - 1 LSB	PFSC	7FFF
	≤ 1 LSB		≤ -FSR_ADC_x / 2 + 1 LSB	NFSC	8000
Pseudo-differential	FSR_ADC_x / 2	FSR_ADC_x / 2	0	MC	0000
	≥ FSR_ADC_x - 1 LSB		≥ FSR_ADC_x / 2 – 1 LSB	PFSC	7FFF

Solution 27 shows the ideal device transfer characteristics for the single-ended analog input.

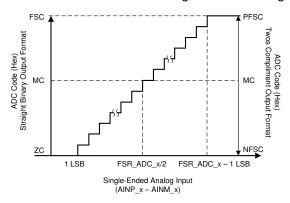


图 27. Ideal Transfer Characteristics for a Single-Ended Analog Input

8 28 shows the ideal device transfer characteristics for the pseudo-differential analog input.

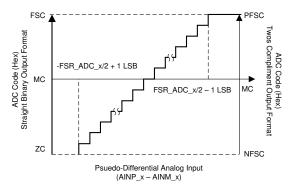


图 28. Ideal Transfer Characteristics for a Pseudo-Differential Analog Input

7.4 Device Functional Modes

7.4.1 Conversion Data Read: Dual-SDO Mode (Default)

The dual-SDO mode is designed to support the maximum throughput at lower SCLK frequencies.

The single-SDO mode is enabled by programming the SDO_MODE bit in the SDO_CTRL register to logic low. In this mode, the SDO_A pin outputs the ADC_A conversion result and the SDO_B pin outputs the ADC_B conversion result.

■ 29 shows a detailed timing diagram for this mode.

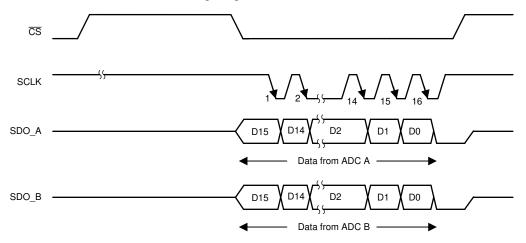


图 29. Dual-SDO Mode Timing Diagram

A $\overline{\text{CS}}$ rising edge forces SDO_x to tri-state. $\overline{\text{CS}}$ also samples the input signal and causes the device to enter conversion phase. Conversion is done with the internal clock. $\overline{\text{CS}}$ and SCLK must remain high for a minimum time of t_{CONV} . A $\overline{\text{CS}}$ falling edge brings the serial data bus out of tri-state and the device outputs the MSB of the data. The lower data bits are output on the subsequent SCLK falling edges. SDO_A and SDO_B go low after the 16th SCLK falling edge. The SDO x signals remain low until the $\overline{\text{CS}}$ signal is pulled high.

Device Functional Modes (接下页)

7.4.2 Conversion Data Read: Single-SDO Mode

The single-SDO mode is designed to support operation with a wide variety of hosts that can support only one master in, slave out (MISO) signal for the SPI interface. The maximum throughput is limited based on the SCLK frequency supported by the host.

The single-SDO mode is enabled by programming the SDO_MODE bit in the SDO_CTRL register to logic high. In this mode, the SDO_A pin outputs the conversion results for ADC_A followed by ADC_B. 图 30 shows a detailed timing diagram for this mode.

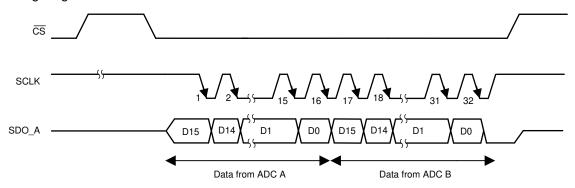


图 30. Single-SDO Mode Timing Diagram

A $\overline{\text{CS}}$ rising edge forces SDO_x to tri-state. $\overline{\text{CS}}$ also samples the input signal and causes the device to enter conversion phase. Conversion is done with the internal clock. $\overline{\text{CS}}$ and SCLK must remain high for a minimum time of t_{CONV}. A $\overline{\text{CS}}$ falling edge brings the serial data bus out of tri-state and the device outputs the MSB of the ADC_A conversion result. The lower data bits are output on the subsequent SCLK falling edges. After ADC_A, the device outputs the ADC_B conversion result starting from 17th falling edge of SCLK. $\overline{\text{SDO}}$ drives the output line to a zero logic level after 32nd falling edge of SCLK. $\overline{\text{SDO}}$ a remains low until the $\overline{\text{CS}}$ signal is pulled high. $\overline{\text{SDO}}$ is driven low when the SPI interface is active in single-SDO mode.

7.4.3 Low-Power Modes

In normal mode of operation, all internal circuits of the device are always powered up and the device is ready to commence a new conversion when $\overline{\text{CS}}$ is pulled high. The device also supports two low-power modes to optimize the power consumption at lower throughput or when the device is not expected to perform conversions.

7.4.3.1 STANDBY Mode

The device supports a standby mode of operation where the ADCs and the internal oscillator are powered down to save power. The internal reference, if already enabled, stays enabled and the contents of the REFDAC_A and REFDAC_B registers are retained to enable faster power-up to a normal mode of operation.

