Documents

# TPS55332-Q1 2.2-MHz, 60-V Output Step Up DC/DC Converter 

## 1 Features

- Withstands Transients up to 60 V, Boost Input Operating Range of 1.5 V to 40 V (VIN)
- Peak Internal Switch Current: 5.7 A (typ)
- $2.5 \mathrm{~V} \pm 1.5 \%$ Feedback Voltage Reference
- 80 kHz to 2.2 MHz Switching Frequency
- High Voltage Tolerant Enable Input for On/Off State
- Soft Start on Enable Cycle
- Slew Rate Control on Internal Power Switch
- External Clock Input for Synchronization
- External Compensation for Wide Bandwidth Error Amplifier
- Programmable Power on Reset Delay
- Reset Function Filter Time for Fast Negative Transients
- Programmable Undervoltage Output Monitoring, Issuance of Reset if Output Falls Below Set Threshold
- Thermal Shutdown to Protect Device During Excessive Power Dissipation
- ILIM Threshold Protection (Current Limit)
- Operating Junction Temperature Range: $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- Thermally Enhanced 20-Pin HTSSOP PowerPAD ${ }^{\text {TM }}$ Package


## 2 Applications

- Lighting
- Battery Powered Applications
- Qualified for Automotive Applications


## 3 Description

The TPS55332 is a monolithic high-voltage switching regulator with integrated $3-\mathrm{A}, 60-\mathrm{V}$ power MOSFET. The device can be configured as a switch mode stepup power supply with voltage supervisor. Once the internal circuits have stabilized with a minimum input supply of 3.6 V , the system can then have an input voltage range from 1.5 V to 40 V , to maintain a fixed boost output voltage. For optimum performance, VIN/Vout ratios should be set such that the minimum required duty cycle pulse > 150 ns . The supervisor circuit monitors the regulated output and indicates when this output voltage has fallen below the set value. The TPS55332 has a switching frequency range from 80 kHz to 2.2 MHz , allowing the use of low profile inductors and low value input and output capacitors. The external loop compensation gives the user the flexibility to optimize the converter response for the appropriate operating conditions. Using the enable pin (EN), the shutdown supply current is reduced to $1 \mu \mathrm{~A}$. The device has built-in protection features such soft start on enable cycle, pulse-bypulse current limit, and thermal sensing and shutdown due to excessive power dissipation.
Device Information

| $\mathbf{1 )}$ |  |  |
| :--- | :--- | :---: |
| PART NUMBER | PACKAGE | BODY SIZE (NOM) |
| TPS55332 | HTSSOP $(20)$ | $6.50 \mathrm{~mm} \times 4.40 \mathrm{~mm}$ |

(1) For all available packages, see the orderable addendum at the end of the datasheet.

## Simplified Schematic



An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

## Table of Contents

1 Features ..... 1
2 Applications ..... 1
3 Description ..... 1
4 Revision History ..... 2
5 Pin Configuration and Functions ..... 3
6 Specifications ..... 4
6.1 Absolute Maximum Ratings ..... 4
6.2 ESD Ratings ..... 4
6.3 Recommended Operating Conditions ..... 4
6.4 Thermal Information ..... 5
6.5 Electrical Characteristics. ..... 5
6.6 Typical Characteristics ..... 7
7 Detailed Description ..... 8
7.1 Overview ..... 8
7.2 Functional Block Diagram ..... 8
7.3 Feature Description ..... 9
7.4 Device Functional Modes ..... 13
8 Application and Implementation ..... 17
8.1 Application Information ..... 17
8.2 Typical Application ..... 17
9 Power Supply Recommendations ..... 22
10 Layout. ..... 23
10.1 Layout Guidelines ..... 23
10.2 Layout Example ..... 24
10.3 Power Dissipation ..... 26
11 Device and Documentation Support ..... 28
11.1 Trademarks ..... 28
11.2 Electrostatic Discharge Caution. ..... 28
11.3 Glossary ..... 28
12 Mechanical, Packaging, and Orderable Information ..... 28

## 4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision A (June 2010) to Revision B Page

- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ..... 4
Changes from Original (June 2009) to Revision A Page
- Changed title from $0.5-\mathrm{A}, 60-\mathrm{V}$ STEP UP DC/DC CONVERTER to $2.2-\mathrm{MHz}, 60-\mathrm{V}$ OUTPUT STEP UP DC/DC CONVERTER ..... 1
- Added Peak Internal Switch Current: 5.7 A (typ) to Features ..... 1
- Deleted Asynchronous Switch Mode Regulator with External Components (L and C), Output up to 0.5 A (max) in Boost Mode from Features ..... 1
- Added $\mathrm{f}_{\mathrm{sw}}<\mathrm{f}_{\mathrm{ext}}<2 \times \mathrm{f}_{\mathrm{sw}}$ to SYNC input clock test conditions ..... 5
- Changed SYNC input clock max value from 1100 kHz to 2200 kHz ..... 5
- Added Vout $=25.5 \mathrm{~V}$ to test conditions ..... 5
- Added Vout $=25.5 \mathrm{~V}$ to test conditions ..... 5
- Changed Output Voltage (Vout) description ..... 9
- Changed internal reference Vref from 2.5 V to 0.8 V ..... 12
- Added inductor saturation current $\mathrm{I}_{\text {sat }}$ description. ..... 13


## 5 Pin Configuration and Functions



Pin Functions

| PIN |  | I/O |  |
| :--- | :---: | :---: | :--- |
| NAME | NO. |  |  |
| NC | 1 | NC | Connect to ground |
| NC | 2 | NC | Connect to ground |
| SYNC | 3 | I | External synchronization clock input, 62-k $\Omega$ (typ) pull-down resistor |
| GND | 4 | I | Connect to ground |
| EN | 5 | I | Enable input, high voltage tolerant |
| RT | 6 | O | Resistor to program internal oscillator frequency |
| $R_{\text {slew }}$ | 7 | O | Internal switch programmable slew rate control |
| RST | 8 | O | Reset output open drain (active low) |
| C $_{\text {dly }}$ | 9 | O | Reset delay timer (programmed by external capacitor) |
| GND | 10 | O | Analog ground, DVSS and SUB |
| SS | 11 | O | Programmable soft-start. (external capacitor) |
| GND | 12 | I | Connect to ground |
| RST_TH | 13 | I | Input for RESET circuitry to detect undervoltage on output (adjustable threshold) |
| VSENSE | 14 | I | Feedback input for voltage mode control |
| COMP | 15 | O | Error amplifier output |
| V $_{\text {Reg }}$ | 16 | I | Internal low side FET to load output during start up or limit over shoot |
| PGND | 17 | O | Power ground connection |
| SW | 18 | I/O | Switched drain output/input |
| VIN | 19 | I | Unregulated input voltage |
| BOOT | 20 | O | Bootstrap capacitor pump |

## 6 Specifications

### 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

|  |  | MIN | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| V | Unregulated input voltages (VIN, EN) ${ }^{(2)}$ ( SW) ${ }^{(2)(3)}$ | -0.3 | 60 | V |
| V | Unregulated input voltages (BOOT) | -0.3 | 8 | V |
| $\mathrm{V}_{\text {Reg }}$ | Regulated voltage | -0.3 | 60 | V |
|  | Logic level signals (RT, RST, SYNC, VSENSE, RST_TH) ${ }^{(2)}$ | -0.3 | 5.5 | V |
|  | Logic level signals (SS, Cdly) ${ }^{(2)}$ | -0.3 | 8 | V |
|  | Logic level signals (COMP) ${ }^{(2)}$ | -0.3 | 7 | V |
| $\mathrm{T}_{\mathrm{J}}$ | Operating virtual junction temperature range | -40 | 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{stg}}$ | Storage temperature | -55 | 165 | ${ }^{\circ} \mathrm{C}$ |

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to GND.
(3) Absolute negative voltage on these pins not to go below -0.6 V .

