

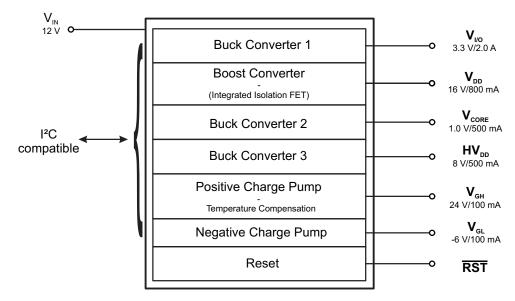
**TPS65168** 

SLVSAE5C - AUGUST 2010 - REVISED NOVEMBER 2014

# High Resolution, Fully Programmable LCD Bias IC for TV

# **1 FEATURES**

- 8.6 to 14.7V Input Voltage Range
- 6-Bit Boost Converter V<sub>DD</sub>: 12.8V to 19V
   3.5A Switch Current Limit
- Integrated Input-to-Output Isolation Switch
- 6-Bit Buck Converter HV<sub>DD</sub>: 6.4V to 9.55V
   0.8A Switch Current Limit
- 3-Bit Buck Converter  $V_{\text{I/O}}$ : 3V to 3.7V
  - 2.8A Switch Current Limit
- 4-Bit Buck Converter V<sub>CORE</sub>: 0.9V to 2.4V
  - 1A Switch Current Limit
- 2 x 4-Bit Positive Charge Pump Controller V<sub>GH</sub>:
  - Low Temperature Voltage: 19V to 34V
  - High Temperature Voltage: 17V to 32V


- Temperature Compensation for V<sub>GH</sub>
- 6-Bit Negative Charge Pump Controller  $V_{GL}$ : -1.8V to -8.1V
- Reset Signal With Programmable Delay Time
- Programmable Delays For Flexible Sequencing (3 x 3 bits)
- Thermal Shutdown
- 40-Pin 5-mm × 5-mm QFN Package

# 2 APPLICATIONS

- LCD TVs
- LCD monitors

# **3 DESCRIPTION**

The TPS65168 provides an economic power supply solution for a wide variety of LCD bias applications. The device provides all supply rails needed by a TFT-LCD panel.  $V_{I/O}$ ,  $V_{CORE}$  and RST for the T-Con.  $V_{DD}$  and  $HV_{DD}$  for the Source Driver and the Gamma Buffer.  $V_{GH}$  and  $V_{GL}$  for the Gate Driver or the Level Shifter. The  $V_{GH}$  voltage can be compensated for low and high adjustable temperatures, if GIP technology is used. The transition from one programmed  $V_{GH}$  value to another is made using an external thermistor connected to the IC. All output rails and delay times are programmable by a Two-Wire interface: a single BOM can cover several panel types and sizes whose desired output levels can be programmed in production and stored in a non-volatile memory embedded into the TPS65168. Both  $V_{CORE}$  and  $HV_{DD}$  are generated by synchronous buck converters which support chip inductors for an optimized solution size. The solution is delivered in a small 5x5 mm QFN package.



## **TPS65168**

SLVSAE5C-AUGUST 2010-REVISED NOVEMBER 2014

TEXAS INSTRUMENTS

www.ti.com



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

## **ORDERING INFORMATION**

| T <sub>A</sub> | ORDERING    | PACKAGE        | PACKAGE MARKING |
|----------------|-------------|----------------|-----------------|
| –40°C to 85°C  | TPS65168RSB | 40-Pin 5x5 QFN | TPS65168        |

# 4 ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) <sup>(1)</sup>

|                                                                                                                        | VA         | LUE         |      |
|------------------------------------------------------------------------------------------------------------------------|------------|-------------|------|
|                                                                                                                        | MIN        | MAX         | UNIT |
| Input voltage range AVIN, PVINB1, PVINB3 <sup>(2)</sup>                                                                | -0.3       | 20          | V    |
| Voltage range on pin CTRLP, FBN, VGH <sup>(2)</sup>                                                                    | -0.3       | 40          | V    |
| Voltage range on pins OUT3, SW, SWB1, SWB3, SWI, SWO <sup>(2)</sup>                                                    | -0.3       | 20          | V    |
| Voltage on pin A0, COMP, CTRLN, EN, OUT1, OUT2, $\overline{\text{RST}}$ , SCL, SDA, SS, SWB2, TCOMP, VL <sup>(2)</sup> | -0.3       | 7           | V    |
| ESD rating HBM (Human Body Model)                                                                                      |            | 2           | kV   |
| ESD rating MM (Machine Model)                                                                                          |            | 200         | V    |
| ESD rating CDM (Charged Device Model)                                                                                  |            | 700         | V    |
| Continuous power dissipation                                                                                           | See the Th | ermal Table |      |
| Operating junction temperature range                                                                                   | -40        | 150         | °C   |
| Storage temperature range                                                                                              | -65        | 150         | °C   |

 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) With respect to the GND pin.

# **5 THERMAL INFORMATION**

|                    |                                              | TPS65168 |       |
|--------------------|----------------------------------------------|----------|-------|
|                    | THERMAL METRIC <sup>(1)</sup>                | RSB      | UNITS |
|                    |                                              | 40 PINS  |       |
| $\theta_{JA}$      | Junction-to-ambient thermal resistance       | 33.9     |       |
| θ <sub>JCtop</sub> | Junction-to-case (top) thermal resistance    | 18.5     |       |
| $\theta_{JB}$      | Junction-to-board thermal resistance         | 15.2     | °C/W  |
| $\Psi_{JT}$        | Junction-to-top characterization parameter   | 0.1      | C/VV  |
| Ψ <sub>JB</sub>    | Junction-to-board characterization parameter | 6.7      |       |
| $\theta_{JCbot}$   | Junction-to-case (bottom) thermal resistance | 1.9      |       |

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.



# 6 RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

|                        |                                                      | MIN  | TYP | MAX  | UNIT |
|------------------------|------------------------------------------------------|------|-----|------|------|
| AV <sub>IN</sub>       | Input voltage range                                  | 8.6  | 12  | 14.7 | V    |
| C <sub>VL</sub>        | Input capacitor on internal regulator input pin VL   |      | 1   |      | μF   |
| BOOST CON              | VERTER                                               |      |     |      |      |
| V <sub>DD</sub>        | Boost output voltage range                           | 12.8 |     | 19   | V    |
| L                      | Boost converter inductor                             | 10   |     | 22   | μH   |
| C <sub>IN_BOOST</sub>  | Input capacitor on boost converter input             | 20   |     |      | μF   |
| C <sub>OUT_BOOST</sub> | Output capacitor on boost converter output           | 30   | 40  |      | μF   |
| BUCK 1 CON             | IVERTER                                              |      |     | ·    |      |
| V <sub>I/O</sub>       | Buck 1 converter output voltage range                | 3.0  |     | 3.7  | V    |
| L1                     | Buck 1 converter inductor                            | 10   |     | 22   | μF   |
| CIN_BUCK1              | Input capacitor on buck 1 converter input pin PVINB1 | 10   |     |      | μF   |
| C <sub>OUT_BUCK1</sub> | Output capacitor on buck 1 converter output          | 30   | 40  |      | μF   |
| BUCK 2 CON             | IVERTER                                              |      |     | ,    |      |
| V <sub>CORE</sub>      | Buck 2 converter output voltage range                | 0.9  |     | 2.4  | V    |
| L2 <sup>(1)</sup>      | Buck 2 converter inductor                            | 1.0  |     | 2.2  | μF   |
| CIN_BUCK2              | Input capacitor on buck 2 converter input pin OUT1   | 1.0  | 4.7 |      | μF   |
| C <sub>OUT_BUCK2</sub> | Output capacitor on buck 2 converter output          | 2.2  | 4.7 | 20   | μF   |
| BUCK 3 CON             | IVERTER                                              |      |     | ,    |      |
| $HV_{DD}$              | Buck 3 converter output voltage range                | 6.4  |     | 9.55 | V    |
| L3 <sup>(1)</sup>      | Buck 3 converter inductor                            | 4.7  | 6.8 | 10   | μH   |
| CIN_BUCK3              | Input capacitor on buck 3 converter input pin PVINB3 |      | 10  |      | μF   |
| C <sub>OUT_BUCK3</sub> | Output capacitor on buck 3 converter output          | 4.7  | 10  | 20   | μF   |
| POSITIVE CH            | IARGE PUMP CONTROLLER                                |      |     | ,    |      |
| V <sub>GH(COLD)</sub>  | Positive charge pump output voltage range            | 19   |     | 34   | V    |
| V <sub>GH(HOT)</sub>   | Positive charge pump output voltage range            | 17   |     | 32   | V    |
| C <sub>FLY_CPP</sub>   | Positive charge pump flying capacitor                |      | 220 |      | nF   |
| $C_{EM\_CPP}$          | Positive charge pump emitter capacitor               |      | 1   |      | μF   |
| C <sub>OUT_CPP</sub>   | Positive charge pump output capacitor                |      | 4.7 |      | μF   |
| NEGATIVE C             | HARGE PUMP CONTROLLER                                |      |     |      |      |
| V <sub>GL</sub>        | Negative charge pump output voltage range            | -1.8 |     | -8.1 | V    |
| C <sub>FLY_CPN</sub>   | Negative charge pump flying capacitor                |      | 470 |      | nF   |
| C <sub>COL_CPN</sub>   | Negative charge pump collector capacitor             |      | 100 |      | nF   |
| C <sub>OUT_CPN</sub>   | Negative charge pump output capacitor                |      | 4.7 |      | μF   |
| TEMPERATU              | IRE                                                  |      |     | Ļ    |      |
| T <sub>A</sub>         | Operating ambient temperature                        | -40  |     | 85   | °C   |
| TJ                     | Operating junction temperature                       | -40  |     | 125  | °C   |

(1) For buck 2 and 3, if possible it is recommended to use shielded wire wounded chip inductors because of their stable performance over temperature, current and frequency, and their good shielding preventing magnetic radiation.

# 7 ELECTRICAL CHARACTERISTICS

 $\begin{array}{l} AV_{\text{IN}} = PV_{\text{INB1}} = PV_{\text{INB3}} = 12V, \ EN = VL, \ V_{\text{DD}} = 16V, \ HV_{\text{DD}} = 8V \ , \ V_{\text{I/O}} = 3.3V, \ V_{\text{CORE}} = 1V, \ V_{\text{GH}(\text{COLD})} = 28V, \ V_{\text{GH}(\text{HOT})} = 26V, \ V_{\text{GL}} = -5V, \ T_{\text{A}} = -40^{\circ}\text{C} \ to \ 85^{\circ}\text{C}, \ typical \ values \ are \ at \ T_{\text{A}} = 25^{\circ}\text{C} \ (unless \ otherwise \ noted) \end{array}$ 

|                        | PARAMETER                                          | TEST CONDITIONS                                                                 | MIN      | TYP   | MAX  | UNIT |
|------------------------|----------------------------------------------------|---------------------------------------------------------------------------------|----------|-------|------|------|
| POWER SUPP             | PLY                                                |                                                                                 |          |       |      |      |
| AV <sub>IN</sub>       | Input voltage range                                |                                                                                 | 8.6      |       | 14.7 | V    |
| I <sub>Q_AVIN</sub>    | Supply quiescent current AVIN                      | Device not switching                                                            |          | 2     |      | mA   |
| I <sub>Q_PVINB1</sub>  | Supply quiescent current PVINB1                    | Device not switching                                                            |          | 0.2   |      | mA   |
| I <sub>Q_PVINB3</sub>  | Supply quiescent current PVINB3                    | Device not switching                                                            |          | 0.6   |      | mA   |
| IQ_OUT1                | Supply quiescent current OUT1                      | Device not switching                                                            |          | 50    |      | μA   |
| I <sub>SD_AVIN</sub>   | Supply shutdown current AVIN                       | EN = GND                                                                        |          | 900   |      | μA   |
| I <sub>SD_PVINB1</sub> | Supply shutdown current PVINB1                     | EN = GND                                                                        |          | 0.01  |      | μA   |
| I <sub>SD_PVINB3</sub> | Supply shutdown current PVINB3                     | EN = GND                                                                        |          | 400   |      | μA   |
| 11/1 0                 |                                                    | AV <sub>IN</sub> rising                                                         | 8.3      | 8.6   | 8.9  | V    |
| UVLO                   | Undervoltage lockout                               | Hysterisis, AV <sub>IN</sub> falling                                            | 0.3      | 0.8   | 1.3  | V    |
| T <sub>SD</sub>        | Thermal shutdown                                   | T <sub>J</sub> rising                                                           |          | 140   |      | °C   |
| T <sub>HYS</sub>       | Thermal shutdown hysteresis                        | T <sub>J</sub> falling                                                          |          | 8     |      | °C   |
| LOGIC SIGNA            | AL A0, EN, SCL, SDA                                |                                                                                 | - #      |       |      |      |
|                        | High level input voltage A0, EN                    |                                                                                 | 1.5      |       |      |      |
| VIH                    | High level input voltage SCL, SDA                  | AV <sub>IN</sub> = 8.6 V to 14.7 V                                              | 1.2      |       |      | V    |
| V <sub>IL</sub>        | Low level input voltage                            | AV <sub>IN</sub> = 8.6 V to 14.7 V                                              |          |       | 0.5  | V    |
| EN_pull_down           | Internal pull-down resistor on EN pin              |                                                                                 |          | 400   |      | kΩ   |
| INTERNAL OS            | SCILLATOR                                          |                                                                                 |          |       |      |      |
| f <sub>OSC</sub>       | Switching frequency of buck 1 and boost converters |                                                                                 | 600      | 750   | 900  | kHz  |
| INTERNAL RE            | EGULATOR                                           |                                                                                 |          |       |      |      |
| VL                     | Internal regulator                                 | $I_{VL}$ = 10 mA, EN = GND                                                      | 4.8      | 5.0   | 5.2  | V    |
| BOOST CON              | /ERTER [V <sub>DD</sub> ]                          |                                                                                 |          |       |      |      |
| V <sub>DD_ACC</sub>    | Output voltage accuracy                            | V <sub>DD</sub> default value                                                   | -2%      | 16    | 2%   | V    |
| r <sub>DS(on)</sub>    | MOSFET on-resistance                               | I <sub>SW</sub> = current limit                                                 |          | 90    | 165  | mΩ   |
| ILIM                   | MOSFET current limit                               |                                                                                 | 3.5      | 4.2   | 5    | А    |
| I <sub>SS</sub>        | Soft-start current                                 | V <sub>SS</sub> = 1.230 V                                                       |          | 10    |      | μA   |
|                        | Line regulation                                    | $AV_{IN} = 8.6$ V to 14.7 V, $I_{OUT} = 700$ mA                                 |          | 0.001 |      | %/V  |
|                        | Load regulation                                    | I <sub>OUT</sub> = 0 A to 1 A                                                   |          | 0.087 |      | %/A  |
| ISOLATION S            | WITCH                                              |                                                                                 | 1        |       |      |      |
| r <sub>DS(on)</sub>    | Isolation MOSFET on-resistance                     | I <sub>SWI</sub> = 1 A                                                          |          | 170   |      | mΩ   |
| I <sub>SC_ISO</sub>    | Short circuit current limit                        | $V_{SWI} = 12 \text{ V}, \text{ V}_{SWO} = 0 \text{ V}$                         |          | 350   |      | mA   |
|                        | VERTER [V <sub>I/O</sub> ]                         |                                                                                 | <u> </u> |       |      |      |
| V <sub>I/O_ACC</sub>   | Output voltage accuracy                            | V <sub>I/O</sub> default value                                                  | -3%      | 3.3   | 3%   | V    |
| r <sub>DS(on)</sub>    | MOSFET on-resistance                               | I <sub>SWB1</sub> = current limit                                               |          | 190   | 370  | mΩ   |
| I <sub>LIM</sub>       | MOSFET current limit                               |                                                                                 | 2.6      | 3.4   | 4.2  | А    |
|                        | Line regulation                                    | $AV_{IN} = PV_{INB1} = 8.6 V \text{ to } 14.7 V,$<br>$I_{I/O} = 200 \text{ mA}$ |          | 0.001 |      | %/V  |
|                        | Load regulation                                    | $I_{I/O} = 200 \text{ mA to } 800 \text{ mA}$                                   |          | 0.076 |      | %/A  |