Standby mode is enabled by programming the PD_KEY register with 0x09h followed by setting the STANDBY bit in the PD_STANDBY register with logic high. See the *Register Map* section for the register setting information. See the *Register Read/Write Operation* section for timing information for register access.

Standby mode is disabled by programming the PD_KEY register with 0x09h followed by setting the STANDBY bit in the PD_STANDBY register with logic low. After existing standby mode, a delay of 10 μ s must elapse for the internal circuits to power up and resume normal operation.

7.4.3.2 PD (Power-Down) Mode

The device supports a PD (power-down) mode of operation where all internal blocks except the interface and I/O are powered down to save power.

PD mode is enabled by programming the PD_KEY register with 0x09h followed by setting the PD_EN bit in the PD_STANDBY register with logic high. See the *Register Map* section for the register setting information. See the *Register Read/Write Operation* section for timing information for register access.

Device Functional Modes (接下页)

PD mode is disabled by programming the PD_KEY register with 0x09h followed by setting the PD_EN bit in the PD_STANDBY register with logic low. After exiting PD mode, a delay of 1 ms must elapse with the external reference mode and 3 ms must elapse with the internal reference mode for the internal circuits to power up and resume normal operation.

7.5 Programming

7.5.1 Register Read/Write Operation

This device features configuration registers and supports the commands listed in 表 4 to access the internal configuration registers.

B[19:16]	B[15:8]	B[7:0]	COMMAND ACRONYM	COMMAND DESCRIPTION
0000	00000000000	00000000	NOP	No operation. Next frame provides the ADC conversion result output on the SDO_X lines.
0001	<8-bit address>	<8-bit data>	WR_REG	Write <8-bit data> to the <8-bit address>
0010	<8-bit address>	00000000	RD_REG	Read contents from the <8-bit address>
0011	<8-bit address>	<8-bit unmasked bits>	SET_BITS	Set <8-bit unmasked bits> from <8-bit address>
0100	<8-bit address>	<8-bit unmasked bits>	CLR_BITS	Clear <8-bit unmasked bits> from <8-bit address>
Remaining combinations	xxxxxxxx	xxxxxxx	Reserved	These commands are reserved and treated by the device as no operation.

表 4. Supported Commands

The ADS8355 supports two types of data transfer operations: data write (the host controller configures the device), and data read (the host controller reads data from the device).

Any data write to the device is always synchronous to the external clock provided on the SCLK pin. The WR_REG command writes the 8-bit data into the 8-bit address specified in the command string. The CLR_BITS command clears the specified bits (identified by 1) at the 8-bit address (without affecting the other bits), and the SET BITS command sets the specified bits (identified by 1) at the 8-bit address (without affecting the other bits).

₹ 31 shows the digital waveform for a register read operation. A register read operation consists of two frames: one frame to initiate a register read and a second frame to read data from the register address provided in the first frame. As shown in ₹ 31, the 8-bit register address and the 8-bit dummy data are sent over the SDI pin during the first 20-bit frame with the read command (0010b). The 20-bit command information is right-aligned with the frame. If a command frame is smaller than 20 bits, the contents of the command are discarded. If a frame has more than 20 bits, the last 20 bits are used to decode the operation. When CS goes from low to high, this read command is decoded and the requested register data are available for reading during the next frame. During the second frame, the first eight bits on SDO_A correspond to the requested register read. During the second frame, SDI can be used to initiate another operation or can be set to 0.

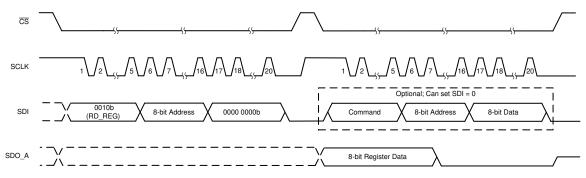


图 31. Register Read Operation

₹ 32 shows that for writing data to the register, one 20-bit frame is required. The frame contents are right-aligned. If a command frame is smaller than 20 bits, the contents of the command are discarded. If a frame has more than 20 bits, the last 20 bits are used to decode the operation. The 20-bit data on SDI consists of a 4-bit write command (0001b), set bit command (0011b), or clear bit command (0100b), an 8-bit register address, and 8-bit data. The write command is decoded on the CS rising edge and the specified register is updated with the 8-bit data specified during the register write operation.

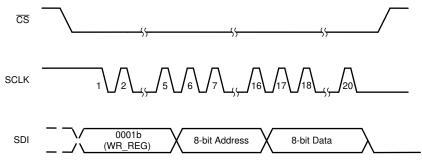


图 32. Register Write Operation

7.6 Register Map

7.6.1 ADS8355 Registers

Table 5 lists the ADS8355 registers. All register offset addresses not listed in Table 5 should be considered as reserved locations and the register contents should not be modified.