### 6.2 ESD Ratings

|  |  |  |  | VALUE | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{(E S D)}$ | Electrostatic discharge | Human body model (HBM), per AEC Q100-002 ${ }^{(1)}$ |  | $\pm 2000$ | V |
|  |  | Charged device model (CDM), per AEC Q100-011 | Corner pins (NC, BOOT, SS, and GND) | $\pm 750$ |  |
|  |  |  | Other pins | $\pm 500$ |  |

(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

### 6.3 Recommended Operating Conditions

|  | MIN | NOM MAX | UNIT |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1} \quad$ Unregulated buck supply input voltage (VIN, EN) | 3.6 | 40 | V |
| $\mathrm{V}_{\text {Reg }}$ Output voltage range | 2.5 | 50 | V |
| Bootstrap capacitor (BOOT) | 3.6 | 8 | V |
| Switched outputs (SW) | 3.6 | 52 | V |
| Logic level inputs ( $\overline{\mathrm{RST}}$, VSENSE, RST_TH, Rslew, SYNC, RT) | 0 | 5.25 | V |
| Logic level inputs (SS, Cdly, COMP) | 0 | 6.5 | V |
| $\theta_{\mathrm{JA}} \quad$ Thermal resistance, junction to ambient ${ }^{(1)}$ |  | 35 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\theta_{\mathrm{JC}} \quad$ Thermal resistance, junction to case ${ }^{(2)}$ |  | 10 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{T}_{J} \quad$ Operating junction, temperature range ${ }^{(3)}$ | -40 | 150 | ${ }^{\circ} \mathrm{C}$ |

(1) This assumes a JEDEC JESD 51-5 standard board with thermal vias and high-K profile - See PowerPAD section and application note from Texas Instruments (SLMA002) for more information.
(2) This assumes junction to exposed PAD.
(3) This assumes $T_{A}=T_{J}$ - power dissipation $\times \theta_{J A}$ (junction to ambient).

TPS55332-Q1
www.ti.com

### 6.4 Thermal Information

| THERMAL METRIC ${ }^{(1)}$ |  | TPS55332-Q1 | UNIT |
| :---: | :---: | :---: | :---: |
|  |  | PWP |  |
|  |  | 20 PINS |  |
| $\mathrm{R}_{\theta \mathrm{JA}}$ | Junction-to-ambient thermal resistance | 43.8 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{R}_{\text {өJC(top) }}$ | Junction-to-case (top) thermal resistance | 21.4 |  |
| $\mathrm{R}_{\theta \mathrm{JB}}$ | Junction-to-board thermal resistance | 18.5 |  |
| $\Psi_{\text {JT }}$ | Junction-to-top characterization parameter | 0.5 |  |
| $\Psi_{\text {JB }}$ | Junction-to-board characterization parameter | 18.3 |  |
| $\mathrm{R}_{\text {өJC(bot) }}$ | Junction-to-case (bottom) thermal resistance | 1.2 |  |

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

### 6.5 Electrical Characteristics

$\mathrm{VIN}=7 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{EN}=\mathrm{High}, \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise noted)

| TEST |  | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT VOLTAGE (VIN) |  |  |  |  |  |  |  |
| Info | VIN | Supply voltage on VIN line | Normal mode - buck mode after start up | 1.5 |  | 40 | V |
| PT | Iq-Normal | Bias current, normal mode |  |  | 4.2 | 8 | mA |
| PT | $\mathrm{I}_{\text {SD }}$ | Shutdown | $\mathrm{EN}=0 \mathrm{~V}, \mathrm{VIN}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 2 | 4 | $\mu \mathrm{A}$ |
| SWITCH MODE SUPPLY; VReg/Vout |  |  |  |  |  |  |  |
| Info | $V_{\text {Reg }}$ | Regulator output | VSENSE $=2.5 \mathrm{~V}$ in boost mode ${ }^{(1)}$ | Vin $\times 1.05$ |  | 50 | V |
| CT | VSENSE | Feedback voltage | $\mathrm{VIN}=12 \mathrm{~V}$ | 2.463 | 2.5 | 2.538 | V |
| PT | $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | Internal switch resistance | Measured across $\mathrm{V}_{\text {SWD }}$ and GND |  |  | 500 | $\mathrm{m} \Omega$ |
| Info | $\mathrm{I}_{\mathrm{CL}}$ | Switch current limit | VIN $=7 \mathrm{~V}$ to 28 V |  | 5.7 |  | A |
| Info | ton-Min | Duty cycle pulse width | Bench mode $=500 \mathrm{kHz}$ | 50 | 100 | 150 | ns |
|  | $\mathrm{t}_{\text {OFF-Min }}$ |  |  | 50 | 100 | 150 |  |
| PT | $\mathrm{f}_{\text {sw }}$ | Switch mode frequency | Set using external resistor on RT pin | 80 |  | 2200 | kHz |
| PT | $\mathrm{f}_{\text {sw }}$ | Internal oscillator frequency |  | -10\% |  | 10\% |  |
| ENABLE (EN) |  |  |  |  |  |  |  |
| PT | $\mathrm{V}_{\text {IL }}$ | Low input threshold |  |  |  | 0.7 | V |
| PT | $\mathrm{V}_{1 \mathrm{H}}$ | High input threshold |  | 1.7 |  |  | V |
| PT | ILeakage | Leakage into EN terminal | $\mathrm{EN}=24 \mathrm{~V}$ |  | 35 |  | $\mu \mathrm{A}$ |
| RESET DELAY (CDLY) |  |  |  |  |  |  |  |
| PT | $\mathrm{I}_{0}$ | External capacitor charge current | $\mathrm{EN}=$ high | 1.4 | 2 | 2.6 | $\mu \mathrm{A}$ |
| PT | $\mathrm{V}_{\text {Threshold }}$ | Switching threshold | Output voltage in regulation | 1.8 | 2 | 2.4 | V |
| RESET OUTPUT ( $\overline{\text { RST }}$ ) |  |  |  |  |  |  |  |
| Info | $\mathrm{t}_{\text {rall }}$ | POR delay timer | Based on Cdly capacitor, Cdly $=4.7 \mathrm{nF}$ | 3.6 |  | 7 | ms |
| PT | RST_TH | Reset threshold for $\mathrm{V}_{\text {Reg }}$ | Check RST output | 0.768 |  | 0.832 | V |
| PT | $t_{\text {RSTaly }}$ | Filter time | Once VRST_TH or OV_TH Is detected, delay before $\overline{\text { RST }}$ Is asserted low | 10 | 20 | 35 | $\mu \mathrm{s}$ |
| SYNCHRONIZATION (SYNC) |  |  |  |  |  |  |  |
| PT | $\mathrm{V}_{\text {SYNC }}$ | Low-level input voltage, $\mathrm{V}_{\text {IL }}$ |  |  |  | 0.7 | V |
| PT |  | High-level input voltage, $\mathrm{V}_{\mathrm{IH}}$ |  | 1.7 |  |  | V |
| PT | LLeakage | Leakage current | SYNC $=5 \mathrm{~V}$ |  | 65 | 95 | $\mu \mathrm{A}$ |
| PT | SYNC | Input clock | $\mathrm{VIN}=12 \mathrm{~V}, \mathrm{f}_{\text {sw }}<\mathrm{f}_{\text {ext }}<2 \times \mathrm{f}_{\text {sw }}$ | 80 |  | 2200 | kHz |
| Info | SYNC ${ }_{\text {trans }}$ | External clock to internal clock | No external clock, VIN $=12 \mathrm{~V}$ |  | 32 |  | $\mu \mathrm{s}$ |
| Info | SYNC ${ }_{\text {trans }}$ | Internal clock to external clock | External clock $=500 \mathrm{kHz}, \mathrm{VIN}=12 \mathrm{~V}$ |  | 2.5 |  | $\mu \mathrm{s}$ |
| CT | SYNC CLK | Minimum duty cycle |  | 30\% |  |  |  |