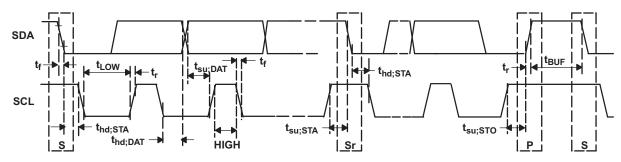
# **ELECTRICAL CHARACTERISTICS (continued)**

 $\begin{array}{l} AV_{\text{IN}} = PV_{\text{INB1}} = PV_{\text{INB3}} = 12V, \ EN = VL, \ V_{\text{DD}} = 16V, \ HV_{\text{DD}} = 8V \ , \ V_{\text{I/O}} = 3.3V, \ V_{\text{CORE}} = 1V, \ V_{\text{GH}(\text{COLD})} = 28V, \ V_{\text{GH}(\text{HOT})} = 26V, \ V_{\text{GL}} = -5V, \ T_{\text{A}} = -40^{\circ}\text{C} \ to \ 85^{\circ}\text{C}, \ typical \ values \ are \ at \ T_{\text{A}} = 25^{\circ}\text{C} \ (unless \ otherwise \ noted) \end{array}$ 

|                          | PARAMETER                                              | TEST CONDITIONS                                                   | MIN   | TYP   | MAX  | UNIT |
|--------------------------|--------------------------------------------------------|-------------------------------------------------------------------|-------|-------|------|------|
| BUCK 2 CONV              | /ERTER [V <sub>CORE</sub> ]                            |                                                                   |       |       |      |      |
| V <sub>CORE_ACC</sub>    | Output voltage accuracy                                | V <sub>CORE</sub> default value                                   | -3%   | 1.0   | 3%   | V    |
| r <sub>DS(on)</sub>      | MOSFET on-resistance                                   | I <sub>SWB2</sub> = current limit                                 |       | 250   | 450  | mΩ   |
| ILIM                     | MOSFET current limit                                   |                                                                   | 1.1   | 1.4   | 1.8  | А    |
| f <sub>SWB2</sub>        | Switching frequency buck 2 converter                   |                                                                   | 0.8   |       | 3.7  | MHz  |
|                          | Line regulation                                        | V <sub>OUT1</sub> = 3.0 V to 3.7 V<br>I <sub>CORE</sub> = 300 mA  |       | 0.004 |      | %/V  |
|                          | Load regulation                                        | $I_{CORE} = 0$ A to 500 mA                                        |       | 0.470 |      | %/A  |
| BUCK 3 CONV              | (ERTER [HV <sub>DD</sub> ]                             |                                                                   |       |       |      |      |
| $HV_{DD\_ACC}$           | Output voltage accuracy                                | HV <sub>DD</sub> default value                                    | -3%   | 8     | 3%   | V    |
| r <sub>DS(on)</sub>      | P-MOSFET on-resistance                                 | I <sub>SWB3</sub> = current limit                                 |       | 320   | 450  | mΩ   |
|                          | MOSFET current limit – source                          |                                                                   | 0.8   | 1.4   | 2    | ٨    |
| I <sub>LIM</sub>         | MOSFET current limit – sink                            |                                                                   | -0.8  | -1.4  | -2   | A    |
| f <sub>SWB3</sub>        | Switching frequency buck 3 converter                   |                                                                   | 0.25  |       | 2    | MHz  |
|                          | Line regulation                                        |                                                                   |       | 0.015 |      | %/V  |
|                          | Load regulation                                        | $I_{OUT} = -500 \text{ mA} \text{ to } 500 \text{ mA}$            |       | 0.006 |      | %/A  |
| POSITIVE CHA             | ARGE PUMP CONTROLLER [V <sub>GH</sub> ]                |                                                                   | ·     |       |      |      |
| $V_{GH(COLD)\_ACC}$      |                                                        | V <sub>GH(COLD)</sub> default value                               | -3.5% | 28    | 3.5% | V    |
| V <sub>GH(HOT)_ACC</sub> | Output voltage accuracy                                | V <sub>GH(HOT)</sub> default value                                | -3.5% | 26    | 3.5% | V    |
| I <sub>CTRLP_SC</sub>    | Base current during short circuit                      | VGH = GND                                                         | 40    |       | 75   | μA   |
| I <sub>CTRLP</sub>       | Base current                                           |                                                                   | 1     |       | 2    | mA   |
|                          | Line regulation                                        | $AV_{\text{IN}}$ = 8.6 V to 14.7 V, $I_{\text{GH}}$ = 50 mA       |       | 0.001 |      | %/V  |
|                          | Load regulation                                        | $I_{GH} = 0 A$ to 100 mA                                          |       | 2.32  |      | %/A  |
| NEGATIVE CH              | IARGE PUMP CONTROLLER [V <sub>GL</sub> ]               |                                                                   |       |       |      |      |
| V <sub>GL</sub>          | Programmable output voltage range negative charge pump |                                                                   | -1.8  |       | -8.1 | V    |
| V <sub>FBN</sub>         | Feedback regulation voltage                            |                                                                   | -4%   | 900   | +4%  | mV   |
| I <sub>FBN</sub>         | Feedback input bias current                            | $V_{FBN} = 0 V$                                                   |       |       | 0.1  | μA   |
| I <sub>CTRLN_SC</sub>    | Base current during short circuit                      | $V_{CTRLN} = 0.6 \text{ V}, V_{FBN} = 20 \text{ mV}$              | 200   |       | 440  | μA   |
| I <sub>CTRLN</sub>       | Base current                                           | $V_{CTRLN} = 0.6 V$                                               | 5     |       |      | mA   |
|                          | Line regulation                                        | ${\rm AV}_{\rm IN}$ = 8.6 V to 14.7 V, ${\rm I}_{\rm GL}$ = 50 mA |       | 0.006 |      | %/V  |
|                          | Load regulation                                        | $I_{GL} = 0 A$ to 100 mA                                          |       | 1.83  |      | %/A  |
| RESET GENER              | RATOR [RST] <sup>(1)</sup>                             |                                                                   |       |       |      |      |
| VRST(ON)                 | Low voltage level                                      | I <sub>/RST(ON)</sub> = 1 mA                                      |       |       | 0.5  | V    |
| ILEAK RST                | Leakage current                                        | $V_{/RST(ON)} = V_{I/O} = 3.3 V$                                  |       |       | 2    | μA   |

(1) External pull-up resistor to be chosen so that the current flowing into /RST Pin when active ( $V_{/RST} = 0 V$ ) is below  $I_{/RST(ON)} = 1 mA$ .

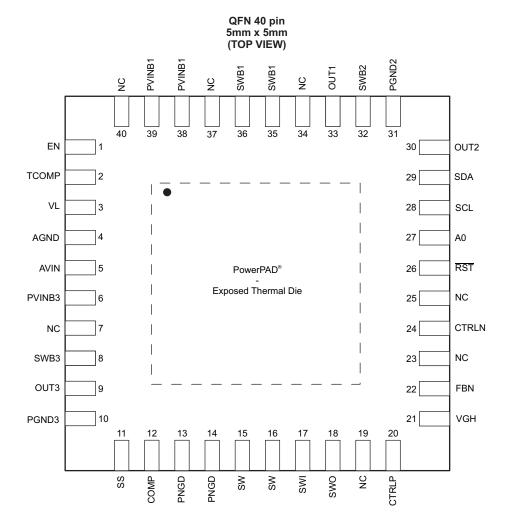
TEXAS INSTRUMENTS


www.ti.com

# 8 I<sup>2</sup>C INTERFACE TIMING CHARACTERISTICS <sup>(2)</sup>

|                              | PARAMETER                                                | TEST CONDITIONS | MIN                    | TYP MAX | UNIT |
|------------------------------|----------------------------------------------------------|-----------------|------------------------|---------|------|
| f <sub>SCL</sub>             | SCL clock frequency                                      | Standard mode   |                        | 100     | kHz  |
|                              |                                                          | Fast mode       |                        | 400     | kHz  |
| t <sub>LOW</sub>             | LOW period of the SCL clock                              | Standard mode   | 4.7                    |         | μs   |
|                              |                                                          | Fast mode       | 1.3                    |         | μs   |
| t <sub>HIGH</sub>            | HIGH period of the SCL clock                             | Standard mode   | 4.0                    |         | μs   |
|                              |                                                          | Fast mode       | 600                    |         | ns   |
| t <sub>BUF</sub>             | Bus free time between a STOP and                         | Standard mode   | 4.7                    |         | μs   |
|                              | START condition                                          | Fast mode       | 1.3                    |         | μs   |
| t <sub>hd;STA</sub>          | Hold time for a repeated START                           | Standard mode   | 4.0                    |         | μs   |
|                              | condition                                                | Fast mode       | 600                    |         | ns   |
| t <sub>su;STA</sub>          | Setup time for a repeated START                          | Standard mode   | 4.7                    |         | μs   |
|                              | condition                                                | Fast mode       | 600                    |         | ns   |
| t <sub>su;DAT</sub> Data set | Data setup time                                          | Standard mode   | 250                    |         | ns   |
|                              |                                                          | Fast mode       | 100                    |         | ns   |
| t <sub>hd;DAT</sub>          | Data hold time                                           | Standard mode   | 0.05                   | 3.45    | μs   |
|                              |                                                          | Fast mode       | 0.05                   | 0.9     | μs   |
| t <sub>RCL1</sub>            | Rise time of SCL signal after a                          | Standard mode   | 20 + 0.1C <sub>B</sub> | 1000    | ns   |
|                              | repeated START condition and after<br>an acknowledge bit | Fast mode       | 20 + 0.1C <sub>B</sub> | 1000    | ns   |
| t <sub>RCL</sub>             | Rise time of SCL signal                                  | Standard mode   | 20 + 0.1C <sub>B</sub> | 1000    | ns   |
|                              |                                                          | Fast mode       | 20 + 0.1C <sub>B</sub> | 300     | ns   |
| t <sub>FCL</sub>             | Fall time of SCL signal                                  | Standard mode   | 20 + 0.1C <sub>B</sub> | 300     | ns   |
|                              |                                                          | Fast mode       | 20 + 0.1C <sub>B</sub> | 300     | ns   |
| t <sub>RDA</sub>             | Rise time of SDA signal                                  | Standard mode   | 20 + 0.1C <sub>B</sub> | 1000    | ns   |
|                              |                                                          | Fast mode       | 20 + 0.1C <sub>B</sub> | 300     | ns   |
| t <sub>FDA</sub>             | Fall time of SDA signal                                  | Standard mode   | 20 + 0.1C <sub>B</sub> | 300     | ns   |
|                              |                                                          | Fast mode       | 20 + 0.1C <sub>B</sub> | 300     | ns   |
| t <sub>su;STO</sub>          | Setup time for STOP condition                            | Standard mode   | 4.0                    |         | μs   |
|                              |                                                          | Fast mode       | 600                    |         | ns   |
| C <sub>B</sub>               | Capacitive load for SDA and SCL                          |                 |                        | 400     | pF   |

(2) Industry standard I<sup>2</sup>C timing characteristics. Not tested in production.


# 8.1 I<sup>2</sup>C TIMING DIAGRAMS







# **9 DEVICE INFORMATION**

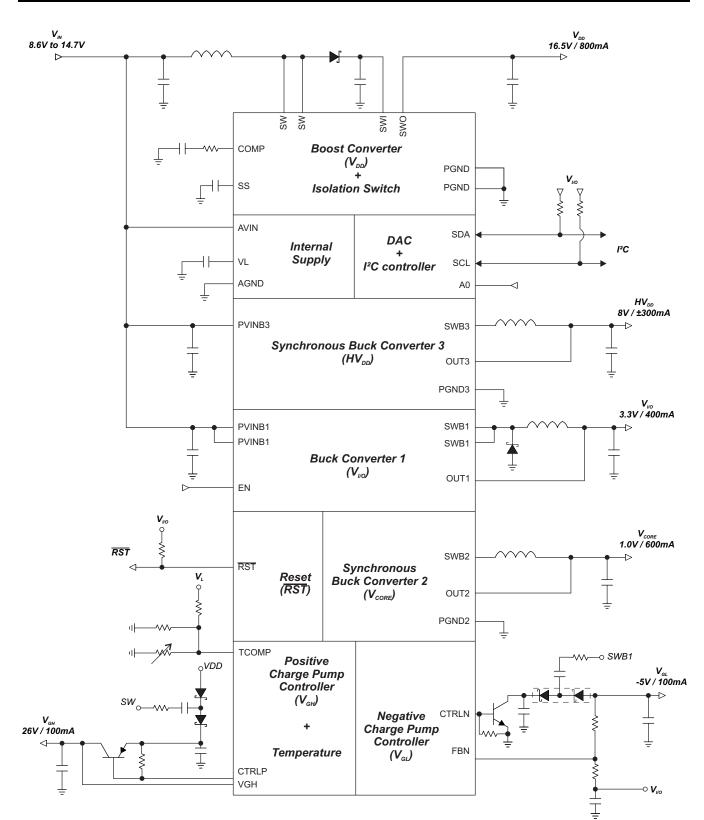


## **PIN FUNCTIONS**

|        | PIN I/O                      |     | DESCRIPTION                                                                                                                                                                                      |
|--------|------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME   | NO.                          | 1/0 | DESCRIPTION                                                                                                                                                                                      |
| EN     | 1                            | I   | Device enable pin. Set this pin high to enable the device. See the sequencing section for more information                                                                                       |
| TCOMP  | 2                            | I   | Temperature compensation input pin. Connect the thermistor / resistors network to this pin                                                                                                       |
| VL     | 3                            | 0   | Internal regulator output pin. Connect an output capacitor of 1 $\mu$ F to this pin                                                                                                              |
| AGND   | 4, exposed pad               |     | Analog ground pin. Connect this pin to the PowerPAD <sup>™</sup><br>The PowerPAD <sup>™</sup> needs to be soldered onto the ground copper plane of the PCB board for proper<br>power dissipation |
| AVIN   | 5                            | I   | Internal regulator supply pin                                                                                                                                                                    |
| PVINB3 | 6                            | I   | Buck 3 converter (HVDD) power input pin                                                                                                                                                          |
| NC     | 7, 19, 23, 25,<br>34, 37, 40 |     | Not connected                                                                                                                                                                                    |
| SWB3   | 8                            | I/O | Buck 3 converter (HV <sub>DD</sub> ) switch pin                                                                                                                                                  |
| OUT3   | 9                            | I   | Buck 3 converter (HV <sub>DD</sub> ) output voltage sense pin                                                                                                                                    |
| PGND3  | 10                           |     | Buck 3 converter (HV <sub>DD</sub> ) power ground pin                                                                                                                                            |
| SS     | 11                           | 0   | Boost converter ( <sub>VDD</sub> ) soft-start pin. Connect a capacitor to this pin if a soft-start is needed. Open = no soft-start                                                               |
| COMP   | 12                           | I/O | Boost converter (V <sub>DD</sub> ) compensation pin                                                                                                                                              |