Table 5. ADS8355 Registers

Offset	Acronym	Register Name	Section
4h	PD_STANDBY	Power down configuration register	PD_STANDBY Register (Offset = 4h) [reset = 0h]
5h	PD_KEY	Power down key register	PD_KEY Register (Offset = 5h) [reset = 0h]
Dh	SDO_CTRL	SDO mode selection register	SDO_CTRL Register (Offset = Dh) [reset = 0h]
11h	DATA_OUT_CTRL	Output data format register	DATA_OUT_CTR L Register (Offset = 11h) [reset = 0h]
20h	REF_SEL	ADC reference selection register	REF_SEL Register (Offset = 20h) [reset = 0h]
24h	REFDAC_A_LSB	REFDACA configuration register (LSB)	REFDAC_A_LSB Register (Offset = 24h) [reset = 0h]
25h	REFDAC_A_MSB	REFDACA configuration register (MSB)	REFDAC_A_MSB Register (Offset = 25h) [reset = 0h]
26h	REFDAC_B_LSB	REFDACB configuration register (LSB)	REFDAC_B_LSB Register (Offset = 26h) [reset = 0h]
27h	REFDAC_B_MSB	REFDACB configuration register (MSB)	REFDAC_B_MSB Register (Offset = 27h) [reset = 0h]
28h	INPUT_CONFIG	Analog input configuration register	INPUT_CONFIG Register (Offset = 28h) [reset = 0h]

Complex bit access types are encoded to fit into small table cells. Table 6 shows the codes that are used for access types in this section.

Table 6. ADS8355 Access Type Codes

Access Type	Code	Description			
Read Type	Read Type				
R	R	Read			
Write Type					
W	W	Write			
Reset or Default	Value				
-n Value after reset or the default value					
Register Array Variables					

Table 6. ADS8355 Access Type Codes (continued)

Access Type	Code	Description
i,j,k,l,m,n		When these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.
у		When this variable is used in a register name, an offset, or an address it refers to the value of a register array.

7.6.1.1 PD_STANDBY Register (Offset = 4h) [reset = 0h]

PD_STANDBY is shown in Figure 33 and described in Table 7.

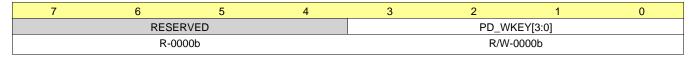
Return to the Summary Table.

Power down configuration register

Figure 33. PD_STANDBY Register

Table 7. PD_STANDBY Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-3	RESERVED	R	00000b	
2	STANDBY	R/W	0b	This bit enables partial powerdown of ADCs and internal oscillator , all other blocks are active
				0b = Disable partial power down
				1b = Enable partial power down
1	PD_EN	R/W	0b	This bit enables all blocks to powerdown except the interface and IO
				0b = Disable power down
				1b = Enable power down
0	RESERVED	R	0b	


7.6.1.2 PD_KEY Register (Offset = 5h) [reset = 0h]

PD_KEY is shown in Figure 34 and described in Table 8.

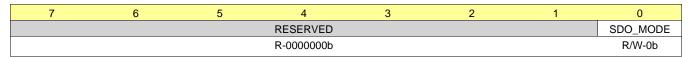
Return to the Summary Table.

Power down key register

Figure 34. PD_KEY Register

Table 8. PD_KEY Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	RESERVED	R	0000b	
3-0	PD_WKEY[3:0]	R/W	0000b	Writing 1001 to these bits enable register write operation to PD_STANDBY register.


7.6.1.3 SDO_CTRL Register (Offset = Dh) [reset = 0h]

SDO_CTRL is shown in Figure 35 and described in Table 9.

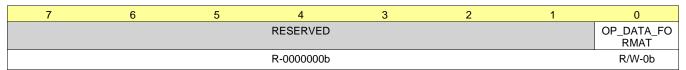
Return to the Summary Table.

SDO mode selection register

Figure 35. SDO_CTRL Register

Table 9. SDO_CTRL Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	RESERVED	R	0000000b	
0	SDO_MODE	R/W	0b	This bit selects ADC to output data in either single SDO or Dual SDO mode.
				0b = data out on both SDO_A and SDO_B
				1b = data out on SDO_A only


7.6.1.4 DATA_OUT_CTRL Register (Offset = 11h) [reset = 0h]

DATA_OUT_CTRL is shown in Figure 36 and described in Table 10.

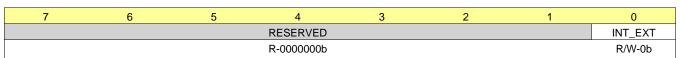
Return to the Summary Table.

Output data format register

Figure 36. DATA_OUT_CTRL Register

Table 10. DATA_OUT_CTRL Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	RESERVED	R	0000000b	
0	OP_DATA_FORMAT	R/W	0b	This bit selects ADC output data format.
				0b = Straight Binary format
				1b = 2's complements format


7.6.1.5 REF_SEL Register (Offset = 20h) [reset = 0h]

REF_SEL is shown in Figure 37 and described in Table 11.

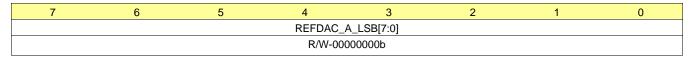
Return to the Summary Table.