(1) Voltage ratio of input to output in boost mode is $1: 10$ (max) and up to 50 V output max.

## Electrical Characteristics (continued)

$\mathrm{VIN}=7 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{EN}=\mathrm{High}, \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise noted)

| TEST | PARAMETER |  | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CT | SYNC ${ }_{\text {cLK }}$ | Maximum duty cycle |  |  |  | 70\% |  |
| Rslew |  |  |  |  |  |  |  |
| CT | $\mathrm{I}_{\text {Rslew }}$ | Slew current | $\mathrm{R}_{\text {slew }}=50 \mathrm{k} \Omega$, Calculated not measured |  | 20 |  | $\mu \mathrm{A}$ |
| CT | $\mathrm{I}_{\text {Rslew }}$ | Slew current | $\mathrm{R}_{\text {slew }}=50 \mathrm{k} \Omega$, Calculated not measured |  | 100 |  | $\mu \mathrm{A}$ |
| Soft Start (SS) |  |  |  |  |  |  |  |
| PT | Iss | Soft start current |  | 40 | 50 | 60 | $\mu \mathrm{A}$ |
| THERMAL SHUTDOWN |  |  |  |  |  |  |  |
| CT | $\mathrm{T}_{\text {SD }}$ | Thermal shutdown junction temperature |  |  | 175 | 200 | ${ }^{\circ} \mathrm{C}$ |
| CT | $\mathrm{T}_{\mathrm{HYS}}$ | Hysteresis |  |  | 30 |  | ${ }^{\circ} \mathrm{C}$ |

PT: Production tested
CT: Characterization tested only, not production tested
Info: User Information only, not production tested

### 6.6 Typical Characteristics



Figure 1. Vsense Ref Voltage (V) vs Temperature ( ${ }^{\circ} \mathrm{C}$ )


Figure 3. Rds Of Power Fet ( $\Omega$ ) vs Temperature $\left({ }^{\circ} \mathrm{C}\right.$ )


Figure 2. VIN Leakage Current (Ma) vs Temperature ( ${ }^{\circ} \mathrm{C}$ )


Figure 4. Normal Current Consumption (mA) vs Temperature ( ${ }^{\circ} \mathrm{C}$ )

## 7 Detailed Description

### 7.1 Overview

The TPS55332 operates as a step up (boost) converter; the feedback concept is voltage mode control using the VSENSE terminal, with cycle-by-cycle current limit.
The voltage supervisory function for power-on-rest during system power-on is monitoring the output voltage, and once this has exceeded the threshold set by RST_TH, a delay of $1.0 \mathrm{~ms} / \mathrm{nF}$ (based on the capacitor value on the Cdly terminal) is invoked before the RST line is released high. Conversely, on power down, once the output voltage falls below the same set threshold (ignoring hysteresis), $\overline{\mathrm{RST}}$ is pulled low only after a de-glitch filter of approximately $20 \mu \mathrm{~s}$ (typ) expires. This is implemented to prevent RST from being triggered due to fast transient noise on the output supply.
Soft start is activated on every enable cycle and limits the power stored in the inductor by duty cycle control. Soft start duration is set by an external capacitor on the SS terminal.
If thermal shutdown is invoked due to excessive power dissipation, the internal switch is disabled and the regulated output voltage starts to decrease. Depending on the load line, the regulated voltage can decay and the RST_TH threshold may assert RST output low after the output voltage drops below the set threshold.

### 7.2 Functional Block Diagram



NOTE: An integrated forward biased diode is between $\mathrm{V}_{\text {Reg }}$ and VIN. $\mathrm{V}_{\text {Reg }}$ is tied to Vout and used to bias VIN when Vout $>$ Vsupply. However, the minimum Vsupply operating voltage at power-up (when Vout < Vsupply) is $3.6 \mathrm{~V}+2$ diode drops. After power-up (when Vout $>$ Vsupply) the minimum Vsuppy $=1.5 \mathrm{~V}+2$ diode drops. $\mathrm{V}_{\text {Reg }}<5.8 \mathrm{~V}$ and VIN $<$ 3.6 V. Converter non-operational.

NOTE: VIN is the voltage at VIN before $\mathrm{V}_{\text {Reg }}>$ Vsupply.

### 7.3 Feature Description

The TPS55332 is a step up (boost) dc/dc converter using voltage-control mode scheme. The following sections include descriptions of the individual pin functions.

### 7.3.1 Input Voltage (VIN)

The VIN pin is the input power source for the TPS55332. This pin must be externally protected against voltage level transients greater than 60 V and reverse battery. In boost mode the input current drawn from this pin is pulsed, with fast rise and fall times. Therefore, this input line requires a filter capacitor to minimize noise. Additionally, for EMI considerations, an input filter inductor may also be required.