SLVSAE5C - AUGUST 2010 - REVISED NOVEMBER 2014

**TPS65168** 


Texas Instruments

www.ti.com

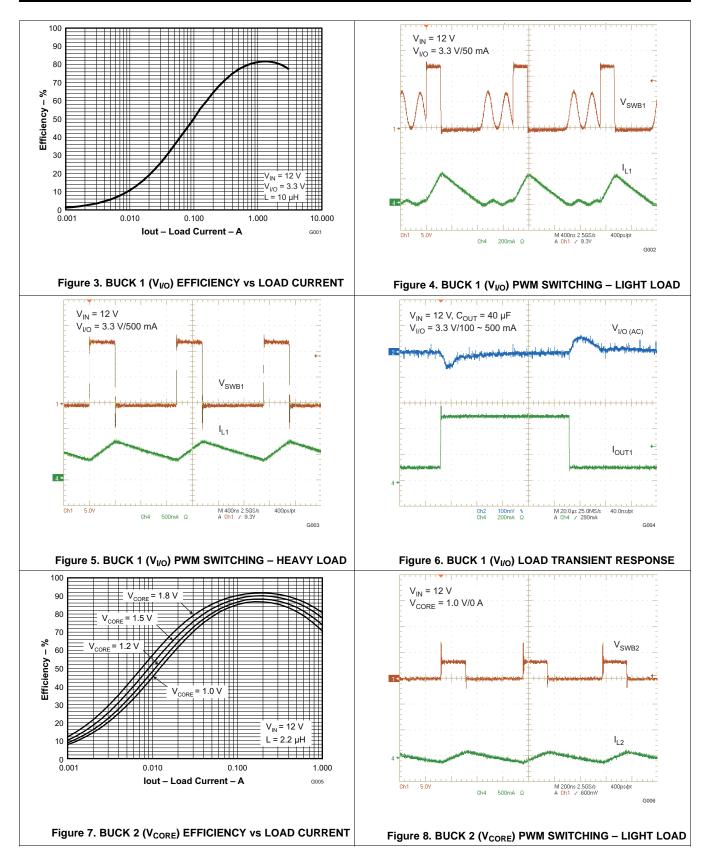
# PIN FUNCTIONS (continued)

| I      | PIN    | 1/0 | DESCRIPTION                                                                                                                   |
|--------|--------|-----|-------------------------------------------------------------------------------------------------------------------------------|
| NAME   | NO.    | 1/0 | DESCRIPTION                                                                                                                   |
| PGND   | 13, 14 |     | Boost converter (V <sub>DD</sub> ) power ground pin                                                                           |
| SW     | 15, 16 | I/O | Boost converter (V <sub>DD</sub> ) switch pin                                                                                 |
| SWI    | 17     | Ι   | Isolation switch input pin. The SWI pin is connected to the internal overvoltage protection comparator of the Boost converter |
| SWO    | 18     | 0   | Isolation switch output pin (V <sub>DD</sub> )                                                                                |
| CTRLP  | 20     | 0   | Positive charge pump (V <sub>GH</sub> ) base drive signal pin                                                                 |
| VGH    | 21     | Ι   | Positive charge pump (V <sub>GH</sub> ) output voltage sense pin                                                              |
| FBN    | 22     | Ι   | Negative charge pump (V <sub>GL</sub> ) feedback pin                                                                          |
| CTRLN  | 24     | 0   | Negative charge pump (V <sub>GL</sub> ) base drive signal pin                                                                 |
| /RST   | 26     | 0   | Reset generator open drain output pin                                                                                         |
| A0     | 27     | Ι   | I <sup>2</sup> C slave address select pin                                                                                     |
| SCL    | 28     | I/O | I <sup>2</sup> C clock pin                                                                                                    |
| SDA    | 29     | I/O | I <sup>2</sup> C data pin                                                                                                     |
| OUT2   | 30     | Ι   | Buck 2 converter (V <sub>CORE</sub> ) output voltage sense pin                                                                |
| PGND2  | 31     |     | Buck 2 converter (V <sub>CORE)</sub> power ground pin                                                                         |
| SWB2   | 32     | I/O | Buck 2 converter (V <sub>CORE</sub> ) switch pin                                                                              |
| OUT1   | 33     | Ι   | Buck 1 converter (V <sub>I/O)</sub> output voltage sense                                                                      |
| SWB1   | 35, 36 | I/O | Buck 1 converter (V <sub>I/O</sub> ) switch pin                                                                               |
| PVINB1 | 38, 39 | Ι   | Buck 1 converter (V <sub>I/O</sub> ) input supply pin                                                                         |



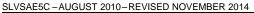


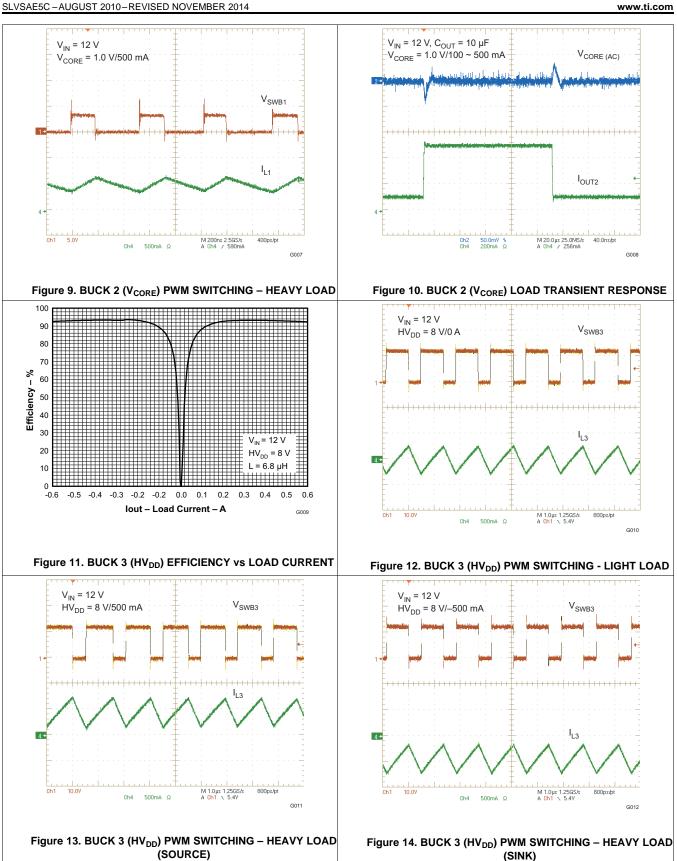


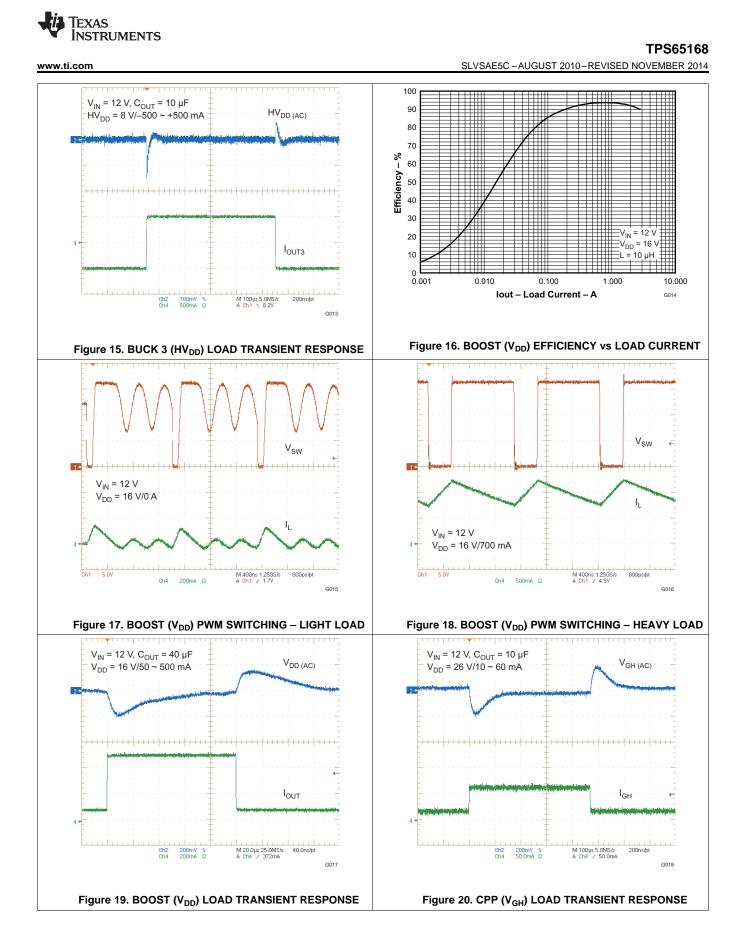

# **10 TYPICAL CHARACTERISTICS**

# Table 1. Table of Graphs

| PARAMETER                                                                            | Conditions                                                                                       | Figure    |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------|
| Buck 1 Converter                                                                     | ·<br>·                                                                                           | 1         |
| Efficiency vs. Load Current                                                          | $V_{IN} = 12 \text{ V}, V_{I/O} = 3.3 \text{ V}$<br>L = 10 µH                                    | Figure 3  |
| PWM Switching – Light Load                                                           | $V_{\text{IN}}$ = 12 V, $V_{\text{I/O}}$ = 3.3 V/50 mA L = 10 $\mu\text{H}$                      | Figure 4  |
| PWM Switching – Heavy Load                                                           | $V_{\rm IN}$ = 12 V, $V_{\rm I/O}$ = 3.3 V/ 500 mA L = 10 $\mu H$                                | Figure 5  |
| Load Transient Response                                                              | $V_{IN}$ = 12 V, $V_{I/O}$ = 3.3 V/100 ~ 500 mA L = 10 $\mu H,  C_{OUT}$ = 40 $\mu F$            | Figure 6  |
| Buck 2 Converter                                                                     |                                                                                                  | 1         |
| Efficiency vs. Load Current                                                          | $V_{\text{IN}}$ = 12 V, $V_{\text{CORE}}$ = 1.0 V, 1.2 V, 1.5 V, 1.8 V L = 2.2 $\mu\text{H}$     | Figure 7  |
| PWM Switching – Light Load                                                           | $V_{\text{IN}}$ = 12 V, $V_{\text{CORE}}$ = 1.0 V/0 A L = 2.2 $\mu\text{H}$                      | Figure 8  |
| PWM Switching – Heavy Load                                                           | $V_{\text{IN}}$ = 12 V, $V_{\text{CORE}}$ = 1.0 V/500 mA L = 2.2 $\mu\text{H}$                   | Figure 9  |
| Load Transient Response                                                              |                                                                                                  | Figure 10 |
| Buck 3 Converter                                                                     |                                                                                                  |           |
| Efficiency vs. Load Current                                                          | $V_{IN} = 12 \text{ V}, \text{HV}_{DD} = 8 \text{ V}$<br>L = 6.8 µH                              | Figure 11 |
| PWM Switching – Light Load                                                           | V <sub>IN</sub> = 12 V, HV <sub>DD</sub> = 8 V/0 A<br>L = 6.8 μH                                 | Figure 12 |
| PWM Switching – Heavy Load (Source)                                                  | $V_{IN} = 12 \text{ V}, \text{HV}_{DD} = 8 \text{ V}/500 \text{ mA}$<br>L = 6.8 µH               | Figure 13 |
| PWM Switching – Heavy Load (Sink)                                                    | $V_{\text{IN}}$ = 12 V, HV_{DD} = 8 V/–500 mA L = 6.8 $\mu\text{H}$                              | Figure 14 |
| Load Transient Response                                                              | $V_{IN}$ = 12 V, HV <sub>DD</sub> = 3.3 V/–500 ~ +500 mA<br>L = 6.8 µH, C <sub>OUT</sub> = 10 µF | Figure 15 |
| Boost Converter                                                                      | -                                                                                                | -         |
| Efficiency vs. Load Current                                                          | $V_{IN} = 12 \text{ V}, V_{DD} = 16 \text{ V}$<br>L = 10 µH                                      | Figure 16 |
| PWM Switching – Light Load                                                           | $V_{IN}$ = 12 V, $V_{DD}$ = 16 V/0 A<br>L = 10 µH                                                | Figure 17 |
| PWM Switching – Heavy Load                                                           | $V_{\text{IN}}$ = 12 V, $V_{\text{DD}}$ = 16 V/ 700 mA L = 10 $\mu\text{H}$                      | Figure 18 |
| Load Transient Response                                                              | $V_{IN}$ = 12 V, $V_{DD}$ = 16 V/ 50 ~ 500 mA<br>L = 10 µH, $C_{OUT}$ = 40 µF                    | Figure 19 |
| Positive Charge Pump                                                                 |                                                                                                  |           |
| Load Transient Response                                                              | $V_{\text{IN}}$ = 12 V, $V_{GH}$ = 28 V/ 10 ~ 60 mA $C_{\text{OUT}}$ = 10 $\mu\text{F}$          | Figure 20 |
| Negative Charge Pump                                                                 |                                                                                                  |           |
| Load Transient Response                                                              | $V_{\text{IN}}$ = 12 V, $V_{GL}$ = –5 V/ 10 ~ 50 mA $C_{OUT}$ = 10 $\mu F$                       | Figure 21 |
| Temperature Compensation                                                             |                                                                                                  | 1         |
| Voltage Adjustment - [-2°C ~ 25°C)                                                   |                                                                                                  | Figure 23 |
| Temperature Adjustment - $[V_{GH(COLD)} = 28 \text{ V}, V_{GH(HOT)} = 22 \text{ V}]$ | T°C Variation1: 2 °C ~ 18 °C<br>T°C Variation: 16 °C ~ 32 °C                                     | Figure 24 |
| Sequencing                                                                           |                                                                                                  |           |
|                                                                                      |                                                                                                  |           |



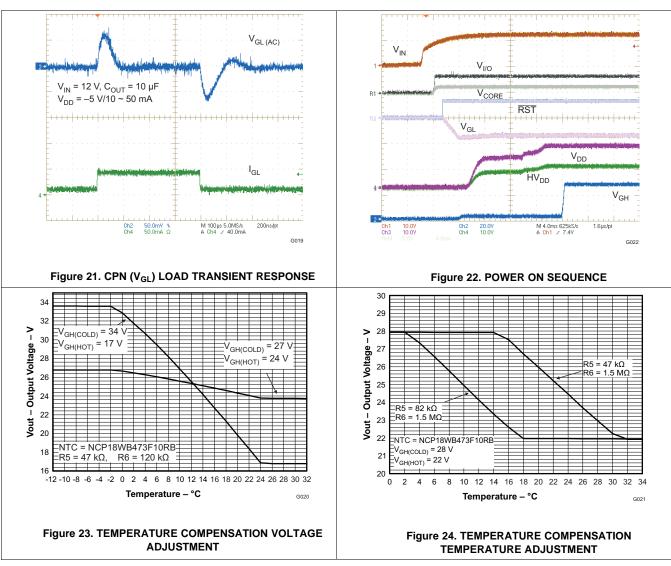






**TPS65168** 










**TPS65168** 

SLVSAE5C - AUGUST 2010 - REVISED NOVEMBER 2014

www.ti.com





# 11 OUTPUT VOLTAGE RANGE SUMMARY

All outputs are programmable using a Two-Wire interface.