ADC reference selection register

Figure 37. REF_SEL Register

Table 11. REF_SEL Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	RESERVED	R	0000000b	
0	INT_EXT	R/W	0b	This bit selects ADC reference source.
				0b = Device uses external reference for ADC conversion
				1b = Device uses internal reference for ADC conversion


7.6.1.6 REFDAC_A_LSB Register (Offset = 24h) [reset = 0h]

REFDAC_A_LSB is shown in Figure 38 and described in Table 12.

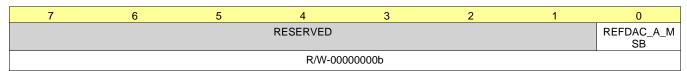
Return to the Summary Table.

REFDACA configuration register (LSB)

Figure 38. REFDAC_A_LSB Register

Table 12. REFDAC_A_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	REFDAC_A_LSB[7:0]	R/W	0000000b	Least significant byte to program the REFDAC_A. REFDAC_A _MSB and REFDAC_A_LSB in combination are used to set the internal reference for ADC_A. For 2.5V internal reference, program 0x1FF to REFDAC_A.


7.6.1.7 REFDAC_A_MSB Register (Offset = 25h) [reset = 0h]

REFDAC_A_MSB is shown in Figure 39 and described in Table 13.

Return to the Summary Table.

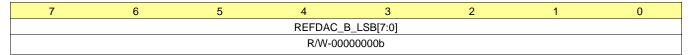
REFDACA configuration register (MSB)

Figure 39. REFDAC_A_MSB Register

Table 13. REFDAC_A_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	RESERVED	R	0000000b	
0	REFDAC_A_MSB	R/W	Ob	Most significant bit to program the REFDAC_A. REFDAC_A _MSB and REFDAC_A_LSB in combination are used to set the internal reference for ADC_A. For 2.5V internal reference, program 0x1FF to REFDAC_A.

7.6.1.8 REFDAC_B_LSB Register (Offset = 26h) [reset = 0h]


REFDAC_B_LSB is shown in Figure 40 and described in Table 14.

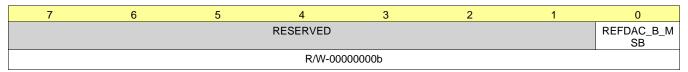
Return to the Summary Table.

REFDACB configuration register (LSB)

Figure 40. REFDAC_B_LSB Register

Table 14. REFDAC_B_LSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	REFDAC_B_LSB[7:0]	R/W	0000000b	Least significant byte to program the REFDAC_B. REFDAC_B_MSB and REFDAC_B_LSB in combination are used to set the internal reference for ADC_B. For 2.5V internal reference, program 0x1FF to REFDAC_B.


7.6.1.9 REFDAC_B_MSB Register (Offset = 27h) [reset = 0h]

REFDAC_B_MSB is shown in Figure 41 and described in Table 15.

Return to the Summary Table.

REFDACB configuration register (MSB)

Figure 41. REFDAC_B_MSB Register

Table 15. REFDAC_B_MSB Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	RESERVED	R	0000000b	
0	REFDAC_B_MSB	R/W	0b	Most significant bit to program the REFDAC_B. REFDAC_B _MSB and REFDAC_B_LSB in combination are used to set the internal reference for ADC_B. For 2.5V internal reference, program 0x1FF to REFDAC_B.

7.6.1.10 INPUT_CONFIG Register (Offset = 28h) [reset = 0h]

INPUT_CONFIG is shown in Figure 42 and described in Table 16.

Return to the Summary Table.

Analog input configuration register

Figure 42. INPUT_CONFIG Register

7	6	5	4	3	2	1	0
		RESE	RVED			RANGE_SEL	AINM_SEL
		R-00	0000b			R/W-0b	R/W-0b

Table 16. INPUT_CONFIG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	RESERVED	R	000000b	
1	RANGE_SEL	R/W	0b	This bit selects ADC input full scale range
				0b = ADC operates with full scale range of 0 to V _{REF}
				1b = ADC operates with full scale range of 0 to 2 \times V _{REF}

Table 16. INPUT_CONFIG Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
0	AINM_SEL	R/W	0b	This bit selects ADC input configuration
				0b = ADC operates in single-ended configuration. AINM pin must be connected to GND potential.
				1b = ADC operates in pseudo-differential configuration. AINM pin must be connected to FSR / 2 potential.

8 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The two primary circuits required to maximize the performance of a high-precision, successive approximation register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This section details some general principles for designing these circuits, and some application circuits designed using these devices.

The device supports operation either with an internal or external reference source. See the *Reference* section for details about the decoupling requirements.