### 7.3.2 Output Voltage (Vout)

The output voltage, Vout, is generated by the converter supplied from the battery voltage VIN and external components (L, C). The output is sensed through an external resistor divider and compared with an internal reference voltage.
The value of the adjustable output voltage in boost mode is selectable between VIN $\times 1.05$ to 50 V if the minimum ON time ( $\mathrm{t}_{\mathrm{on}}$ ) and minimum OFF times are NOT violated by choosing the external resistors, according to the following relationship:

$$
\begin{equation*}
\text { Vout }=\operatorname{Vref}\left(1+\frac{R 8}{R 7}\right) \quad \text { (Volts) } \tag{1}
\end{equation*}
$$

Where:
R7 and R8 are feedback resistors
Vref = 2.5 V (typ)
The internal reference voltage Vref has a $\pm 1.5 \%$ tolerance. The overall output voltage tolerance is dependent on the external feedback resistors. To determine the overall output voltage tolerance, use the following relationship:

$$
\begin{equation*}
\text { tol }_{V o u t}=\text { tol }_{V \text { ref }}+\left(\frac{\mathrm{R} 8}{\mathrm{R} 8+\mathrm{R} 7}\right) \times\left(\text { tol }_{\mathrm{R} 8}+\text { tol }_{\mathrm{R} 7}\right) \tag{2}
\end{equation*}
$$

Typically, an output capacitor within the range of $10 \mu \mathrm{~F}$ to $400 \mu \mathrm{~F}$ is used. This terminal has a filter capacitor with low ESR characteristics in order to minimize output ripple voltage.

### 7.3.3 Regulated Supply Voltage ( $\mathbf{V}_{\text {Reg }}$ )

There is an integrated forward biased diode between $\mathrm{V}_{\text {Reg }}$ and VIN . $\mathrm{V}_{\text {Reg }}$ is tied to Vout and used to bias VIN when Vout > Vsupply.

### 7.3.4 Over-Current Protection (SW)

Over-current protection is implemented by sensing the current through the NMOS switch FET. The sensed current is then compared to a current reference level representing the over-current threshold limit. If the sensed current exceeds the over-current threshold limit, the over-current indicator is set true. The system ignores the over-current indicator for the leading edge blanking time at the beginning of each cycle to avoid any turn-on noise glitches.
Once the over-current indicator is set true, over-current protection is triggered. The MOSFET is turned off for the rest of the cycle after a propagation delay. The over-current protection scheme is called cycle-by-cycle current limiting. If the sensed current continues to increase during cycle-by-cycle current limiting, the temperature of the device starts to rise, and the TSD kicks in and shuts down switching until the device cools down.

### 7.3.5 Oscillator Frequency (RT)

The oscillator frequency is selectable by means of a resistor placed at the RT pin. The switching frequency ( $f_{\text {sw }}$ ) can be set in the range of 80 kHz to 2.2 MHz . In addition, the switching frequency can be imposed externally by a clock signal ( $f_{\text {ext }}$ ) at the SYNC pin with $f_{\text {sw }}<f_{\text {ext }}<2 \times f_{\text {sw. }}$. In this case the external clock overrides the switching frequency determined by the RT pin, and the internal oscillator is clocked by the external synchronization clock input.

## Feature Description (continued)



G007

Figure 5. Oscillator Frequency (RT)

### 7.3.6 Enable / Shutdown (EN)

The Enable pin provides electrical on/off control of the regulator. Once the Enable pin voltage exceeds the threshold voltage, the regulator starts operation and the internal soft start begins to ramp. If the Enable pin voltage is pulled below the threshold voltage, the regulator stops switching and the internal soft start resets. Connecting the pin to ground or to any voltage less than 0.7 V disables the regulator and activates shutdown mode. The quiescent current of the TPS55332 in shutdown mode is typically $<2 \mu \mathrm{~A}$. This pin has to have an external pull up or pull down to change the state of the device.

### 7.3.7 Reset Delay ( $\mathrm{C}_{\mathrm{d} 1 \mathrm{y}}$ )

The Reset delay pin sets the desired delay time for asserting the $\overline{\mathrm{RST}}$ pin high after the supply has exceeded the programmed Vreg_RST voltage. The delay may be programmed in the range of 2.2 ms to 200 ms using capacitors in the range of 2.2 nF to 200 nF . The delay time is calculated using Equation 3:

$$
\begin{equation*}
\text { tdelay }=\text { trdly } \times \mathrm{C}=\left(\frac{1 \mathrm{~ms}}{\mathrm{nF}}\right) \times \mathrm{C}, \text { Where } \mathrm{C}=\text { capacitor on } \mathrm{C}_{\text {dly }} \text { pin } \tag{3}
\end{equation*}
$$

### 7.3.8 Reset Pin ( $\overline{\mathrm{RST}}$ )

The $\overline{\operatorname{RST}}$ pin is an open-drain output. The power-on reset output is asserted low until the output voltage exceeds the programmed Vreg_RST voltage threshold and the reset delay timer has expired. Additionally, whenever the Enable pin is low or open, RST is immediately asserted low regardless of the output voltage. There is a reset deglitch timer to prevent a reset being invoked due to short negative transients on the output line. If a thermal shut down occurs due to excessive thermal conditions this pin is asserted low, where switching is commanded off and the output drops below the rest threshold set on the RST_TH terminal.

TPS55332-Q1
www.ti.com

## Feature Description (continued)

## Power On Condition/Reset Line



## Power Down Condition/Reset Line



T0435-01

Figure 6. Reset Line Conditions

### 7.3.9 Boost Capacitor (BOOT)

This capacitor provides gate drive voltage for the Internal MOSFET switch. X7R or X5R grade dielectrics are recommended due to their stable values over temperature.

### 7.3.10 Soft Start (SS)

To limit the start-up inrush current, an internal soft start circuit is used to ramp up the reference voltage from 0 V to its final value. The switch duty cycle starts with narrow pulses and increases gradually as the voltage on the Css capacitor ramps up. The output current on this pin charges the capacitor up to 6.6 V (typ).
The boost soft start is dependent on the gain bandwidth (GBW) of the loop. Therefore, in this configuration the Css equation only holds when:

$$
\begin{equation*}
\frac{1}{\mathrm{GBW}}<10 \times \mathrm{T}_{\mathrm{CSS}} \tag{4}
\end{equation*}
$$

GBW is dependent on the compensation technique used. TYPE1 is the slowest.
Where:
Tcss is the time it takes for Vcss to reach $\sim 3.5 \mathrm{~V}$
GBW $=f c$ of the converter
Time $\left(T c_{S S}\right)=\frac{C \times 3.5}{40 \times 10^{-6}} \quad(\mathrm{sec})$
Where:
C = Capacitor Css on the SS pin

## Feature Description (continued)

### 7.3.11 Synchronization (SYNC)

The SYNC pin inputs an external clock signal that synchronizes the switching frequency. The synchronization input over-rides the internally fixed oscillator signal. The synchronization signal has to be valid for approximately 2 clock cycles (pulses) before the transition is made for synchronization with the external frequency input. If the external clock input is does NOT transition low or high for $32 \mu \mathrm{~s}$ (typ), the system defaults to the internal clock set by the Rosc pin.

### 7.3.12 Regulation Voltage (VSENSE)

This pin is used to program the regulated output voltage based on a resistor feedback network monitoring the Vout voltage. The selected ratio of R7 and R8 sets the output voltage.

### 7.3.13 Reset Threshold (RST_TH)

This pin is programmable to set the under-voltage monitoring of the regulated output voltage. The resistor combination of R5 and R6 is used to program the threshold for detection of under-voltage.