# Boost Converter (V<sub>DD</sub>)

Number of bit address: 6 Output voltage range: 12.8V...19V

# Buck 1 Converter (V<sub>I/O</sub>)

Number of bit address: 3 Output voltage range: 3.0V...3.7V

# Buck 2 converter (V<sub>CORE</sub>)

Number of bit address: 4 Output voltage range: 0.9V...2.4V

# Buck 3 converter (HV<sub>DD</sub>)

Number of bit address: 6 Output voltage range: 6.4V...9.55V

# Positive Charge Pump Controller (V<sub>GH(COLD)</sub> – low temperature)

Number of bit address: 4 Output voltage range: 19V...34V

# Positive Charge Pump Controller (V<sub>GH(HOT)</sub> – high temperature)

Number of bit address: 4 Output voltage range: 17V...32V

# Negative Charge Pump (V<sub>GL</sub>)

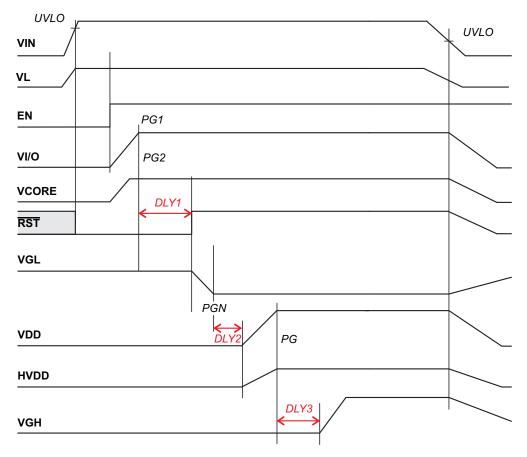
Number of bit address: 6 Output voltage range: -1.8V...-8.1V



# 11.1 SEQUENCING

The power-up sequence delays are programmable with a Two-Wire interface. DLY1, DLY2 and DLY3 can be set per steps of 5 ms, up to 35 ms.

# DLY1, 2, 3


Number of bit address: 3 Timing delay range: 0ms...35ms

# 11.2 POWER-UP

- 1. When  $V_{IN} > 8.6$  V the device is enabled and the  $\overline{RST}$  signal is set 'low', and  $V_L$  goes into regulation.
- 2. When EN = 'high' the buck 1 ( $V_{I/O}$ ) and buck 2 ( $V_{CORE}$ ) converters start up.
- 3. When PG1 and PG2 are reached **and** DLY1 has passed,  $\overline{RST}$  is released and the negative charge pump controller (V<sub>GL</sub>) starts.
- 4. When PGN is reached **and** DLY2 has passed, the boost converter ( $V_{DD}$ ) and the buck 3 converter ( $HV_{DD}$ ) start.
- 5. When PG is reached **and** DLY3 has passed, the positive charge pump controller (V<sub>GH</sub>) starts.

# 11.3 POWER-DOWN

1. When VIN falls down below the UVLO threshold, all blocks are disabled and discharge at a rate driven by the output load and the output capacitors mainly





# 12 DETAILED DESCRIPTION

# 12.1 BOOST CONVERTER (V<sub>DD</sub>)

The non-synchronous boost converter uses a current mode topology and operates at a fixed frequency of 750kHz. A typical application circuit is shown in Figure 27. The external compensation allows designers to optimize the performance for individual applications, and is easily implemented by connecting a suitable capacitor/resistor network between the COMP pin and AGND (see design procedure section for more details).

# 12.1.1 Enable Signal (DLY2)

The boost converter is enabled when the power good signal from the negative charge pump controller ( $V_{GL}$ ) is asserted and the programmed DLY2 has passed (see the *Appendix* section to set DLY2 timing).

# 12.1.2 Startup (Boost Converter)

The startup of the boost converter block operates in two steps:

# 1. Input-to-output isolation switch (Iso)

As soon as the internal enable signal of the boost converter is activated, the isolation switch is slowly turned on, ramping up smoothly the current flowing from  $V_{IN}$  into the output capacitors. The startup current is limited to 350 mA typically, increasing as the output voltage is getting higher. Once  $V_{SWI} - V_{SWO} \le 1.2$  V, the isolation switch is fully turned on and the boost converter starts switching. The soft-start function is also enabled.

# 2. Soft-start (SS)

To minimize the inrush current during start-up an external capacitor connected to the soft-start pin SS is used to slowly ramp up the internal current limit of the boost converter. It is charged with a constant current of typically 10  $\mu$ A. The inductor peak current limit is proportional to the SS voltage and the maximum load current is available after the soft-start is completed (V<sub>SS</sub> = 0.8 V) or V<sub>DD</sub> has reached its Power Good value (90% of its nominal voltage). The larger the SS capacitor, the slower the ramp of the current limit and the longer the soft-start time. A 100-nF capacitor is usually sufficient for most of the applications. When the EN pin is pulled low or the undervoltage lockout of the boost converter is reached, the soft-start capacitor is discharged to ground.

# 12.1.3 Protections (Boost Converter)

The boost converter is protected against potentially damaging conditions such as overvoltage and short circuits.

## 1. Short-Circuit Protection

The boost converter integrates a short-circuit protection circuit to prevent the inductor or the rectifier diode from overheating when the output rail is shorted to GND. If the boost output is shorted to GND and the voltage difference between SWI and SWO exceeds the threshold voltage of 1.2 V typically, the boost converter shuts down and the input-to-output isolation switch limits the current to 350 mA typically.

## 2. Overvoltage Protection

The boost converter integrates an overvoltage protection. If the output voltage  $V_{DD}$  exceeds the OVP threshold of 19.5 V typically, the boost converter stops switching. The output voltage will drop below the hysteresis and the boost converter will autonomously recover and switch again.

# NOTE

Since the positive charge pump is driven from the boost converter's switch node as well as its output, an error condition on the boost converter's output will also cause the loss of  $V_{GH}$  until the circuit recovers.

The boost converter also stops switching while the positive charge pump is in a short circuit condition. This condition is not latched and the boost converter autonomously resumes normal operation once the short circuit condition has been removed from the positive charge pump.



# **BOOST CONVERTER (V<sub>DD</sub>) (continued)**

# 12.1.4 Setting the Output Voltage V<sub>DD</sub>

The output voltage of the boost converter is programmable via a Two-Wire interface between 12.8 V and 19 V with a 6-bit resolution. See the *Appendix* section to set the  $V_{DD}$  voltage.

# **12.2 Boost Converter Design Procedure**

The first step in the design procedure is to verify whether the maximum possible output current of the boost converter supports the specific application requirements. A simple approach is to estimate the converter efficiency, by taking the efficiency number from the provided efficiency curves at the application's maximum load or to use a worst case assumption for the expected efficiency, e.g., 85%.

1. Duty Cycle: D = 1 - 
$$\frac{V_{IN\_min} \times \eta}{V_S}$$

2. Inductor ripple current: 
$$\Delta I_L = \frac{V_{IN} - min \times D}{f_{OSC} \times L}$$

3. Maximum output current: 
$$I_{OUT_max} = \left(I_{LIM_min} - \frac{\Delta I_L}{2}\right) \times (1 - D)$$

4. Peak switch current of the application:  $I_{SWPEAK} = \frac{I_{OUT}}{1 - D} + \frac{\Delta I_{L}}{2}$ 

 $\eta$  = Estimated boost converter efficiency (use the number from the efficiency plots or 85% as an estimation)  $f_{OSC}$  = Boost converter switching frequency (750 kHz)

L = Selected inductor value for the boost converter (see the Inductor Selection section)

 $I_{SWPEAK}$  = Boost converter switch current at the desired output current (must be <  $I_{LIM min}$  = 3.5 A)

 $\Delta I_{L}$  = Inductor peak-to-peak ripple current

The peak switch current is the current that the integrated switch, the inductor and the external Schottky diode have to be able to handle. The calculation must be done for the minimum input voltage where the peak switch current is highest.

# 12.2.1 Inductor Selection (Boost Converter)

*Saturation current:* the inductor must handle the maximum peak current ( $I_{L_SAT} > I_{SWPEAK}$ , or  $I_{L_SAT} > I_{LIM_max}$  as conservative approach)

DC Resistance: the lower the DCR, the lower the losses

*Inductor value:* with a fixed frequency of 750 kHz, the recommended values are 10  $\mu$ H  $\leq$  L  $\leq$  22  $\mu$ H. The boost converter is optimized to work with 10  $\mu$ H. The higher the inductor value, the lower the inductor ripple and output voltage ripple but the slower the transient response.

| L<br>(µH) | SUPPLIER | COMPONENT CODE | SIZE<br>(L x W x H mm) | DCR TYP<br>(mΩ) | I <sub>SAT</sub><br>(A) |
|-----------|----------|----------------|------------------------|-----------------|-------------------------|
| 10        | Sumida   | CDRH8D43       | 8.3 x 8.3 x 4.5        | 29              | 4                       |
| 10        | Murata   | LQH6PPN100M43K | 6.0 x 6.0 x 4.3        | 53              | 2.6                     |
| 22        | Sumida   | CD105NP-100M   | 10.4 x 9.4 x 5.8       | 60              | 2.6                     |
| 22        | Sumida   | CDRH129-220M   | 12.5 x 12.5 x 10       | 23              | 5                       |

Table 2. Inductor Selection Boost / Buck 1

# 12.2.2 Rectifier Diode Selection (Boost Converter)

Diode type: Schottky type for better efficiency

*Reverse voltage:* V<sub>R</sub> of the diode must block V<sub>OVP</sub> voltage (20 V recommended)

*Forward current:* the diode's averaged rectified forward current  $I_F$  must handle the output current since  $I_F = I_{OUT}$  (2A recommended as conservative approach, 1A sufficient for lower output current).

*Thermal characteristics:* the diode must be chosen so that it can dissipate the power ( $P_D = I_F \times V_F$ , 500 mW should be sufficient for most of the applications)

| PART NUMBER | V <sub>R</sub> / I <sub>AVG</sub> | V <sub>F</sub> | R <sub>θJA</sub> | SIZE | COMPONENT SUPPLIER      |
|-------------|-----------------------------------|----------------|------------------|------|-------------------------|
| MBRS320     | 20V / 3A                          | 0.44V at 3A    | 46°C/W           | SMC  | International Rectifier |
| SL22        | 20V / 2A                          | 0.44V at 2A    | 75°C/W           | SMB  | Vishay Semiconductor    |
| SS22        | 20V / 2A                          | 0.50V at 2A    | 75°C/W           | SMB  | Fairchild Semiconductor |

# 12.2.3 Compensation (COMP)

The regulation loop can be compensated by adjusting the external components connected to the COMP pin. The COMP pin is the output of the internal transconductance error amplifier. The compensation capacitor will adjust the low frequency gain and the resistor value will adjust the high frequency gain. Lower output voltages require a higher gain and therefore a lower compensation capacitor value. A good start, that will work for the majority of the applications is  $R_{COMP} = 33 \text{ k}\Omega$  and  $C_{COMP} = 1 \text{ nF}$ .

# 12.2.4 Input Capacitor Selection

For good input voltage filtering low ESR ceramic capacitors are recommended. TPS65168 has an analog input AVIN. A 1-µF bypass is required as close as possible from AVIN to GND.

Two 10- $\mu$ F (or one 22- $\mu$ F) ceramic input capacitor is sufficient for most of the applications. For better input voltage filtering this value can be increased. Refer to the *Recommended Operation Conditions* table, Table 4 and the *Typical Application* section for input capacitor recommendations.

# 12.2.5 Output Capacitor Selection

10µF/1206

22µF/1210

For best output voltage filtering a low ESR output capacitor is recommended. Typically, four  $10-\mu$ F (or two  $22-\mu$ F) ceramic output capacitors work for most of the applications. Higher capacitor values can be used to improve the load transient response. A 10  $\mu$ F capacitor is also required between the rectifier diode and the SWI pin (Refer to the Recommended Operation Conditions table, Table 4 and the Typical Application section for output capacitor recommendations).

|           | Table 4. Input and | a output oupdettor ociet | Cion Boost / Buck I |                 |
|-----------|--------------------|--------------------------|---------------------|-----------------|
| CAPACITOR | VOLTAGE RATING     | COMPONENT SUPPLIER       | COMPONENT CODE      | COMMENTS        |
| 1µF/0603  | 16V                | Taiyo Yuden              | EMK107BJ105KA       | AVIN bypass     |
| 10µF/1206 | 16V                | Taiyo Yuden              | EMK212BJ106KG       | C <sub>IN</sub> |

Taiyo Yuden

Murata

TMK316BJ106KL

GRM32ER61E226KE15

| Table 4. Input and | I Output Capacitor | Selection Boost / Buck 1 |
|--------------------|--------------------|--------------------------|
|--------------------|--------------------|--------------------------|

To calculate the output voltage ripple, the following equations can be used:

25V

25V

$$\Delta V_{\rm C} = \frac{V_{\rm DD} - V_{\rm IN}}{V_{\rm DD} \times f_{\rm OSC}} \times \frac{I_{\rm OUT}}{C_{\rm OUT}} \qquad \Delta V_{\rm C\_ESR} = I_{\rm SWPEAK} \times R_{\rm C\_ESR}$$

 $\Delta V_{C ESR}$  can be neglected in many cases since ceramic capacitors provide very low ESR.

COUT

CIN / COUT

(1)



# 12.3 BUCK 1 CONVERTER (V<sub>I/O</sub>)

The buck 1 converter (step-down) used in TPS65168 is a non-synchronous type that runs at a fixed frequency of 750kHz. The converter features integrated soft-start, bootstrap, and compensation circuits to minimize external component count.

# 12.3.1 Enable Signal (UVLO – EN)

The buck 1 converter is enabled when the VIN voltage exceeds the UVLO threshold of 8.3 V typically and if the EN pin is pulled 'high'. If EN is pulled 'low', the entire IC shuts down.

# 12.3.2 Buck 1 Converter Operation

The buck 1 converter can operate in either continuous conduction mode (CCM) or discontinuous conduction mode (DCM), depending on the load current. At medium and high load currents, the inductor current is always greater than zero and the converter operates in CCM; at low load currents, the inductor current is zero during part of each switching cycle, and the converter operates in DCM. The switch node waveforms for CCM and DCM operation are shown in Figure 4 and Figure 5. Note that the ringing seen during DCM operation (at light load) occurs because of parasitic capacitance in the PCB layout and is normal for DCM operation. However, there is very little energy contained in the ringing waveform and it does not significantly affect EMI performance. Equation 2 can be used to calculate the load current below which the buck converter operates in DCM.

$$I_{DCM} = \frac{(V_{IN} - V_{LOGIC})}{2 \times L \times f_{SW}} \times \frac{V_{LOGIC}}{V_{IN}}$$
(2)

The buck 1 converter uses a *skip* mode to regulate  $V_{I/O}$  at very low load currents. This mode allows the converter to maintain its output at the required voltage while still meeting the requirement of a *minimum on time*. During skip mode, the buck 1 converter switches for a few cycles, then stops switching for a few cycles, and then starts switching again and so on, for as long as the output current is below the skip mode threshold. Output voltage ripple can be a little higher during skip mode.