The reference source to the ADC must provide low-drift and very accurate DC voltage and support the dynamic charge requirements without affecting the noise and linearity performance of the device. The output broadband noise (typically in the order of a few 100 μV_{RMS}) of the reference source must be appropriately filtered by using a low-pass filter with a cutoff frequency of a few hundred hertz. After band-limiting the noise from the reference source, the next important step is to design a reference buffer that can drive the dynamic load posed by the reference input of the ADC. At the start of each conversion, the reference buffer must regulate the voltage of the reference pin within 1 LSB of the intended value. This condition necessitates the use of a large filter capacitor at the reference pin of the ADC. The amplifier selected to drive the reference input pin must be stable while driving this large capacitor and must have low output impedance, low offset, and temperature drift specifications. To reduce the dynamic current requirements and crosstalk between the channels, a separate reference buffer is recommended for driving the reference input of each ADC channel.

The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and a fly-wheel RC filter. The amplifier is used for signal conditioning of the input voltage and its low output impedance provides a buffer between the signal source and the switched capacitor inputs of the ADC. The RC filter helps attenuate the sampling charge injection from the switched-capacitor input stage of the ADC and functions as an charge kickback filter to band-limit the wideband noise contributed by the front-end circuit. Careful design of the front-end circuit is critical to meet the linearity and noise performance of a high-precision ADC.

8.1.1 Input Amplifier Selection

Selection criteria for the input amplifiers is highly dependent on the input signal type and the performance goals of the data acquisition system. Some key amplifier specifications to consider when selecting an appropriate amplifier to drive the inputs of the ADC are:

• Small-signal bandwidth. Select the small-signal bandwidth of the input amplifiers to be as high as possible after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance of the amplifier, thus allowing the amplifier to more easily drive the low cutoff frequency RC filter at the ADC inputs. Higher bandwidth also minimizes the harmonic distortion at higher input frequencies. Select the amplifier bandwidth as described in 公式 6 to maintain the overall stability of the input driver circuit:

$$Unity - Gain \ Bandwidth \ge 4 \times \left(\frac{1}{2\pi \times (R_{FLT} + R_{FLT}) \times C_{FLT}}\right) \tag{6}$$

(7)

Application Information (接下页)

Noise. Noise contribution of the front-end amplifiers must be as low as possible to prevent any degradation in SNR performance of the system. As a rule of thumb, to ensure that the noise performance of the data acquisition system is not limited by the front-end circuit, keep the total noise contribution from the front-end circuit below 20% of the input-referred noise of the ADC. 公式 7 calculates noise from the input driver circuit. This noise is band-limited by designing a low cutoff frequency RC filter:

$$N_{G} \times \sqrt{2} \times \sqrt{\left(\frac{V_{1/f-AMP_PP}}{6.6}\right)^{2} + e_{n_RMS}^{2} \times \frac{\pi}{2} \times f_{_3dB}} \quad \leq \quad \frac{1}{5} \times \frac{V_{REF}}{\sqrt{2}} \times 10^{-\left(\frac{SNR(dB)}{20}\right)}$$

where:

- $V_{1/f AMP PP}$ = the peak-to-peak flicker noise in μV
- $e_{n,RMS}$ = the amplifier broadband noise density in nV/\sqrt{Hz}
- f_{-3dB} = the 3-dB bandwidth of the RC filter
- N_G = the noise gain of the front-end circuit, which is equal to 1 in a buffer configuration

Distortion. Both the ADC and the input driver introduce nonlinearity in a data acquisition block. As a rule of thumb, the distortion of the input driver must be at least 10 dB lower than the distortion of the ADC, as shown in 公式 8, to ensure that the distortion performance of the data acquisition system is not limited by the frontend circuit.

$$THD_{AMP} \leq THD_{ADC} - 10 (dB)$$
(8)

• Settling Time. For DC signals with fast transients that are common in a multiplexed application, the input signal must settle to the desired accuracy at the inputs of the ADC during the acquisition time window. This condition is critical to maintain the overall linearity performance of the ADC. Typically, the amplifier data sheets specify the output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the desired accuracy. Therefore, always verify the settling behavior of the input driver with TINA™-SPICE simulations before selecting the amplifier.

8.1.2 Charge Kickback Filter

Converting analog-to-digital signals requires sampling an input signal at a constant rate. Any higher frequency content in the input signal beyond half the sampling frequency is digitized and folded back into the low-frequency spectrum. This process is called *aliasing*. Therefore, an analog, charge kickback filter must be used to remove the harmonic content from the input signal before being sampled by the ADC. A charge kickback filter is designed as a low-pass, RC filter, for which the 3-dB bandwidth is optimized based on specific application requirements. For DC signals with fast transients (including multiplexed input signals), a high-bandwidth filter is designed to allow accurately settling the signal at the ADC inputs during the small acquisition time window. For AC signals, keep the filter bandwidth low to band-limit the noise fed into the ADC input, thereby increasing the signal-to-noise ratio (SNR) of the system.