Reset Threshold = RST_TH = Vref ( $1+(\mathrm{R} 6 / \mathrm{R} 5)$ ),
Recommended range: $70 \%$ to $92 \%$ of the regulation voltage
The internal reference Vref is set at $0.8 \mathrm{~V} \pm 1.5 \%$

### 7.3.14 Slew Rate Control (Rslew)

This pin controls the switching slew rate of the internal power NMOS. The slew rate is set by an external resistor with a slew rate range shown for rise and fall times. The range of rise time $t_{r}=20 \mathrm{~ns}$ to 60 ns and fall time $\mathrm{t}_{\mathrm{f}}=60 \mathrm{~ns}$ to 250 ns , with Rslew range of $5 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$ (see Figure 7 and Figure 8).


### 7.3.15 Thermal Shutdown

The TPS55332 device protects itself from overheating with an internal thermal shutdown circuit. If the junction temperature exceeds the thermal shutdown trip point, the MOSFET is turned off. The device is restarted under control of the slow start circuit automatically when the junction temperature drops below the thermal shutdown hysteresis trip point.

## Feature Description (continued)

### 7.3.16 Loop Control Frequency Compensation



Figure 9. Type 1 Compensation
The boost converter operating in continuous conduction mode (CCM) has a right-half-plane (RHP) zero with the transfer function. The RHP zero causes the converter to respond to a circuit disturbance in the opposite direction to that needed to support the output load transition (positive feedback). This complicates loop compensation and limits the converter bandwidth, and requires an increase in the output filter capacitor.
The converter can be designed to operate in discontinuous conduction mode (DCM) with a smaller inductance value for the inductor over the full range of the operating conditions. This may be difficult to achieve and other issues like instability may occur if the converter enters CCM.
The inductor saturation current $\mathrm{I}_{\text {sat }}$ must satisfy the following:

$$
\begin{equation*}
I_{\text {sat }}>\frac{I_{\text {Load }}}{D \times \text { efficiency }}+\left(\frac{V_{\mathbb{I N}}}{L}\right) \times 15 \mu \mathrm{~s} \tag{7}
\end{equation*}
$$

Where:

$$
\mathrm{D}=\mathrm{V}_{\mathbb{N}} / \mathrm{V}_{\mathrm{O}}
$$

The converter designed for CCM with external loop compensation factors the maximum output load current, the ESR of the output filter capacitor, the inductance used for the inductor, the input voltage range, and the output voltage required.

### 7.4 Device Functional Modes

### 7.4.1 DCM Operation

The control to output transfer function for the boost in DCM has a single pole. The energy in the inductor is completely discharged during every switching cycle (inductor current is reduced to zero). The small inductor value for DCM compared to CCM operation shifts the RHP zero frequency close to the switching frequency, see Equation 11. In this mode, the RHP is not a factor for compensation of the feedback loop, additionally the frequency of the pole associated with the inductor is also increased to a higher frequency.
The maximum inductance to keep the boost converter running in DCM over the full operating range is given by Equation 8:

## Device Functional Modes (continued)

$$
\begin{equation*}
\mathrm{L}_{\max }=\frac{0.8 \times \mathrm{D}_{\mathrm{CCM}} \times\left(1-\mathrm{D}_{\mathrm{CCM}}\right)^{2} \times\left(\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{I}_{\mathrm{O}}}\right)}{2 \times f_{\mathrm{sw}}} \quad \text { (Henries) } \tag{8}
\end{equation*}
$$

Where:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{CCM}}=1-\left(\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{O}}}\right) \tag{9}
\end{equation*}
$$

$\mathrm{V}_{\mathrm{O}}=$ Output voltage
$I_{O}=$ Maximum output current
$\mathrm{V}_{\mathrm{IN}}=$ Minimum input voltage
Three elements of the output capacitor contribute to the impedance (output voltage ripple), ESR, ESL, and capacitance.
During discontinuous conduction mode operation, the minimum capacitance needed to limit the voltage ripple due to the capacitance of the capacitor is given by Equation 10:

Where:
$R=\min$ load resistance,
$\mathrm{T}_{\mathrm{s}}=$ clock period,
$f_{\mathrm{sw}}=$ switching frequency,
$\Delta \mathrm{V}_{0}=$ output voltage ripple desired
The ESR of the output capacitor needed to limit the output ripple voltage is given by Equation 11:

$$
\begin{equation*}
\mathrm{ESR} \leq \frac{\Delta \mathrm{V}_{\mathrm{O}}}{\Delta \mathrm{I}_{\mathrm{O}}} \quad \text { (Ohms) } \tag{11}
\end{equation*}
$$

### 7.4.2 CCM Operation

In continuous conduction mode of operation the RHP zero complicates the loop compensation. This limits the bandwidth of the converter and may require a larger value output filter capacitor to compensate for loop response. The benefit of this mode is a lower switch and inductor current compared to DCM. This results in reduced power dissipation and size of the power switch, input capacitor, and output capacitor. The output filter capacitor value may need to be increased such that

$$
f_{\mathrm{LC}} \leq 0.1 f_{\mathrm{RHP}}
$$

The following requirements for compensating the loop have to be satisfied for the control-to-output gain of a CCM boost operation.

$$
\begin{align*}
& f_{\mathrm{LC}}=0.1 \times f_{\mathrm{RHP} \text {-zero }}  \tag{12}\\
& \frac{f_{\mathrm{RHP}-\text { eroro }}}{f_{\mathrm{LC}}}>\mathrm{M} \tag{13}
\end{align*}
$$

Where:

$$
\begin{align*}
& \mathrm{M}=10-\text { for tantalum capacitors } \\
& \mathrm{M}=15-\text { for ceramic capacitors } \\
& f_{\mathrm{C}}=0.33 \times f_{\mathrm{RHP} \text {-zero }}  \tag{14}\\
& f_{\mathrm{LC}}=\frac{1}{2 \pi \sqrt{\mathrm{LCo}}} \times \frac{\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\mathrm{O}}} \quad(\mathrm{~Hz}) \tag{Hz}
\end{align*}
$$

## Device Functional Modes (continued)

Where:
$\mathrm{L}=$ Inductor value,
Co = Output capacitor,
$\mathrm{V}_{\mathrm{IN}}=$ Input voltage, and
$\mathrm{V}_{\mathrm{O}}=$ Output voltage

$$
\begin{align*}
& f_{\mathrm{RHP}-\mathrm{zero}}=\frac{\mathrm{R}}{2 \pi \mathrm{~L}} \times\left(\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{O}}}\right)^{2}  \tag{Hz}\\
& f_{\mathrm{ESR}}=\frac{\mathrm{R}}{2 \pi \mathrm{Co} \times \mathrm{ESR}} \quad(\mathrm{~Hz}) \tag{16}
\end{align*}
$$

The feed-forward compensation network type 1 is calculated using the pole frequency in Equation 18:

$$
f_{\mathrm{p}}=\frac{1}{2 \pi \mathrm{C}_{4} \mathrm{R} 8} \quad(\mathrm{~Hz})
$$