# 12.3.3 Startup and Short Circuit Protection (Buck 1 Converter)

The buck 1 converter is limiting its switching frequency when its output voltage  $V_{I/O}$  is below a certain threshold ( $f_{SWB1} = 1/4 \times \text{fosc}$  for  $V_{FB\_internal} < 400 \text{mV}$  and  $f_{SWB1} = \frac{1}{2} \times \text{fosc}$  for  $V_{FB\_internal} < 800 \text{mV}$ ). This feature avoids run away of the inductor in case of short circuit and helps smoothing the buck converter startup as well.

# 12.3.4 Setting the Output Voltage V<sub>I/O</sub>

The output voltage of the buck 1 converter is programmable via a Two-Wire interface between 3.0 V and 3.7 V with a 3-bit resolution. See the *Appendix* section to set the  $V_{I/O}$  voltage.

# 12.4 Buck 1 Converter Design Procedure

1. Duty Cycle:D = 
$$\frac{V_{VO}}{V_{IN} \times \eta}$$

$$= \frac{(V_{IN}_{max} - V_{I/O}) \times D}{(V_{IN}_{max} - V_{I/O})}$$

2. Inductor ripple current: 
$$\Delta L = \frac{f_{OSC} \times L}{f_{OSC} \times L}$$

3. Maximum output current: 
$$I_{VO_max} = I_{LIM_min} - \frac{\Delta I_L}{2}$$

4. Peak switch current: 
$$I_{SWPEAK} = I_{I/O_{max}} + \frac{\Delta I_{L}}{2}$$

 $\eta$  = Estimated buck 1 converter efficiency (use the number from the efficiency plots or 85% as an estimation)  $f_{OSC}$  = Buck 1 converter switching frequency (750 kHz)

L = Selected inductor value for the boost converter (see the Inductor Selection section)

 $I_{SWPEAK}$  = Buck 1 converter switch current (must be <  $I_{LIM_{min}}$  = 2.6 A)

 $\Delta I_L$  = Inductor peak-to-peak ripple current



# **Buck 1 Converter Design Procedure (continued)**

Because the negative charge pump is driven from the buck 1 converter's switch node, ant the buck 2 converter is driven by the output rail of the buck 1 converter, the effective output current for design purposes is greater than II/O alone. For best performance, the effective current calculated using the following equation should be used during the design.

$$I_{VO(EFFECTIVE)} = I_{I/O} + \frac{|V_{GL}| \times I_{GL}}{V_{VO}} + I_{IN\_CORE}$$

(3)

# 12.4.1 Inductor Selection (Buck 1 Converter)

Refer to the boost converter Inductor Selection.

*Inductor value:* as for the boost converter, the buck 1 converter is designed to work with an inductor range as  $10 \ \mu\text{H} \le L \le 22 \ \mu\text{H}$ . The buck 1 converter is optimized to work with 10  $\mu\text{H}$ .

# 12.4.2 Rectifier Diode Selection (Buck 1 Converter)

Refer to the boost converter rectifier Diode Rectifier Selection.

## 12.4.3 Input Capacitor Selection (Buck 1 Converter)

Two  $10-\mu$ F (or one  $22-\mu$ F) ceramic input capacitor is sufficient for most of the applications. For better input voltage filtering this value can be increased. Refer to the *Recommended Operation Conditions* table, Table 4 and the *Typical Application* section for input capacitor recommendations.

# 12.4.4 Output Capacitor Selection (Buck 1 Converter)

For best output voltage filtering a low ESR output capacitor is recommended. Typically, four  $10-\mu$ F (or two  $22-\mu$ F) ceramic output capacitors work for most of the applications. Higher capacitor values can be used to improve the load transient response. Refer to the *Recommended Operation Conditions* table, Table 4 and the *Typical Application* section for input capacitor recommendations.



# 12.5 BUCK 2 CONVERTER (V<sub>CORE</sub>)

The TPS65168 integrates a synchronous buck 2 (step-down) converter that includes a unique hysteric PWM controller scheme which enables switch frequencies over 3MHz, excellent transient and ac load regulation as well as operation with tiny and cost competitive external components like chip inductors. The TPS65168's buck 2 converter offers adjustable output voltage down to 0.9 V, ideal to support the most recent timing controllers. The internal switch current limit of 1.1 A minimum supports output currents of up to 1 A.

# 12.5.1 Enable Signal (UVLO – EN)

The buck 2 converter is enabled together with the buck 1 converter when the VIN voltage exceeds the UVLO threshold of 8.3 V typically and if the EN pin is pulled 'high'. If EN is pulled 'low', the entire IC shuts down.

# 12.5.2 Buck 2 Converter Operation

The converter operates in a hysteretic mode. The high side transistor (PMOS) remains turned on until a minimum on time of  $t_{ON\mbox{min}}$  expires and the output voltage trips the threshold of the error comparator or the inductor current reaches the high side switch current limit. Once the high side switch turns off, the low side switch rectifier is turned on and the inductor current ramps down. As the output voltage falls below the threshold of the error comparator, a switch pulse is initiated and the high side switch is turned on again. If the inductor current falls down to zero, will continue operating with  $t_{ON\mbox{min}}$  and  $t_{OFF\mbox{min}}$  in order to maintain the proper output voltage.

# 12.5.3 Startup and Short Circuit Protection (Buck 2 Converter)

The buck 2 converter tracks the buck 1 converter output voltage during startup until it has reached its programmed value. In the event of a short circuit, the converter will operate with maximum duty cycle and the ouput current will be limited by the internal current limit.

# 12.5.4 Setting the Output Voltage V<sub>CORE</sub>

The output voltage of the buck 2 converter is programmable via a Two-Wire interface between 0.9 V and 2.4 V with a 4-bit resolution. See the *Appendix* section to set the  $V_{CORE}$  voltage.

# 12.6 Buck 2 Converter Design Procedure

1. Duty Cycle: D = 
$$\frac{V_{CORE}}{V_{I/O} \times \eta}$$

2. Inductor ripple current: 
$$\Delta I_L = \frac{V_{I/O} - V_{CORE}}{L} \times t_{ON} = \frac{V_{I/O} - V_{CORE}}{L \times f} \times D$$

3. Maximum output current: 
$$I_{CORE_max} = I_{LIM_min} - \frac{\Delta I_L}{2}$$

4. Peak switch current:  $I_{SWPEAK} = I_{CORE_{max}} + \frac{\Delta I_{L}}{2}$ 

 $\eta$  = Estimated buck 2 converter efficiency (use the number from the efficiency plots or 80% as an estimation)

f = Buck 2 converter switching frequency (use the frequency from the frequency plots)

L = Selected inductor value for the buck 2 converter (see the Inductor Selection section)

 $I_{SWPEAK}$  = Buck 2 converter switch current (must be <  $I_{LIM_{min}}$  = 1.1 A)

 $\Delta I_L$  = Inductor peak-to-peak ripple current

The peak switch current is the steady state current that the integrated switches and the inductor have to be able to handle.

# 12.6.1 Inductor Selection (Buck 2 Converter)

Refer to the boost converter inductor selection.

*Inductor value:* the buck 2 converter is designed to work with small inductors in the following range:  $1.0 \ \mu\text{H} \le L \le 2.2 \ \mu\text{H}$ . The buck 2 converter is optimized to work with 2.2  $\mu\text{H}$ .

# Buck 2 Converter Design Procedure (continued)

| L<br>(µH) | SUPPLIER | COMPONENT CODE | SIZE<br>(LxWxH mm) | DCR TYP<br>(mΩ) | I <sub>SAT</sub><br>(A) |
|-----------|----------|----------------|--------------------|-----------------|-------------------------|
| 2.2       | Murata   | LQM21PN2R2     | 2 x 1.2 x 0.55     | 340             | 0.6                     |
| 2.2       | FDK      | MPSZ2012D2R2   | 2 x 1.2 x 1        | 230             | 0.7                     |
| 1.0       | FDK      | MIPSZ2012D1R0  | 2 x 1.2 x 1        | 90              | 1.1                     |
| 2.2       | Murata   | LQM2HPN2R2MG0  | 2.5 x 2 x 1        | 80              | 1.3                     |
| 1.0       | Murata   | LQM2HPN1R0MG0  | 2.5 x 2 x 1        | 90              | 1.5                     |

# Table 5. Inductor Selection Buck (Chip Inductors)

# 12.6.2 Input Capacitor Selection

Because of the nature of the buck 2 converter having a pulsating input current, a low ESR input capacitor is required for best input voltage filtering and minimizing the interference with other circuits caused by high input voltage spikes. For most applications a minimum of 1  $\mu$ F ceramic capacitor is recommended. The input capacitor connected as close as possible to the IC on OUT1 pin can be increased without any limit for better input voltage filtering. Refer to Table 6 for the selection of the filtering capacitors.

# 12.6.3 Output Capacitor Selection

The unique hysteric PWM control scheme of the TPS65168's buck 2 converter allows the use of tiny ceramic capacitors. Ceramic capacitors with low ESR values have the lowest output voltage ripple and are recommended. Refer to Table 6 for the selection of the output capacitors.

|            | -              |                    |                 |                  |
|------------|----------------|--------------------|-----------------|------------------|
| CAPACITOR  | VOLTAGE RATING | COMPONENT SUPPLIER | COMPONENT CODE  | COMMENTS         |
| 1µF/0603   | 16V            | Taiyo Yuden        | EMK107 BJ 105KA | C <sub>IN</sub>  |
| 4.7µF/0603 | 10V            | Taiyo Yuden        | LMK107 BJ 475KA | C <sub>IN</sub>  |
| 4.7µF/0603 | 6.3V           | Taiyo Yuden        | JMK107 BJ 475_A | C <sub>OUT</sub> |

## Table 6. Input and Output Capacitor Selection Buck 2

Note: If the Buck 2 is not used, OUT2 (pin 30) must be connected to OUT1 (pin 33) for proper startup.



# 12.7 BUCK 3 CONVERTER (HV<sub>DD</sub>)

The TPS65168 integrates also a synchronous buck 3 (step-down) converter that includes a unique hysteric PWM able to sink and source current up to 500 mA. As the buck 2 converter, the buck 3 operates in a hysteretic mode.

A significant advantage of TPS65168's buck 3 converter compared to other hysteretic PWM controller topologies is its excellent AC load regulation capability providing superior transient response, ideal for output current loads switching from +500 mA to -500 mA in worst case LCD patterns.

# 12.7.1 Enable Signal (DLY2)

The buck 3 converter is enabled together with the boost converter when the power good of the negative charge pump (VGL) is asserted and that the DLY2 has passed. See the *Appendix* section to set the DLY2 timing.

# 12.7.2 Startup and Short Circuit Protection (Buck 3 Converter)

The buck 3 converter output voltage tracks the boost converter output voltage ratio metric pace value during startup. To prevent Source Driver damages, the TPS65168 implements a protection feature that disables both the boost ( $V_{DD}$ ) and the buck 3 ( $HV_{DD}$ ) converters when short-circuits or over voltages occur on one of the two converters. The converters will autonomously recover after the failure gone.

# 12.7.3 Setting the output voltage HVDD

The output voltage of the buck 3 converter is programmable via a Two-Wire interface between 6.4 V and 9.55 V with a 6-bit resolution. See the *Appendix* section to set the  $HV_{DD}$  voltage.

# 12.8 Buck 3 Converter Design Procedure

1. Duty Cycle: D =  $\frac{HV_{DD}}{V_{IN} \times \eta}$ 

2. Inductor ripple current: 
$$\Delta I_L = \frac{3.2 \times 10^{-6}}{L}$$

3. Maximum output current: 
$$I_{HVDD_max} = I_{LIM_min} - \frac{\Delta I_L}{2}$$

4. Peak switch current:  $I_{SWPEAK} = I_{HVDD_max} + \frac{\Delta I_L}{2}$ 

 $\eta$  = Estimated buck 3 converter efficiency (use the number from the efficiency plots or 80% as an estimation) *f* = Buck 3 converter switching frequency (use the frequency from the frequency plots)

L = Selected inductor value for the buck 3 converter (in  $\mu$ H – for value see the *Inductor Selection* section)

 $I_{SWPEAK}$  = Buck 3 converter switch current (must be <  $I_{LIM_{min}}$  = 0.8 A)

 $\Delta I_L$  = Inductor peak-to-peak ripple current

The peak switch current is the steady state current that the integrated switches and the inductor have to be able to handle.

# 12.8.1 Inductor Selection (Buck 3 Converter)

Refer to the boost converter *Inductor Selection* section, for more details.

*Inductor value:* the buck 3 converter is designed to work with small inductors in the following range:  $4.7\mu$ H  $\leq$  L  $\leq$  10  $\mu$ H. The buck 3 converter is optimized to work with 6.8  $\mu$ H.

# NOTE

chip inductors (such as wounded type) work well with the converter providing a small solution size together with low magnetic radiations (because well shielded) and do not dissipate as much energy (do not get hot)as ferrite wire wounded types.

# Buck 3 Converter Design Procedure (continued)

| L<br>(μH)    | SUPPLIER    | COMPONENT CODE  | SIZE<br>(LxWxH mm) | DCR TYP<br>(mΩ) | I <sub>SAT</sub><br>(A) |
|--------------|-------------|-----------------|--------------------|-----------------|-------------------------|
| 4.7, 6.8, 10 | Taiyo Yuden | CBC2518T series | 2.5 x 1.8 x 1.8    | 260 ~ 460       | 480 ~ 680               |
| 4.7, 6.8, 10 | Taiyo Yuden | CBC3225T series | 3.2 x 2.5 x 2.5    | 100 ~ 133       | 900 ~ 1250              |

## Table 7. Inductor Selection Buck 3 (Chip Inductors)

# For wire wounded inductors other than chip style, it is important to follow the layout recommendations in the section PCB Layout Recommendations to minimize frequency variations.

## 12.8.2 Input Capacitor Selection

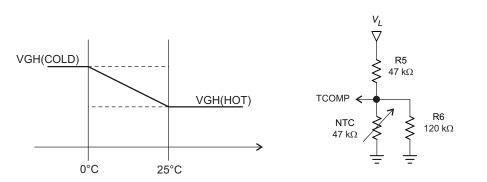
Typically, one 10-µF ceramic capacitor on PVINB3 pin is recommended. For better input voltage filtering this value can be increased. Refer to the *Recommended Operation Conditions* table, Table 4 and the *Typical Application* section for input capacitor recommendations.

## 12.8.3 Output Capacitor Selection

Typically, one 10-µF ceramic output capacitor works for most of the applications. Refer to the *Recommended Operation Conditions* table, Table 4 and the *Typical Application* section for output capacitor recommendations.

# 12.9 POSITIVE CHARGE PUMP CONTROLLER (V<sub>GH</sub>) and TEMPERATURE COMPENSATION

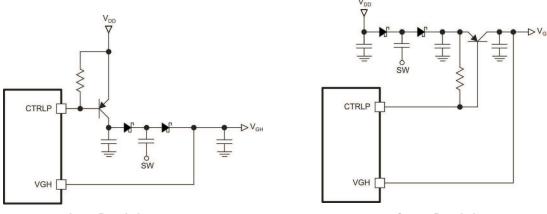
The positive charge pump is driven directly from the boost converter's switch node and regulated by controlling the current through an external PNP transistor. The TPS65168 also includes a temperature compensation feature that controls the output voltage depending on the temperature sense by an external Negative Thermistor (NTC).