Application Information (接下页)

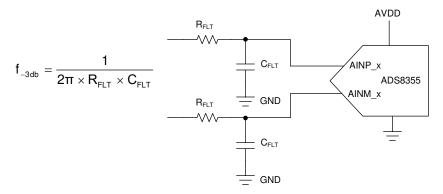
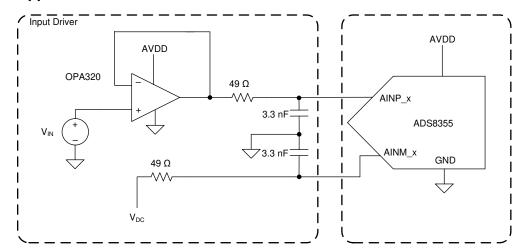



图 43. Charge Kickback Filter

Driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier marginally unstable. To avoid amplifier stability issues, series isolation resistors (R_{FLT}) are used at the output of the amplifiers. A higher value of R_{FLT} is helpful from the amplifier stability perspective, but adds distortion as a result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance, input signal frequency, and input signal amplitude. Therefore, the selection of R_{FLT} requires balancing the stability and distortion of the design. For more information on ADC input R-C filter component selection, see the TI Precision Labs on ti.com.

8.2 Typical Application

NOTE: Only one ADC channel is shown in this diagram. Replicate the same circuit for the other ADC channel.

图 44. DAQ Circuit: Maximum SINAD for a 10-kHz Input Signal at Full Throughput

Typical Application (接下页)

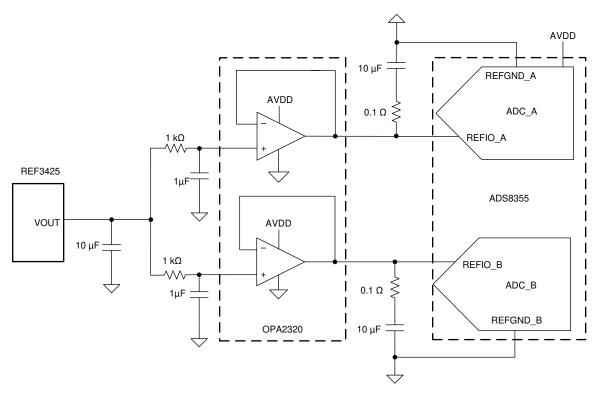


图 45. Reference Drive Circuit

8.2.1 Design Requirements

表 17 lists the target specifications for this application.

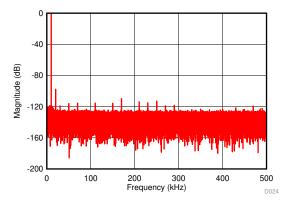
表 17. Target Specifications

TARGET SPECIFICATIONS	TEST CONDITIONS				
> 83-dB SNR, < -95-dB THD	10-kHz input signal frequency, 1-MSPS throughput				

8.2.2 Detailed Design Procedure

Best practice is for the distortion from the input driver to be at least 10 dB less than the ADC distortion. The distortion resulting from variation in the common-mode signal is eliminated by using the amplifier in an inverting gain configuration that establishes a fixed common-mode level for the circuit. This configuration also eliminates the requirement of rail-to-rail swing at the amplifier input. The low-power OPA320, used as an input driver, provides exceptional AC performance because of its extremely low-distortion and high-bandwidth specifications. In addition, the components of the antialiasing filter are such that the noise from the front-end circuit is kept low without adding distortion to the input signal.

The application circuit illustrated in
44 is optimized to achieve the lowest distortion and lowest noise for a 10-kHz input signal fed to the ADS8355 operating at full throughput with the default dual-SDO interface mode. The input signal is processed through a high-bandwidth, low-distortion amplifier in an inverting gain configuration and a low-pass RC filter before being fed into the device.


₹45 illustrates the reference driver circuit when operation with an external reference is desired. The reference voltage is generated by the high-precision, low-noise REF3425 circuit. The output broadband noise of the reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 160 Hz. The decoupling capacitor on each reference pin is selected to be 10 μF. The low output impedance, low noise, and fast settling time make the OPA2320 a good choice for driving this high capacitive load.

8.2.3 Application Curve

To minimize external components and to maximize the dynamic range of the ADC, the device is configured to operate with an internal reference (REF_SEL register, INT_EXT bit = 1) and a $2 \times V_{REF_x}$ input full-scale range (INPUT_CONFIG register, RANGE_SEL bit = 1). The REFDAC_x registers are programmed to 0x1FFh to program the internal reference to 2.5 V.

图 46 shows the FFT plot and test result obtained with the ADS8355 operating at full throughput with a dual-SDO interface and the circuit configuration of 图 44.

 $SNR = 86.38 \text{ dB}, THD = -97.24 \text{ dB}, f_{IN} = 10 \text{ kHz}$

图 46. The ADS8355 in Dual-SDO Interface Mode

9 Power Supply Recommendations

The device has two separate power supplies: AVDD and DVDD. The device operates on AVDD; DVDD is used for the interface circuits. AVDD and DVDD can be independently set to any value within the permissible ranges.

When using the device with the $2 \times V_{REF}$ input range (INPUT_CONFIG register, RANGE_SEL bit = 1), the AVDD supply voltage value defines the permissible voltage swing on the analog input pins. AVDD must be set as described in $\Delta \pm 3$ and $\Delta \pm 4$ to avoid saturation of output codes and to use the full dynamic range on the analog input pins.

Decouple the AVDD and DVDD pins, as shown in \boxtimes 47, with the GND pin using individual 10- μ F decoupling capacitors.