The minimum output capacitor required for a desired output ripple voltage is given by Equation 19:

$$
\begin{equation*}
\mathrm{C}_{(\mathrm{ccm} \min )} \geq \frac{\mathrm{I}_{\mathrm{O}(\max )}}{\Delta \mathrm{V}_{\mathrm{O}}}\left(1-\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{O}}}\right) \frac{1}{f_{\mathrm{sw}}} \quad \text { (Farads) } \tag{19}
\end{equation*}
$$

The minimum inductor value needed to ensure CCM from maximum to $25 \%$ of maximum load is determined by choosing the value of the inductor to have a ripple current of approximately $40 \%$ of the maximum output load current at maximum input voltage of the system.

$$
\begin{equation*}
\Delta \mathrm{L}_{\mathrm{L}}=0.4 \times \mathrm{I}_{\mathrm{O}} \quad \text { (Amperes) for } \mathrm{V}_{\mathrm{IN}_{\mathrm{N}} \text { max }} \tag{20}
\end{equation*}
$$

To maintain ccm operation with at least a $10 \%$ of maximum load current ( $\mathrm{I}_{\mathrm{O} \text {-DLM }} \geq 0.1 \times \mathrm{I}_{\mathrm{O} \text {-max }}$ ) The inductor is given by Equation 21:

$$
\begin{equation*}
\mathrm{L}=\frac{\mathrm{V}_{\mathrm{IN}}}{2 \times \mathrm{I}_{\mathrm{O}-\mathrm{Dccm}} \times f_{\mathrm{sw}}} \times \mathrm{D}_{\mathrm{ccm}} \times\left(1-\mathrm{D}_{\mathrm{ccm}}\right) \quad \text { (Henries) } \tag{21}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{ccm}}=0.5, \\
& \mathrm{~V}_{\mathrm{IN}}=\text { Typical operating voltage }
\end{aligned}
$$

Choosing an inductor value less than the one determined by Equation 21 may cause the converter to go into DCM operation during low output currents. This may not be a problem if the loop compensation allows for good phase margin.
The ripple current flowing through the output capacitor ESR causes power dissipation in the capacitor. Equation 17 gives the RMS value of the ripple current flowing through the output capacitance.

$$
\begin{equation*}
I_{\mathrm{CRMS}}=\mathrm{I}_{\mathrm{O}} \times \sqrt{\frac{\mathrm{D}}{1-\mathrm{D}}} \tag{22}
\end{equation*}
$$

Where:

$$
\mathrm{D}=\text { Duty cycle }
$$

For continuous inductor current mode operation, the ESR needed to limit the ripple voltage $\Delta \mathrm{V}_{\mathrm{O}}$ to volts peakpeak is:

$$
\begin{equation*}
\mathrm{ESR} \leq \frac{\Delta V_{\mathrm{O}}}{\frac{\mathrm{I}_{\mathrm{O}(\max )}}{1-\mathrm{D}_{\max }}+\frac{\Delta \mathrm{I}_{\mathrm{O}}}{2}} \quad \text { (Ohms) } \tag{23}
\end{equation*}
$$

## Device Functional Modes (continued)

### 7.4.3 Loop Compensation For Stability Criteria



Figure 10. Stability Criteria
Figure 10 is an illustration of stability criteria and is used to ensure converter performance based on the type of loop compensation implemented.

## 8 Application and Implementation

## NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

### 8.1 Application Information

The TPS55332-Q1 device can function as a switch mode boost converter along with voltage supervisor. The system can function at input voltage as low as 1.5 V once the internal circuits have stabilized. The supervisor circuit monitors the regulated output and indicates when the output voltage has fallen below the set value. The variable switching frequency allows use of low profile inductors and low value input and output capacitors.

### 8.2 Typical Application



Figure 11. Typical Application Schematic

### 8.2.1 Design Requirements

Table 1 table lists the requirements of a switching regulator design.
Table 1. Design Parameters

| PARAMETER | VALUE |
| :--- | :--- |
| Input voltage, $\mathrm{V}_{\mathrm{IN}}$ | 6 V to 24 V , with typical operating voltage $=14 \mathrm{~V}$ |
| Output voltage, V | $25.5 \mathrm{~V} \pm 2 \%$ |
| Maximum output current, $\mathrm{I}_{\mathrm{O}}$ | 0.5 A |
| Transient response 0A to 0.3 A | $5 \%$ |
| Switching frequency, $f_{\mathrm{sw}}$ | 2 MHz |
| Reset threshold | $84 \%$ of output voltage |
| Vo_ripple | 520 mV peak to peak at capacitance |
| Vo_transient | $92 \%$ of output voltage |

### 8.2.2 Detailed Design Procedure

The design considers the converter to operate in CCM for most of the operating range and in DCM during less than $10 \%$ of the maximum load rating. CCM mode has an RHP of zero. Thus, compensation becomes critical under CCM mode. Operating the converter in DCM mode results in higher switch and inductor currents and thereby higher losses. In this design example, we focus on circuit operating mostly under CCM mode.

### 8.2.2.1 Output Capacitor (Co)

Selection of the output capacitor in CCM using Equation 19 gives a capacitor value of $0.37 \mu \mathrm{~F}$.
Output ripple voltage is a product of output capacitor ESR and ripple current on the output capacitor Co.
The minimum output capacitor required for a desired output ripple voltage is given by:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{O}_{\text {riple ESR }}}=\mathrm{I}_{\mathrm{O}} \times \mathrm{ESR} \quad \text { (Volts) }  \tag{24}\\
& \mathrm{C}_{\text {(min ripple) }}=\frac{\mathrm{I}_{\mathrm{O}}}{\mathrm{VO}_{\text {ripple }}^{\text {cap }}}  \tag{25}\\
& \left(1-\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{Vo}_{\mathrm{O}}}\right) \frac{1}{f_{\mathrm{sw}}}
\end{align*}
$$

The minimum capacitance needed for the output voltage ripple specification, using Equation 19, C $\downarrow$ ( $\min \downarrow$ ripple) $=0.37 \mu \mathrm{~F}$.
Using Equation 20, the transient response should be taken into consideration when selecting the output capacitor. The minimum capacitance required for a duration dt with a load transient $\mathrm{I}_{\text {tran }}$ to allow a maximum output voltage droop of $\mathrm{V}_{\mathrm{o} \_ \text {droop }}$ is:

$$
\begin{equation*}
\mathrm{C}_{(\text {min tran })}=\frac{\mathrm{I}_{\text {tran dt }}}{\mathrm{Vo}_{\text {droop }}}=\frac{\mathrm{I}_{\text {tran }}}{\mathrm{Vo}_{\text {droop }}} \times \frac{1}{4 \times f_{\mathrm{c}}} \quad \text { (Farads) } \tag{26}
\end{equation*}
$$

Where,
dt is approximated to $1 / 4 \times f \mathrm{c}(f \mathrm{c}=10 \mathrm{kHz}$ bandwidth)
This gives a capacitance of $7.35 \mu \mathrm{~F}$. Allowing for tolerances and temperature variations, use a $10 \mu \mathrm{~F}$ standard value output capacitor.