## 12.9.1 Enable Signal (DLY3)

The positive charge pump controller is enabled when the boost and buck 3 converters' power good signals are asserted and that the DLY3 has passed. See the *Appendix* section to set the DLY3 timing.

## 12.9.2 Temperature Compensation

By connecting a fixed-value thermistor between [TCOMP and GND] and a fixed-value pull-up resistor between [VL and TCOMP], the V<sub>GH</sub> voltage will vary from given V<sub>GH(COLD)</sub> voltage at a temperatures  $\leq 0^{\circ}$ C to a lower voltage defined by V<sub>GH(HOT)</sub> for temperatures greater than 25°C (and reversely). The user has to provide V<sub>GH(COLD)</sub> and V<sub>GH(HOT)</sub> and the temperatures can be adjusted using the external resistors.


# **NOTE** The internal temperature compensation system is made to work only with 47 k $\Omega$ NTC part number **NCP18WB473F10RB** (see Table 10 in *Appendix* section).



# POSITIVE CHARGE PUMP CONTROLLER ( $V_{GH}$ ) and TEMPERATURE COMPENSATION (continued)

# 12.9.3 Positive Charge Pump Controller Operation

During normal operation, the TPS65168 is able to provide up to 1.5 mA of base current typically and is designed to work best with transistors whose DC gain (hFE) is between 100 and 300. The charge pump is protected against short-circuits on its output, which are detected when the voltage on the charge pump's internal feedback is below 100 mV. During short-circuit mode, the base current available from the CTRLP pin is limited to 60  $\mu$ A typically. Note that if a short-circuit is detected during normal operation, boost converter and buck 3 switching is also halted until the internal feedback voltage is above 100 mV. Typical application circuits are shown in Figure 25.



Input Regulation

**Output Regulation** 

Figure 25. Positive Charge Pump Application Circuits

# 12.9.4 Setting the output voltage V<sub>GH(COLD)</sub> and V<sub>GH(HOT)</sub>

The output voltage of the positive charge pump is programmable via a Two-Wire interface between 19 V and 34 V with a 4-bit resolution for  $V_{GH(COLD)}$ , and between 17 V and 32 V with a 4-bit resolution for  $V_{GH(HOT)}$ . See the *Appendix* section to set the  $V_{GH(COLD)}$  and  $V_{GH(HOT)}$  voltage.

## NOTE

In the case where  $V_{GH(COLD)} \le V_{GH(HOT)}$ , whatever the temperature is, the output voltage will be  $V_{GH(HOT)}$ .

# 12.10 Positive Charge Pump Design Procedure

The regulation of the positive charge pump (CPP) can be done either on the input (transistor placed between VDD and the diode) or on the output. For better regulation and fewer interaction between the boost converter and the CPP controller, it is recommended to place the transistor on the output. However, during the boost converter's startup some high current spikes might appears on the flying capacitor until the  $V_{DD}$  voltage is doubled (if CPP configured in doubler mode) – time needed to charge up all the output capacitors.

# 12.10.1 Diodes selection (CPP)

Small-signal diodes can be used for most low current applications (<50mA) and higher rated diodes for higher power applications. The average current through the diode is equal to the output current, so that the power dissipated in the diode is given by:  $P_D = I_{GH} \times V_F$ 

The peak current through the diode occurs during start-up and for a few cycles may be as high as a few amps. However, this condition typically lasts for <1ms and can be tolerated by many diodes whose repetitive current rating is much lower. The diodes' reverse voltage rating should be equal to  $2 \times V_{DD}$ .





# Positive Charge Pump Design Procedure (continued)

|             |                  |                                                 | • · |                |                         |
|-------------|------------------|-------------------------------------------------|-----|----------------|-------------------------|
| PART NUMBER | I <sub>AVG</sub> | I <sub>AVG</sub> I <sub>PK</sub> V <sub>R</sub> |     | V <sub>F</sub> | COMPONENT SUPPLIER      |
| BAV99W      | 150mA            | 1A for 1ms                                      | 75V | 1V at 50mA     | NXP                     |
| BAT54S      | 200mA            | 600mA for 1s                                    | 30V | 0.8V at 100mA  | Fairchild Semiconductor |
| MBR0540     | 500mA            | 5.5A for 8ms                                    | 40V | 0.51 at 500mA  | Fairchild Semiconductor |

# Table 8. Positive Charge Pump Diode Selection

# 12.10.2 Capacitors Selection (CPP)

# Flying capacitors

A flying capacitor in the range 100 nF to 1 $\mu$ F is suitable for most applications. Larger values experience a smaller voltage drop by the end of each switching cycle, and allow higher output voltages and/or currents to be achieved. Smaller values tend to be physically smaller and a bit cheaper. For best performance, it is recommended to include a resistor of a few ohms (1  $\Omega$  is a good value to start with) in series with the flying capacitor to limited peak currents occurring at the instant of switching.

# Storage capacitors

For lowest output voltage ripple, low-ESR ceramic capacitors are recommended. The actual value is not critical and 1  $\mu$ F to 10  $\mu$ F is suitable for most applications. Larger capacitors provide better performance in applications where large load transient currents are present.

# Transistor placed on the input (Figure 25)

A collector capacitor is required. A range of 100 nF to 1µF is suitable for most applications. Larger values are more suitable for high current applications but can affect stability if they are too big.

# Transistor placed on the output (Figure 25)

An emitter capacitor is required. A range of  $1\mu$ F to  $10\mu$ F is suitable for most applications. A smaller ratio between the emitter capacitor and the output capacitor is better for startup reason. A combination of C<sub>OUT</sub> = 4.7  $\mu$ F, C<sub>FLY</sub> = 220 nF, (and C<sub>EMITTER</sub> = 4.7  $\mu$ F) is a good starting point for most applications (the final values can be optimized on a case-by-case basis if necessary).

# 12.10.3 Selecting the PNP Transistor (CPP)

The PNP transistor used to regulate VGH should have a DC gain ( $h_{FE}$ ) of at least 100 when its collector current is equal to the charge pump's output current. The transistor should also be able to withstand voltages up to  $2xV_{DD}$  across its collector-emitter ( $V_{CE}$ ) – in the case where the CPP operates in doubler mode.

The transistor must be able to dissipate this power without its junction becoming too hot. Note that the ability to dissipate power depends heavily on adequate PCB thermal design. The power dissipated in the transistor is given by the following equation:

The transistor must be able to dissipate this power without its junction becoming too hot. Note that the ability to dissipate power depends heavily on adequate PCB thermal design. The power dissipated in the transistor is given by the following equation:

$$P_{Q} = \left[ \left( 2 \times V_{DD} \right) - \left( 2 \times V_{F} \right) - V_{GH} \right] \times I_{GH}$$

 $I_{GH}$  = Mean output current on  $V_{GH}$  $V_{F}$  = Diode forward voltage

A pull-up resistor is also required between the transistor's base and emitter. The value of this resistor is not critical, but it should be large enough not to divert significant current away from the base of the transistor. A value of 100 k $\Omega$  is suitable for most applications.

# 12.10.4 Positive Charge Pump Protection

The TPS65168 contains a circuit to protect the CPP against short circuits on its output. A short circuit condition is detected as long as the VGH voltage is below 1 V. The base current is then limited to 55  $\mu$ A typically.

(4)



# 12.11 NEGATIVE CHARGE PUMP (V<sub>GL</sub>)

The negative charge pump (CPN) controller uses an external NPN transistor to regulate an external charge pump circuit. The IC is optimized for use with transistors having a DC gain ( $h_{FE}$ ) in the range 100 to 300; however, it is possible to use transistors outside this range, depending on the application requirements. Regulation of the charge pump is achieved by using the external transistor as a controlled current source whose output depends on the voltage applied to the FBN pin: the higher the transistor current the greater the charge transferred to the output during each switching cycle and therefore the higher (i.e., the more negative) the output voltage. A typical application circuit is shown in Figure 26.

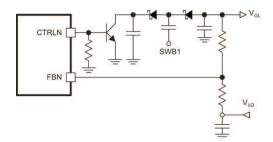


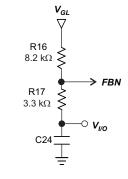

Figure 26. Negative Charge Pump Application Circuit

# 12.11.1 Enable Signal (DLY1)

The negative charge pump controller is enabled when the buck 1 and 2 converters' power good are asserted and that the DLY1 (3 bits DAC) has passed. See the *Appendix* section to set the DLY1 timing.

# 12.11.2 Setting the output voltage V<sub>GL</sub>

The output voltage of the negative charge pump is programmable via a Two-Wire interface between -1.8 V and


-8.1 V with a 6-bit resolution, and the external resistors need to be fixed with the following ratio:  $\frac{R16}{R17}$  = 2.45. See the *Appendix* section to set the V<sub>GL</sub> voltage.

A current of the order of 1mA through the resistor network ensures good accuracy and increases the circuit's immunity to noise. It also ensures a minimum load on the charge pump, which reduces output voltage ripple under no-load. The positive reference voltage should be connected to  $V_{I/O}$  to ensure proper short-circuit protection and easier PCB layout.

A 100-nF bypass capacitor C24 used on  $V_{I/O}$  reference level is required. Note that the maximum voltage in an application is determined by the input voltage and the voltage drop across the diodes and NPN transistor. For a typical application in which the negative charge pump is configured as a voltage inverter, the maximum (i.e., most negative) output voltage is given by:

$$V_{GL(MAX)} = -V_{IN} + (2 \times V_F) + V_{CE}$$
<sup>(5)</sup>

 $V_{CE}$  = Collector-emitter voltage of the transistor (recommended to be at least 1 V to avoid PNP saturation)



 $V_F$  = Diode forward voltage

The TPS65168 contains a circuit to protect the CPN against short circuits on its output. A short circuit condition is detected as long as the FBN pin remains above 2.14 V ( $V_{GL} > -0.7$  V), during which time the charge pump's output current is limited to 320 µA typically.



(6)

To ensure proper start-up under normal conditions, circuit designers should ensure that the full load current is not drawn by the load until the feedback voltage  $V_{FBN}$  is below the short circuit threshold voltage.

# 12.12 Negative Charge Pump Design Procedure

# 12.12.1 Diodes Selection (CPN)

As for the CPP, the CPN's diodes need to handle the following power:  $P_D = I_{GL} \times V_F$ . See Table 3 for diode selection.

# 12.12.2 Capacitors selection (CPN)

See the Capacitors selection (CPP) section for more detail.

A combination of  $C_{OUT} = 4.7 \ \mu\text{F}$ ,  $C_{FLY} = 100 \ n\text{F}$ , and  $C_{COLLECTOR} = 100 \ n\text{F}$  is a good starting point for most applications (the final values can be optimized on a case-by-case basis if necessary).

# 12.12.3 Selecting the NPN Transistor (CPN)

The NPN transistor used to regulate  $V_{GL}$  should have a DC gain ( $h_{FE}$ ) of at least 100 when its collector current is equal to the charge pump's output current. The transistor should also be able to withstand voltages up to  $V_{IN}$  across its collector-emitter ( $V_{CE}$ ).

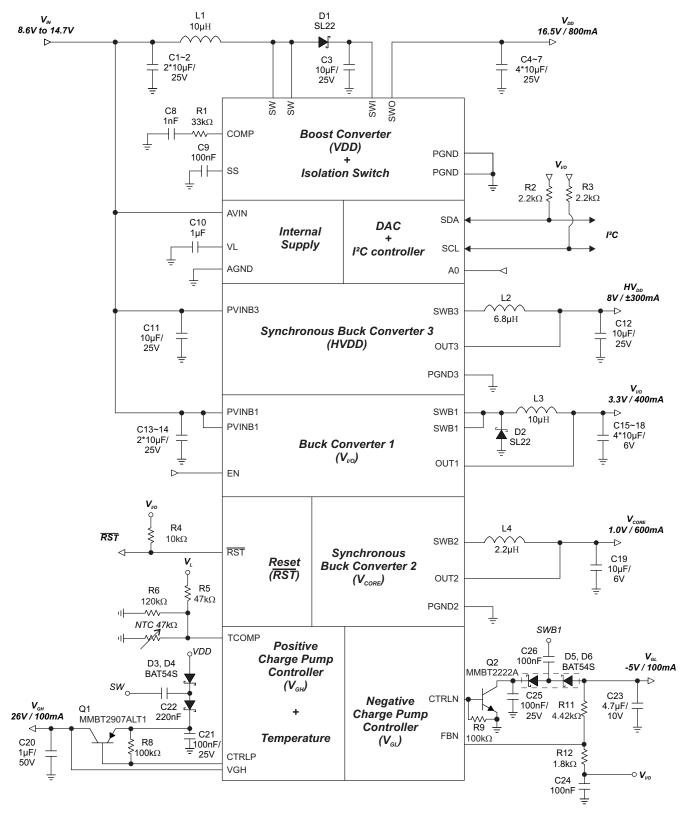
The transistor must be able to dissipate this power without its junction becoming too hot. Note that the ability to dissipate power depends heavily on adequate PCB thermal design. The power dissipated in the transistor is given by the following equation:

$$P_Q = |V_{IN} - (2 \times V_F) - |V_{GL}|| \times I_{GL}$$

 $I_{GL}$  = Mean output current on  $V_{GL}$ 

 $V_F$  = Diode forward voltage

A pull-down resistor is also required between the transistor's base and emitter. The value of this resistor is not critical, but it should be large enough not to divert significant current away from the base of the transistor. A value of 100 k $\Omega$  is suitable for most applications


# 12.12.4 Negative Charge Pump Protection

The TPS65168 contains a circuit to protect the CPN against short circuits on its output. A short circuit condition is detected as long as the FBN voltage is above 2.8 V. The base current is then limited to 320 µA typically.

SLVSAE5C - AUGUST 2010 - REVISED NOVEMBER 2014

www.ti.com

# 12.13 TYPICAL APPLICATIONS







# 12.14 PCB Layout Recommendations

# NOTE

Special care must be taken for the Buck 2 and Buck 3 converters. Shielded chip inductors are highly recommended for reduced noise radiation. Keep the output sense line which act as feedback line (high ohmic and noise sensitive) away from inductor radiations and from switching lines. A bottom layer wiring is recommended to shield it from noise sources.

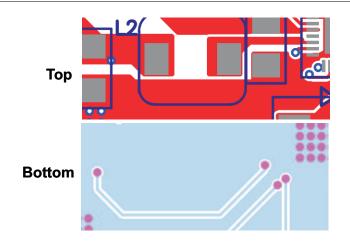



Figure 28. Recommended Layout for the sense line of Buck 3

If a wiring on the top layer is absolutely necessary and a conventional inductor is used, it is highly recommended to add a snubber circuit to the output sense line. For Buck 3 the recommended values are 150  $\Omega$  and 10 nF. See below Figure 29.