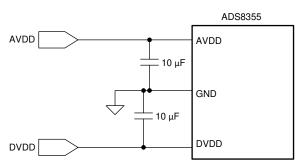


图 47. Power-Supply Decoupling

10 Layout

10.1 Layout Guidelines

₹ 48 provides a board layout example for the device WQFN package. Partition the printed circuit board (PCB) into analog and digital sections. Avoid crossing digital lines with the analog signal path and keep the analog input signals and the reference input signals away from noise sources. As illustrated in ₹ 48, the analog input and reference signals are routed on the left side of the board and the digital connections are routed on the right side of the device.

The power sources to the device must be clean and well-bypassed. Use 10-µF, ceramic bypass capacitors in close proximity to the analog (AVDD) and digital (DVDD) power-supply pins. Avoid placing vias between the AVDD and DVDD pins and the bypass capacitors. Connect all ground pins to the ground plane using short, low impedance paths.

The REFIO_A and REFIO_B reference inputs and outputs are bypassed with 10- μ F, X7R-grade, 0805-size, 16-V rated ceramic capacitors (C_{REF_x}). Place the reference bypass capacitors as close as possible to the reference REFIO_x pins and connect the bypass capacitors using short, low-inductance connections. Avoid placing vias between the REFIO_x pins and the bypass capacitors.

The fly-wheel RC filters are placed immediately next to the input pins. Among ceramic surface-mount capacitors, COG (NPO) ceramic capacitors provide the best capacitance precision. The type of dielectric used in COG (NPO) ceramic capacitors provides the most stable electrical properties over voltage, frequency, and temperature changes.

10.2 Layout Example

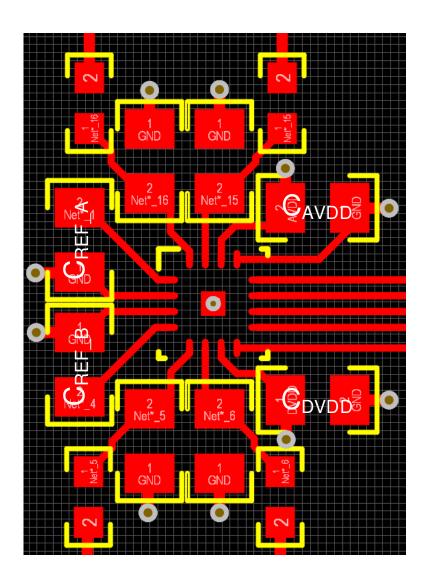


图 48. Recommended Layout

11 器件和文档支持

11.1 器件支持

11.1.1 开发支持

德州仪器 (TI), TI 高精度实验室

11.2 文档支持

11.2.1 相关文档

请参阅如下相关文档:

- 德州仪器 (TI),《具有关断功能的 OPAx320x 高精度 20MHz、0.9pA、低噪声 RRIO CMOS 运算放大器》 数据表
- 德州仪器 (TI), 《REF34xx 低漂移、低功耗、小封装串联电压基准》 数据表

11.3 接收文档更新通知

要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.4 社区资源

TI E2ETM support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.5 商标

TINA. E2E are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ADS8355IRTER	ACTIVE	WQFN	RTE	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	8355	Samples
ADS8355IRTET	ACTIVE	WQFN	RTE	16	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	8355	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

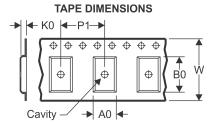
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

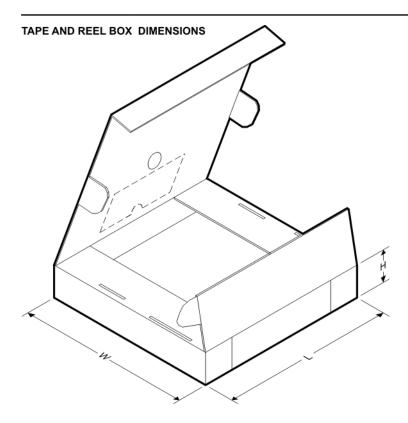

10-Dec-2020

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Sep-2021

TAPE AND REEL INFORMATION

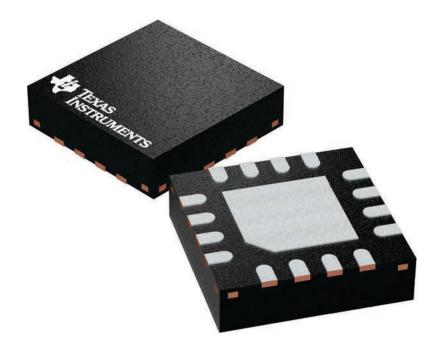
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