### 8.2.2.2 Output Inductor Selection (Lo) for CCM

Using Equation 21, the minimum lead current for ccm operation is $10 \%$ of maximum output current, $\mathrm{I}_{\mathrm{O} \text {-DCM }}=50$ $m A$. The inductor value is selected as $L=22 \mu \mathrm{H}$.

### 8.2.2.3 Output Diode

The TPS55332 requires an external output diode which conducts when the power switch is turned off. This provides the path for the inductor current to the output capacitor. The important factors in selecting the rectifier are: fast switching, reverse breakdown voltage, current rating, and forward-voltage drop. The breakdown voltage should be greater than the maximum output voltage; the current rating must be two times the maximum switch output current. The forward drop of the diode should be low (schottky rectifier is preferred). The schottky diode is selected based on the appropriate power rating, which factors in the dc conduction losses; this is determined by Equation 27:

$$
\begin{equation*}
\mathrm{P}_{\text {diode }}=\mathrm{V}_{f \mathrm{~d}} \times \mathrm{I}_{\mathrm{O}} \times(1-\mathrm{D}) \quad(\text { Watts }) \tag{27}
\end{equation*}
$$

Where,
$\mathrm{V}_{f \mathrm{~d}}=$ forward conducting voltage of Schottky diode

### 8.2.2.4 Input Capacitor $C_{l}$

The TPS55332 requires an input ceramic de-coupling capacitor type X5R or X7R and bulk capacitance to minimize input ripple voltage. The dc voltage rating of this input capacitance must be greater than the maximum input voltage. The capacitor must have an input ripple current rating higher than the maximum input ripple current of the converter for the application; this is determined by Equation 28.
The input capacitors for power regulators are chosen to have a reasonable capacitance to volume ratio and be fairly stable over the temperature range.

$$
\begin{equation*}
I_{-R M S}=I_{\mathrm{O}} \times \sqrt{\frac{\left(\mathrm{V}_{\mathrm{O}}\right)}{\left(\mathrm{V}_{1-\min }\right)} \times \frac{\left(\mathrm{V}_{1-\text { min }}-\mathrm{V}_{\mathrm{O}}\right)}{\mathrm{V}_{1-\text { min }}}} \quad \text { (Amperes) } \tag{28}
\end{equation*}
$$

### 8.2.2.5 Output Voltage And Feedback Resistor Selection

In the design example, $100 \mathrm{k} \Omega$ was selected for R4, using Equation 1, R6 is calculated as $10.7 \mathrm{k} \Omega$. Higher resistor values help improve converter efficiency at low output currents but may introduce noise immunity problems.

### 8.2.2.6 Reset Threshold Resistor Selection

Using Equation 6, select resistor R7 as $10 \mathrm{k} \Omega$ then calculate R5. This gives a resistor value of $263 \mathrm{k} \Omega$; use a standard value of $267 \mathrm{k} \Omega$. This sets the reset threshold at $0.86 \times 25.5 \mathrm{~V}$.

### 8.2.2.7 Soft Start Capacitor

The soft start capacitor determines the minimum time to reach the desired output voltage during a power up cycle. This is useful when a load requires a controlled voltage slew rate and helps to limit the current draw from the input voltage supply line. Equation 4 and Equation 5 have to be satisfied in addition to the other conditions stated in the soft start section of this document. In this design a $47-\mathrm{nF}$ capacitor is required to meet these criteria.

### 8.2.2.8 Loop Compensation Calculation

To make sure the right hand plane zero does not impact converter design in CCM operation based on $\mathrm{V}_{\mathbb{I N}}=6 \mathrm{~V}$, $\mathrm{L}=22 \mu \mathrm{H}$, and $\mathrm{Co}=10 \mu \mathrm{f}$, calculated values using Equation 16, the frequency is set at:

$$
f_{\mathrm{RHP}}=20.436 \mathrm{kHz}
$$

The double pole associated with the L and Co components is given by Equation 15:

$$
f_{\mathrm{LC}}=2.526 \mathrm{kHz}
$$

Using Equation 14:

$$
f_{\mathrm{C}}=6.744 \mathrm{kHz}
$$

The zero due to the ESR of the capacitor is beyond the right hand plane zero frequency and can be calculated based on Equation 17 and Equation 23.
So to avoid any instability issues and from the frequency values calculated above the amplifier gain requires a gain roll off much earlier than the double pole of the $L$ and Co components.
So the pole must be set at a much lower frequency to obtain a reasonable phase margin.
Using Equation 18 and choosing a frequency close to 2.9 Hz for the pole frequency, the capacitor value C 8 for this application is:

```
\(\mathrm{C} 8=0.54 \mu \mathrm{~F}\)
If \(\mathrm{C} 8=0.1 \mu \mathrm{~F}\) standard value, then \(f_{\mathrm{P}}=15.9 \mathrm{~Hz}\).
```


### 8.2.2.9 Loop Compensation Response



Figure 12. Loop Compensation Response
Since the pole due to the integrating capacitor C4 is dominant in the compensation loop, the frequency of the pole due to the inductor has no consequence in this situation.

### 8.2.2.10 Output Inductor Selection (LO) For DCM

The maximum inductor value is calculated using Equation 16 and gives a value of $0.532 \mu \mathrm{H}$. This allows the converter to be in DCM mode over the full operating range.
To operate in this mode with the calculated inductor value, the right hand plane zero frequency has moved to 846 kHz and the cut off frequency is 279.1 kHz .

The double pole due to the L and Co values is 16.25 kHz .
To compensate with either type II or type III loop compensation, the Bode Plot stability criteria must be satisfied.
Figure 14 shows the Efficiency readings for TPS55332 running mostly in DCM mode. When the switching frequency is reduced from 2 MHz to 180 kHz , keeping the Inductance and output load fixed, the converter sees higher peak currents in the switch and inductor. Higher currents lead to losses and thus efficiency readings come out to be lower than when the converter runs in CCM mode.

### 8.2.3 Application Curves



Figure 13. Efficiency (\%) vs Load Current (A)


Figure 14. Efficiency (\%) vs Load Current (A)

## 9 Power Supply Recommendations

The TPS55332-Q1 device is designed to operate from an input voltage up to 40 V . Ensure that the input supply is well regulated. Furthermore, if the supply voltage in the application is likely to reach negative voltage (for example, reverse battery) a forward diode must be placed at the input of the supply. For the VIN pin, a small ceramic capacitor with a typical value of $0.1 \mu \mathrm{~F}$ is recommended. Capacitance de-rating for aging, temperature, and DC bias must be taken into account while determining the capacitor value. Connect a local decoupling capacitor close to the BOOT pin for proper gate drive voltage for the internal MOSFET switch.

## 10 Layout

### 10.1 Layout Guidelines

The recommended guidelines for PCB layout of the TPS55332 device are described in the following sections.

### 10.1.1 Inductor

Use a low EMI inductor with a ferrite type shielded core. Other types of inductors may be used, however they must have low EMI characteristics and be located away from the low power traces and components in the circuit.