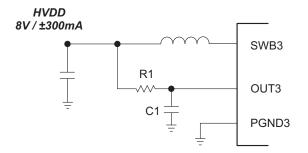



Figure 29. Connection of the snubber circuit for Buck 3

- For **high dv/dt** signals (switch pin traces): keep copper to a minimum to prevent making unintentional parallel plate capacitors with other traces or to a ground plane. Best to route signal and return on same layer.
- For high di/dt signals: keep traces short, wide and closely spaced. This will reduce stray inductance and decrease the current loop area to help prevent EMI.
- Always avoid vias when possible. They have high inductance and resistance. If vias are necessary always use more than one in parallel to decrease parasitics especially for power lines.
- Keep input capacitor close to the IC with low inductance traces.
- Keep the copper trace between a switch node and a diode as short and wide as possible.
- Use single point grounding.
- All AGND and PGND pins must be connected to the Power Pad.
- Isolate analog signal paths from power paths.
- Keep trace from switching node pin to inductor short: it reduces EMI emissions and noise that may couple into other portions of the converter.
- Output voltage feedback sampling must be taken right at output capacitor and shielded.



# 13 APPENDIX – $I^2C$ INTERFACE

# **13.1** I<sup>2</sup>C Serial Interface Description

TPS65168 communicates through an industry standard two-wire interface, I<sup>2</sup>C, to receive data in slave mode.

I<sup>2</sup>C is a 2-wire serial interface developed by Philips Semiconductor (see I2C-Bus Specification, Version 2.1, January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with pull-up structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I<sup>2</sup>C compatible devices connect to the I<sup>2</sup>C bus through open drain I/O pins, SDA and SCL. A master device, usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A slave device receives and/or transmits data on the bus under control of the master device.

The TPS65168 works as a slave and supports the following data transfer modes, as defined in the I<sup>2</sup>C-Bus specification: standard mode (100 kbps) and fast mode (400 kbps). The data transfer protocol for standard and fast modes is exactly the same, therefore they are referred to as F/S-mode in this document. The TPS65168 supports 7-bit addressing. The device 7-bit address is defined as '010000X' (see Figure 30), where the bit X can be selected depending on the address pin configuration of A0 and the LSB enables the write or read function. Address pin A0 connected to GND results in a 0 in the corresponding bit position and connection to a logic high level results in a 1 in the corresponding bit positions

| (MSB) |   | TPS6 | 5168 Ad | dress |   |    | (LSB) |
|-------|---|------|---------|-------|---|----|-------|
| 0     | 1 | 0    | 0       | 0     | 0 | A0 | R/W   |

NOTE:  $R/\overline{W} = R/(W)$ 

# Figure 30. TPS65168 Slave Address Byte

The device that initiates the communication is called a master, and the devices controlled by the master are slaves. The master generates the serial clock on SCL, controls the bus access, and generates START and STOP conditions (see Figure 31). A START initiates a new data transfer to slave. Transitioning SDA from high to low while SCL remains high generates a START condition. A STOP condition ends a data transfer to slave. Transitioning SDA from low to high while SCL remains high generates a START condition.

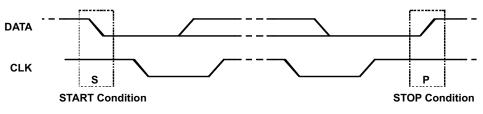



Figure 31. START and STOP Conditions

The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit R/(W) on the SDA line. During all transmissions, the master ensures that the data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 32). All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates an Acknowledgment, ACK, (see Figure 33) by pulling the SDA line low during the entire high period of the SCL cycle. Upon detecting this Acknowledgment, the master knows that communication link with a slave has been established.



## TPS65168 SLVSAE5C – AUGUST 2010–REVISED NOVEMBER 2014

# I<sup>2</sup>C Serial Interface Description (continued)

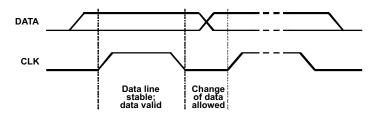



Figure 32. Bit Transfer on the Serial Interface

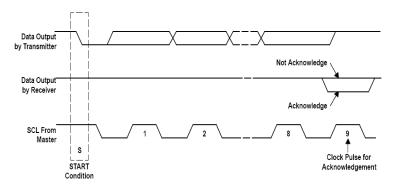



Figure 33. Acknowledge on the I<sup>2</sup>C Bus

The master generates further SCL cycles to either transmit data to the slave (R/(W) bit = 0) or receive data from the slave (R/(W) bit = 1). In either case, the receiver needs to acknowledge the data sent by the transmitter. So an acknowledge signal can either be generated by the master or by the slave, depending on which one is the receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary. To terminate the data transfer, the master generates STOP condition by pulling the SDA line from low to high while the SCL line is high (see Figure 34). This releases the bus and stops the communication link with the addressed slave. All I<sup>2</sup>C compatible devices must recognize the stop condition. Upon the receipt of a stop condition, all devices know that the bus is released, and they wait for a start condition followed by a matching address.

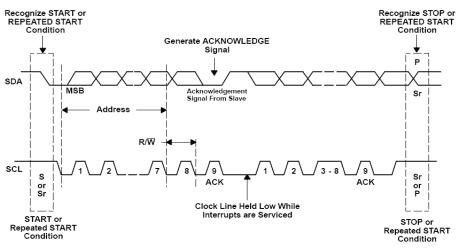



Figure 34. Bus Protocol

Attempting to read data from register addresses not listed in the following section will result in 00h being read out.



# 13.2 MEMORY DESCRIPTION

The TPS65168 has one non-volatile memory which contains the initial value of the DAC and one volatile memory which contains the DAC setting. The non-volatile memory is called the Initial Value Register (IVR) and the volatile memory is called DAC Register (DR). The non-volatile IVR and the volatile DR are accessed with the same address.

**Startup option:** At power-up, the value contained in the IVR is loaded into the volatile DR and IVR presets the DAC to the last stored setting. The factory programmed value of the IVR of each address is described on Table 3 and, at power-up, these data byte set the output voltage of each rail.

**Write description:** The user has to program all data registers first (00h ~ 09h), then set the WED (Write EEPROM Data) bit to 1 once all desired data are addressed. A dead time of 50 ms is then initiated during which all the register data (00h ~ 09h) are stored into the non volatile EEPROM cell. During that time, there should be no data flowing through the  $l^2C$  because the  $l^2C$  interface is momentarily not responding.

After the 50 ms have passed, the WED bit is automatically reset to 0, and the user is able to read the values or program again.

| REGISTER  | NAME                                    | ADDRESS | VOLATILE/NONVOLATILE | FACTORY<br>(Power-Up Default) |
|-----------|-----------------------------------------|---------|----------------------|-------------------------------|
| VDD       | Boost                                   | 00h     | 6Bit Nonvolatile     | 21h                           |
| HVDD      | Buck 3                                  | 01h     | 6Bit Nonvolatile     | 20h                           |
| VI/O      | Buck 1                                  | 02h     | 3Bit Nonvolatile     | 03h                           |
| VCORE     | Buck 2                                  | 03h     | 4Bit Nonvolatile     | 01h                           |
| VGH(COLD) | Positive charge pump (Low temperature)  | 04h     | 4Bit Nonvolatile     | 09h                           |
| VGH(HOT)  | Positive charge pump (High temperature) | 05h     | 4Bit Nonvolatile     | 09h                           |
| VGL       | Negative charge pump                    | 06h     | 6Bit Nonvolatile     | 20h                           |
| DLY1      | V <sub>GL</sub> delay                   | 07h     | 3Bit Nonvolatile     | 01h                           |
| DLY2      | V <sub>DD</sub> delay                   | 08h     | 3Bit Nonvolatile     | 03h                           |
| DLY3      | V <sub>GH</sub> delay                   | 09h     | 3Bit Nonvolatile     | 03h                           |
| CR        | Control Register                        | FFh     | Volatile             | 00h                           |

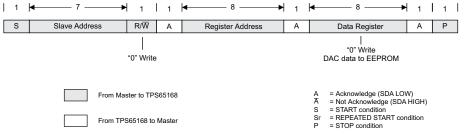
## Table 9. Memory Map

# 13.3 DAC REGISTER (DR) AND INITIAL VALUE REGISTER (IVR)

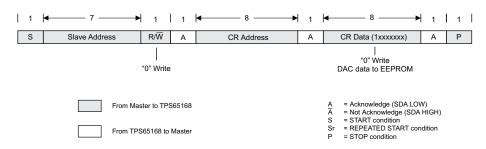
# VDD Register (with factory value) - 00h:

| MSB                              |                 |                | Addre                     | ess 00h             | Address 00h |   |                 |  |  |  |  |  |
|----------------------------------|-----------------|----------------|---------------------------|---------------------|-------------|---|-----------------|--|--|--|--|--|
| Reserved                         | Reserved        | 1              | 0                         | 0                   | 0           | 0 | 1               |  |  |  |  |  |
| HVDD Regist                      | er (with facto  | ry value) – 01 | h:                        |                     |             |   |                 |  |  |  |  |  |
| MSB                              |                 |                | Addre                     | ess 01h             |             |   | LSB             |  |  |  |  |  |
| Reserved                         | Reserved        | 1              | 0                         | 0                   | 0           | 0 | 0               |  |  |  |  |  |
|                                  | with factory    | (value) 02h    |                           |                     |             |   |                 |  |  |  |  |  |
| •                                | r (with factory | v value) – 02h |                           | 02h                 |             |   |                 |  |  |  |  |  |
| VI/O Register<br>MSB<br>Reserved | r (with factory | v value) – 02h |                           | ess 02h<br>Reserved | 0           | 1 | LSB<br>1        |  |  |  |  |  |
| MSB<br>Reserved                  | Reserved        | -              | Addre<br>Reserved<br>D3h: | Reserved            | 0           | 1 | 1               |  |  |  |  |  |
| MSB<br>Reserved                  | Reserved        | Reserved       | Addre<br>Reserved<br>D3h: |                     | 0           | 1 | LSB<br>1<br>LSB |  |  |  |  |  |

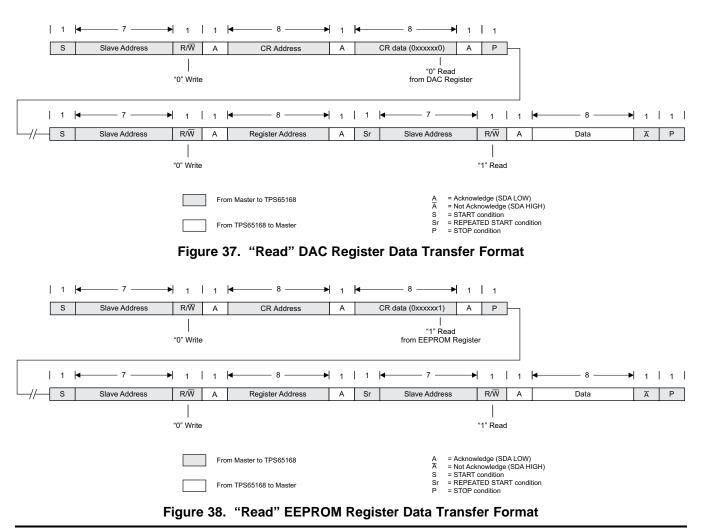



# VGH(COLD) Register (with factory value) – 04h:

|                                                                  |                                                            | •                                                          | Reserved                               |                              |   |   | •               |
|------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|------------------------------|---|---|-----------------|
| GH(HOT) Re                                                       | gister (with f                                             | factory value)                                             | – 05h:                                 |                              |   |   |                 |
| MSB                                                              |                                                            |                                                            | Addre                                  | ss 05h                       |   |   | LSB             |
| Reserved                                                         | Reserved                                                   | Reserved                                                   | Reserved                               | 1                            | 0 | 0 | 1               |
| GL Register                                                      | (with factory                                              | / value) – 06h                                             | :                                      |                              |   |   |                 |
| MSB                                                              |                                                            |                                                            | Addre                                  | ss 06h                       |   |   | LSB             |
|                                                                  |                                                            |                                                            | -                                      | _                            |   | _ |                 |
| Reserved<br>LY1 Registe<br>MSB                                   | Reserved                                                   | 1<br>ry value) – 071                                       |                                        | 0<br>ss 07h                  | 0 | 0 | 0<br>LSB        |
|                                                                  |                                                            | ·                                                          | 1                                      | 0                            | 0 | 0 | 0               |
| LY1 Registe                                                      |                                                            | ·                                                          | h:                                     |                              | 0 | 0 |                 |
| LY1 Registe<br>MSB<br>Reserved                                   | er (with factor<br>Reserved                                | r <b>y value) – 07</b> I<br>Reserved                       | h:<br>Addre<br>Reserved                | ss 07h                       |   |   | LSB             |
| LY1 Registe<br>MSB<br>Reserved                                   | er (with factor<br>Reserved                                | ry value) – 07l                                            | h:<br>Addre<br>Reserved<br>h:          | ss 07h                       |   |   | LSB             |
| LY1 Registe<br>MSB<br>Reserved<br>LY2 Registe                    | er (with factor<br>Reserved                                | r <b>y value) – 07</b> I<br>Reserved                       | h:<br>Addre<br>Reserved<br>h:          | ss 07h<br>Reserved           |   |   | LSB<br>1        |
| LY1 Registe<br>MSB<br>Reserved<br>LY2 Registe<br>MSB<br>Reserved | er (with factor<br>Reserved<br>er (with factor<br>Reserved | ry value) – 07l<br>Reserved<br>ry value) – 08l             | h:<br>Reserved<br>h:<br>Reserved       | ss 07h<br>Reserved<br>ss 08h | 0 | 0 | LSB<br>1<br>LSB |
| LY1 Registe<br>MSB<br>Reserved<br>LY2 Registe<br>MSB<br>Reserved | er (with factor<br>Reserved<br>er (with factor<br>Reserved | ry value) – 071<br>Reserved<br>ry value) – 081<br>Reserved | h:<br>Reserved<br>h:<br>Reserved<br>h: | ss 07h<br>Reserved<br>ss 08h | 0 | 0 | LSB<br>1<br>LSB |


| MSB                           |          | Address FFh |          |          |          |          |                                   |  |
|-------------------------------|----------|-------------|----------|----------|----------|----------|-----------------------------------|--|
| WED<br>(Write<br>EEPROM Data) | Reserved | Reserved    | Reserved | Reserved | Reserved | Reserved | EE/(DR)<br>(EEPROM or<br>DR Read) |  |




# 13.4 WRITING / READING PROTOCOL













## 13.5 DAC SETTING

The following tables show the DAC values and the corresponding voltages of each block address.