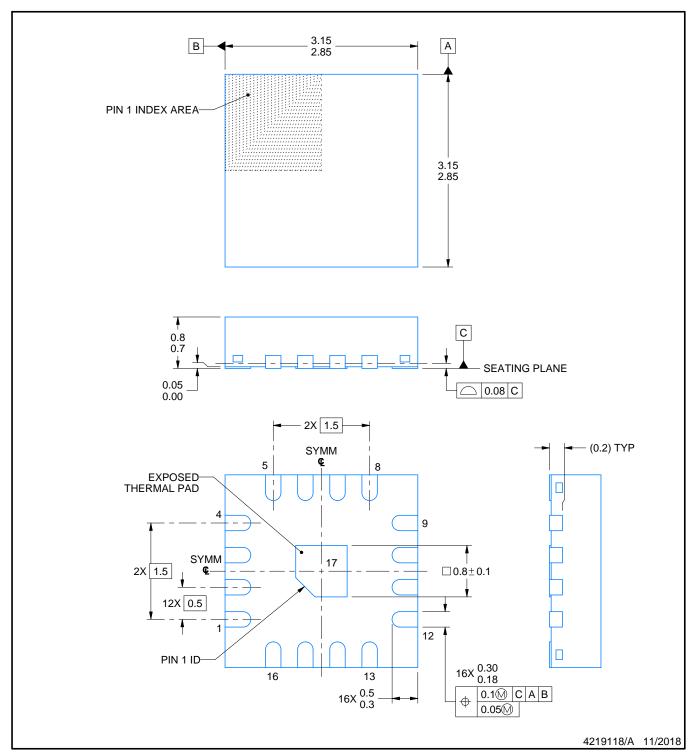
Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADS8355IRTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

www.ti.com 1-Sep-2021


*All dimensions are nominal

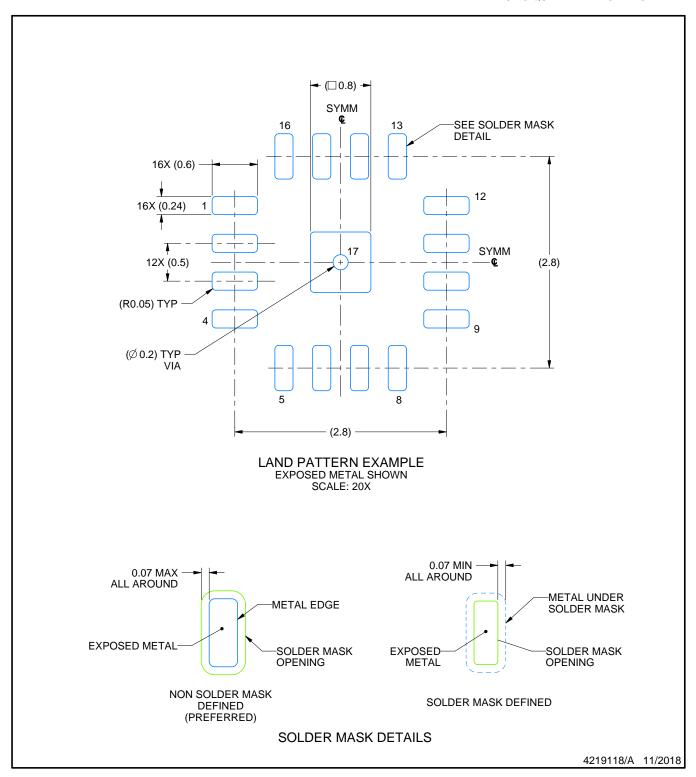
ĺ	Device Package Type		Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
	ADS8355IRTER	WQFN	RTE	16	3000	350.0	350.0	43.0	

3 x 3, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

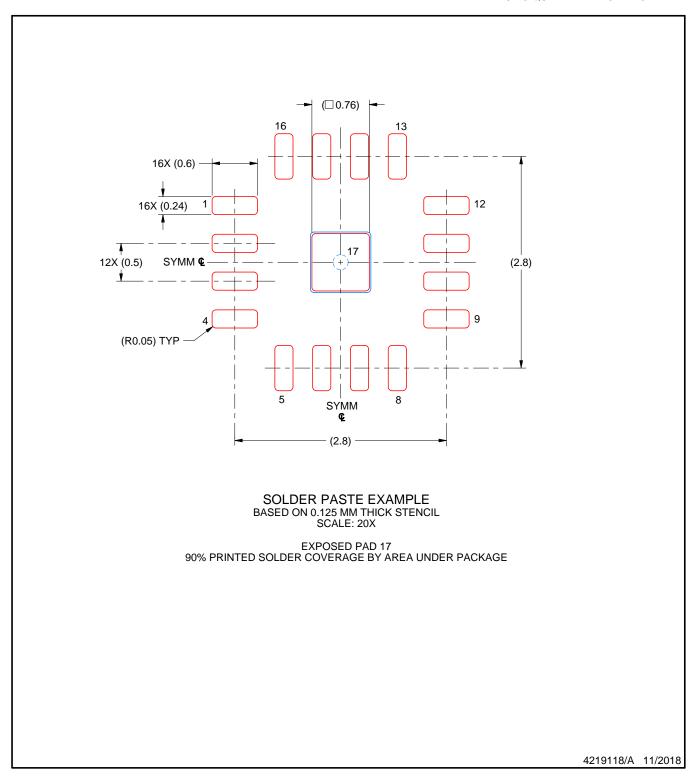
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司