### 10.1.2 Input Filter Capacitors

Input ceramic filter capacitors should be located in close proximity of the VIN terminal. Surface mount capacitors are recommended to minimize lead length and reduce noise coupling. Also low ESR and max input ripple current requirements must be satisfied.

### 10.1.3 Feedback

Route the feedback trace such that there is minimum interaction with any noise sources associated with the switching components. Recommended practice is to ensure the inductor is placed away from the feedback trace to prevent EMI noise sourcing.

### 10.1.4 Traces And Ground Plane

All power (high current) traces should be as thick and short as possible. The inductor and output capacitors should be as close to each other as possible. This reduces EMI radiated by the power traces due to high switching currents.
In a two sided PCB it is recommended to have ground planes on both sides of the PCB to help reduce noise and ground loop errors. The ground connection for the input and output capacitors and IC ground should be connected to this ground plane.

In a multi-layer PCB, the ground plane is used to separate the power plane (high switching currents and components are placed) from the signal plane (where the feedback trace and components are placed) for improved performance.
Also arrange the components such that the switching current loops curl in the same direction. Place the high current components such that during conduction the current path is in the same direction. This prevents magnetic field reversal caused by the traces between the two half cycles, helping to reduce radiated EMI.
The power ground terminal for the power FET must also be terminated to the ground plane in the shortest trace possible.

### 10.2 Layout Example



Figure 15. PCB Layout Example

## Layout Example (continued)



Figure 16. Top Layer

## Layout Example (continued)



Figure 17. Bottom Layer

### 10.3 Power Dissipation

The power dissipation losses are applicable for continuous conduction mode operation (CCM).

$$
\begin{align*}
& \mathrm{P}_{\mathrm{CON}}=1 \mathrm{o}^{2} \times \mathrm{RdS}_{\mathrm{ON}} \times(1-\mathrm{Vi} / \mathrm{Vo}) \quad \text { (conduction losses) }  \tag{29}\\
& \mathrm{P}_{\mathrm{Sw}}=1 / 2 \times \mathrm{Vo} \times \mathrm{lo} /(1-\mathrm{D}) \times(\mathrm{tr}+\mathrm{tf}) \times f_{\mathrm{sw}} \quad \text { (switching losses) }  \tag{30}\\
& \mathrm{P}_{\text {Gate }}=\mathrm{V}_{\text {drive }} \times \mathrm{Qg} \times f_{\text {sw }} \text { (gate drive losses), where } \mathrm{Qg}=1 \times 10^{-9}(\mathrm{nC})  \tag{31}\\
& \mathrm{P}_{\mathrm{IC}}=\mathrm{Vi} \times \text { Iq-normal (supply losses) }  \tag{32}\\
& \mathrm{P}_{\text {Total }}=\mathrm{P}_{\text {con }}+\mathrm{P}_{\mathrm{sw}}+\mathrm{P}_{\text {Gate }}+\mathrm{P}_{\text {Ic }} \quad \text { (watts) } \tag{33}
\end{align*}
$$

Where:
Vo = Output voltage
$\mathrm{Vi}=$ Input voltage
lo = Output current
$\mathrm{tr}=\mathrm{FET}$ switching rise time (tr max = 40 ns )

## Power Dissipation (continued)

$\mathrm{tf}=\mathrm{FET}$ switching fall time
$\mathrm{V}_{\text {drive }}=\mathrm{FET}$ gate drive voltage (typically Vdrive $=6 \mathrm{~V}$ and Vdrive $\max =8 \mathrm{~V}$ )
$f_{\text {sw }}=$ Switching frequency
D = Duty cycle
For given operating ambient temperature, $\mathrm{T}_{\text {Amb }}$ :

$$
\begin{equation*}
\mathrm{T}_{J}=\mathrm{T}_{\text {Amb }}+\mathrm{Rth}^{2} \times \mathrm{P}_{\text {Total }} \tag{34}
\end{equation*}
$$

For a given max junction temperature of $\mathrm{T}_{J-\mathrm{Max}}=150^{\circ} \mathrm{C}$ :

$$
\begin{equation*}
\mathrm{T}_{\text {Amb-Max }}=\mathrm{T}_{\text {J-Max }}-\mathrm{Rth} \times \mathrm{P}_{\text {Total }} \tag{35}
\end{equation*}
$$

Where:
$\mathrm{P}_{\text {Total }}=$ Total power dissipation (watts)
$\mathrm{T}_{\text {Amb }}=$ Ambient temperature in ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}}=$ Junction temperature in ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Amb-Max }}=$ Maximum ambient temperature in ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}-\mathrm{Max}}=$ Maximum junction temperature in ${ }^{\circ} \mathrm{C}$
Rth $=$ Thermal resistance of package in ( ${ }^{\circ} \mathrm{C} / \mathrm{W}$ )
Other factors NOT included in the information above which affect the overall efficiency and power losses are inductor ac and dc losses, and trace resistance and losses associated with the copper trace routing connection.


G012
NOTE: Power de-rating based on JEDEC JESD 51-5 standard board with thermal vias and high-k profile.
Figure 18. Power Dissipation

## 11 Device and Documentation Support

### 11.1 Trademarks

PowerPAD is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

### 11.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.

### 11.3 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

## 12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

## PACKAGING INFORMATION

| Orderable Device | Status <br> (1) |  | Package Type Package Pins Package | Eco Plan <br> Qrawing | Lead finish/ <br> Qall material <br> $(6)$ | MSL Peak Temp <br> (3) | Op Temp ( ${ }^{\circ}$ C) | Device Marking <br> $(4 / 5)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TPS55332QPWPRQ1 | ACTIVE | HTSSOP | PWP | 20 | 2000 | RoHS \& Green | NIPDAU | Level-3-260C-168 HR | -40 to 125 | 55332 Q1 |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: Tl defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## TAPE AND REEL INFORMATION


*All dimensions are nominal

| Device | Package <br> Type | Package <br> Drawing | Pins | SPQ | Reel <br> Diameter <br> $(\mathbf{m m})$ | Reel <br> Width <br> $\mathbf{W 1}(\mathbf{m m})$ | A0 <br> $(\mathbf{m m})$ | B0 <br> $(\mathbf{m m})$ | K0 <br> $(\mathbf{m m})$ | P1 <br> $(\mathbf{m m})$ | W <br> $(\mathbf{m m})$ | Pin1 <br> Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TPS55332QPWPRQ1 | HTSSOP | PWP | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.1 | 1.6 | 8.0 | 16.0 | Q1 |


*All dimensions are nominal

| Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TPS55332QPWPRQ1 | HTSSOP | PWP | 20 | 2000 | 350.0 | 350.0 | 43.0 |



NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <http: //www.ti.com>.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
E. Falls within JEDEC MO-153


Top View

Exposed Thermal Pad Dimensions

NOTE: A. All linear dimensions are in millimeters
B. Exposed tie strap features may not be present.

## PowerPAD is a trademark of Texas Instruments



NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com [http://www.ti.com](http://www.ti.com). Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a $50 \%$ volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