# <u>VDD</u> (00h)

<u>HVDD</u> (01h)

| DAC value | VDD     | DAC value     | VDD     | DAC value | HVDD   | DAC value | HVDD   |
|-----------|---------|---------------|---------|-----------|--------|-----------|--------|
| 00h       | 12.82 V | V 21h 16.0    |         | 00h       | 6.40 V | 20h       | 8.00 V |
| 01h       | 12.92 V |               |         | 01h       | 6.45 V | 21h       | 8.05 V |
| 02h       | 13.02 V |               |         | 02h       | 6.50 V | 22h       | 8.10 V |
| 03h       | 13.11 V | 23h 16.24 V   |         | 03h       | 6.55 V | 23h       | 8.15 V |
| 04h       | 13.21 V | V 24h 16.34 V |         | 04h       | 6.60 V | 24h       | 8.20 V |
| 05h       | 13.31 V |               |         | 05h       | 6.65 V | 25h       | 8.25 V |
| 06h       | 13.41 V | 26h           | 16.54 V | 06h       | 6.70 V | 26h       | 8.30 V |
| 07h       | 13.50 V | 27h           | 16.63 V | 07h       | 6.75 V | 27h       | 8.35 V |
| 08h       | 13.60 V | 28h           | 16.73 V | 08h       | 6.80 V | 28h       | 8.40 V |
| 09h       | 13.70 V | 29h           | 16.83 V | 09h       | 6.85 V | 29h       | 8.45 V |
| 0Ah       | 13.80 V | 2Ah           | 16.93 V | 0Ah       | 6.90 V | 2Ah       | 8.50 V |
| 0Bh       | 13.90 V | 2Bh           | 17.02 V | 0Bh       | 6.95 V | 2Bh       | 8.55 V |
| 0Ch       | 13.99 V | 2Ch           | 17.12 V | 0Ch       | 7.00 ∨ | 2Ch       | 8.60 V |
| 0Dh       | 14.09 V | 2Dh           | 17.22 V | 0Dh       | 7.05 ∨ | 2Dh       | 8.65 V |
| 0Eh       | 14.19 V |               |         | 0Eh       | 7.10 V | 2Eh       | 8.70 V |
| 0Fh       | 14.29 V | 2Fh           | 17.42 V | 0Fh       | 7.15 V | 2Fh       | 8.75 V |
| 10h       | 14.38 V | 30h           | 17.51 V | 10h       | 7.20 V | 30h       | 8.80 V |
| 11h       | 14.48 V | 31h           | 17.61 V | 11h       | 7.25 V | 31h       | 8.85 V |
| 12h       | 14.58 V | 32h           | 17.71 V | 12h       | 7.30 V | 32h       | 8.90 V |
| 13h       | 14.68 V | 33h           | 17.81 V | 13h       | 7.35 V | 33h       | 8.95 V |
| 14h       | 14.78 V | 34h           | 17.90 V | 14h       | 7.40 ∨ | 34h       | 9.00 V |
| 15h       | 14.87 V | 35h           | 18.00 V | 15h       | 7.45 V | 35h       | 9.05 V |
| 16h       | 14.97 V | 36h           | 18.10 V | 16h       | 7.50 V | 36h       | 9.10 V |
| 17h       | 15.07 V | 37h           | 18.20 V | 17h       | 7.55 V | 37h       | 9.15 V |
| 18h       | 15.17 V | 38h           | 18.30 V | 18h       | 7.60 V | 38h       | 9.20 V |
| 19h       | 15.26 V | 39h           | 18.39 V | 19h       | 7.65 V | 39h       | 9.25 V |
| 1Ah       | 15.36 V | 3Ah           | 18.49 V | 1Ah       | 7.70 V | 3Ah       | 9.30 V |
| 1Bh       | 15.46 V | 3Bh           | 18.59 V | 1Bh       | 7.75 V | 3Bh       | 9.35 V |
| 1Ch       | 15.56 V | 3Ch           | 18.69 V | 1Ch       | 7.80 V | 3Ch       | 9.40 V |
| 1Dh       | 15.66 V | 3Dh           | 18.78 V | 1Dh       | 7.85 V | 3Dh       | 9.45 V |
| 1Eh       | 15.75 V | 3Eh           | 18.88 V | 1Eh       | 7.90 V | 3Eh       | 9.50 V |
| 1Fh       | 15.85 V | 3Fh           | 18.98 V | 1Fh       | 7.95 V | 3Fh       | 9.55 V |



## DAC SETTING (continued)

|           | <u>VGL</u> | (06h)     |        |  |  |  |  |
|-----------|------------|-----------|--------|--|--|--|--|
| DAC value | VGL        | DAC value | VGL    |  |  |  |  |
| 00h       | -1.8 V     | 20h       | -5.0 V |  |  |  |  |
| 01h       | -1.9 V     | 21h       | -5.1 V |  |  |  |  |
| 02h       | -2.0 V     | 22h       | -5.2 V |  |  |  |  |
| 03h       | -2.1 V     | 23h       | -5.3 V |  |  |  |  |
| 04h       | -2.2 V     | 24h       | -5.4 V |  |  |  |  |
| 05h       | -2.3 V     | 25h       | -5.5 V |  |  |  |  |
| 06h       | -2.4 V     | 26h       | -5.6 V |  |  |  |  |
| 07h       | -2.5 V     | 27h       | -5.7 V |  |  |  |  |
| 08h       | -2.6 V     | 28h       | -5.8 V |  |  |  |  |
| 09h       | -2.7 V     | 29h       | -5.9 V |  |  |  |  |
| 0Ah       | -2.8 V     | 2Ah       | -6.0 V |  |  |  |  |
| 0Bh       | -2.9 V     | 2Bh       | -6.1 V |  |  |  |  |
| OCh       | -3.0 V     | 2Ch       | -6.2 V |  |  |  |  |
| 0Dh       | -3.1 V     | 2Dh       | -6.3 V |  |  |  |  |
| 0Eh       | -3.2 V     | 2Eh       | -6.4 V |  |  |  |  |
| OFh       | -3.3 V     | 2Fh       | -6.5 V |  |  |  |  |
| 10h       | -3.4 V     | 30h       | -6.6 V |  |  |  |  |
| 11h       | -3.5 V     | 31h       | -6.7 V |  |  |  |  |
| 12h       | -3.6 V     | 32h       | -6.8 V |  |  |  |  |
| 13h       | -3.7 V     | 33h       | -6.9 V |  |  |  |  |
| 14h       | -3.8 V     | 34h       | -7.0 V |  |  |  |  |
| 15h       | -3.9 V     | 35h       | -7.1 V |  |  |  |  |
| 16h       | -4.0 V     | 36h       | -7.2 V |  |  |  |  |
| 17h       | -4.1 V     | 37h       | -7.3 V |  |  |  |  |
| 18h       | -4.2 V     | 38h       | -7.4 V |  |  |  |  |
| 19h       | -4.3 V     | 39h       | -7.5 V |  |  |  |  |
| 1Ah       | -4.4 V     | 3Ah       | -7.6 V |  |  |  |  |
| 1Bh       | -4.5 V     | 3Bh       | -7.7 V |  |  |  |  |
| 1Ch       | -4.6 V     | 3Ch       | -7.8 V |  |  |  |  |
| 1Dh       | -4.7 V     | 3Dh       | -7.9 V |  |  |  |  |
| 1Eh       | -4.8 V     | 3Eh       | -8.0 V |  |  |  |  |
| 1Fh       | -4.9 V     | 3Fh       | -8.1 V |  |  |  |  |

# <u>VGL</u> (06h)

## <u>VGH</u> (04h - COLD) (05h - HOT)

| DAC value | VGH(COLD) |
|-----------|-----------|
| 00h       | 19 V      |
| 01h       | 20 V      |
| 02h       | 21 V      |
| 03h       | 22 V      |
| 04h       | 23 V      |
| 05h       | 24 V      |
| 06h       | 25 V      |
| 07h       | 26 V      |
| 08h       | 27 V      |
| 09h       | 28 V      |
| 0Ah       | 29 V      |
| 0Bh       | 30 V      |
| OCh       | 31 V      |
| 0Dh       | 32 V      |
| 0Eh       | 33 V      |
| OFh       | 34 V      |

DAC value VGH(HOT)

17 V

18 V

19 V

20 V

21 V

22 V 23 V

24 V

25 V

26 V

27 V

28 V

29 V

30 V

31 V

32 V

00h

01h

02h

03h

04h

05h

06h

07h 08h

09h

0Ah

0Bh

0Ch

0Dh

0Eh

0Fh

| <u>VI/O</u> | (02h) |
|-------------|-------|
| DAC value   | VCC   |
| 00h         | 3.0 V |
| 01h         | 3.1 V |
| 02h         | 3.2 V |
| 03h         | 3.3 V |
| 04h         | 3.4 V |
| 05h         | 3.5 V |
| 06h         | 3.6 V |
| 07h         | 3.7 V |

## **VCORE** (03h)

| DAC value | VCORE |
|-----------|-------|
| 00h       | 0.9 V |
| 01h       | 1.0 V |
| 02h       | 1.1 V |
| 03h       | 1.2 V |
| 04h       | 1.3 V |
| 05h       | 1.4 V |
| 06h       | 1.5 V |
| 07h       | 1.6 V |
| 08h       | 1.7 V |
| 09h       | 1.8 V |
| 0Ah       | 1.9 V |
| 0Bh       | 2.0 V |
| OCh       | 2.1 V |
| 0Dh       | 2.2 V |
| 0Eh       | 2.3 V |
| 0Fh       | 2.4 V |

# <u>DLYx</u>

(07h - DLY1) (08h - DLY2) (09h - DLY3)

38

| DAC value | DLY1  |
|-----------|-------|
| 00h       | 0 ms  |
| 01h       | 5 ms  |
| 02h       | 10 ms |
| 03h       | 15 ms |
| 04h       | 20 ms |
| 05h       | 25 ms |
| 06h       | 30 ms |
| 07h       | 35 ms |

| DAC value | DLY2  |
|-----------|-------|
| 00h       | 0 ms  |
| 01h       | 5 ms  |
| 02h       | 10 ms |
| 03h       | 15 ms |
| 04h       | 20 ms |
| 05h       | 25 ms |
| 06h       | 30 ms |
| 07h       | 35 ms |

| DAC value | DLY3  |
|-----------|-------|
| 00h       | 0 ms  |
| 01h       | 5 ms  |
| 02h       | 10 ms |
| 03h       | 15 ms |
| 04h       | 20 ms |
| 05h       | 25 ms |
| 06h       | 30 ms |
| 07h       | 35 ms |





#### **DAC SETTING (continued)**

#### 13.5.1 Write Operation

Writing to DAC Register (DR):

- 1. Master sends START condition on the bus.
- Send the device address, 010000A<sub>0</sub>, and R/(W) bit = Low. TPS65168 will acknowledge this byte.
- Send DAC Register address of 00h (DR address 00h VDD). TPS65168 will acknowledge this byte.
- Send the data byte to be written to DR and to DAC. TPS65168 will acknowledge this byte.
- 5. Master sends STOP condition on the bus.
- 6. Repeat the above operations for DR addresses 01h ~ 09h

Example: Writing 29h to DR address 06h (VGL) and VGL DAC

| START 0 | 1 0 | 0 | 0 | 0 | A <sub>0</sub> | 0 | Slave<br>ACK | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | Slave<br>ACK | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | Slave<br>ACK | STOP |
|---------|-----|---|---|---|----------------|---|--------------|---|---|---|---|---|---|---|---|--------------|---|---|---|---|---|---|---|---|--------------|------|
|---------|-----|---|---|---|----------------|---|--------------|---|---|---|---|---|---|---|---|--------------|---|---|---|---|---|---|---|---|--------------|------|

#### Writing to EEPROM:

- 1. Master sends START condition on the bus.
- Send the device address, 010000A<sub>0</sub>, and R/(W) bit = Low. TPS65168 will acknowledge this byte.
- Send CR (Control register) address of FFh (WED bit). TPS65168 will acknowledge this byte.
- Send data byte of 80h, to write data byte from DR 00h ~ 09h to EEPROM TPS65168 will acknowledge this byte.
- 5. Master sends STOP condition on the bus

*Example:* Writing DR data into EEPROM

| START | 0 | 1 | 0 | 0 | 0 | 0 | A <sub>0</sub> | 0 | Slave<br>ACK | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Slave<br>ACK | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Slave<br>ACK | STOP | ] |
|-------|---|---|---|---|---|---|----------------|---|--------------|---|---|---|---|---|---|---|---|--------------|---|---|---|---|---|---|---|---|--------------|------|---|
|-------|---|---|---|---|---|---|----------------|---|--------------|---|---|---|---|---|---|---|---|--------------|---|---|---|---|---|---|---|---|--------------|------|---|

**Note:** *it is not possible to write data from a single DAC register into the EEPROM, all DR data from 00h to 09h will be written into the EEPROM at one time.* 

SLVSAE5C - AUGUST 2010 - REVISED NOVEMBER 2014



www.ti.com

#### 13.5.2 Read Operation

#### Reading from DR:

- 1. Master sends START condition on the bus.
- Send the device address, 010000A<sub>0</sub>, and R/(W) bit = Low. TPS65168 will acknowledge this byte.
- Send CR register address of FFh. TPS65168 will acknowledge this byte.
- 4. Send data byte of 00h (EE/(DR) bit), to specify that the data is read from DR. TPS65168 will acknowledge this byte.
- 5. Master sends STOP condition on the bus
- 6. Master sends START condition on the bus.
- Send the device address, 010000A<sub>0</sub>, and R/(W) bit =Low. TPS65168 will acknowledge this byte.
- Send desired DAC Register address to be read (00h ~ 09h). TPS65168 will acknowledge this byte.
- 9. Master sends START condition on the bus again.
- Send the device address, 010000A<sub>0</sub>, and R/(W) bit = High. TPS65168 will acknowledge this byte.
- 11. Read data from DR.

Master will not acknowledge this byte

12. Master sends STOP condition on the bus.

Example: Reading data from DR address 05h (VGH(HOT))

| START | 0 | 1 | 0 | 0 | 0 | 0 | A <sub>0</sub> | 0 | SACK | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | SACK  | 0 | 0  | ( | o d | ) | 0 | 0 | 0 | 0 | SACK | STO<br>P |
|-------|---|---|---|---|---|---|----------------|---|------|---|---|---|---|---|---|---|---|-------|---|----|---|-----|---|---|---|---|---|------|----------|
| START | 0 | 1 | 0 | 0 | 0 | 0 | A <sub>0</sub> | 0 | SACK | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | SACK  |   |    |   |     |   |   |   |   |   |      |          |
| START | 0 | 1 | 0 | 0 | 0 | 0 | A <sub>0</sub> | 1 | SACK | 0 | 0 | 0 | 0 | х | х | х | х | MNACK | S | тс | P |     |   |   |   |   |   |      |          |

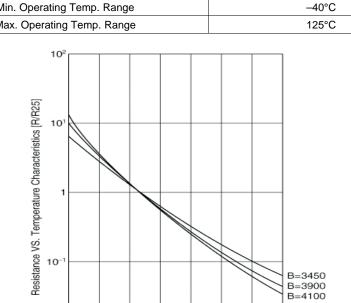


Reading from EEPROM (IVR):

- 1. Master sends START condition on the bus.
- 2. Send the device address,  $010000A_0$ , and R/(W) bit = Low. TPS65168 will acknowledge this byte.
- 3. Send CR register address of FFh. TPS65168 will acknowledge this byte.
- 4. Send data byte of 01h (EE/(DR) bit), to specify that the data is read from EEPROM. TPS65168 will acknowledge this byte.
- 5. Master sends STOP condition on the bus
- 6. Master sends START condition on the bus.
- Send the device address, 010000A<sub>0</sub>, and R/(W) bit =Low. TPS65168 will acknowledge this byte.
- Send desired DR/IVR address to be read (00h ~ 09h). TPS65168 will acknowledge this byte.
- 9. Master sends START condition on the bus again.
- 10. Send the device address,  $010000A_0$ , and R/(W) bit = High. TPS65168 will acknowledge this byte.
- 11. Read data from IVR.

Master will not acknowledge this byte

12. Master sends STOP condition on the bus.


Example: Reading data from EEPROM address 09h (DLY3)

| START | 0 | 1 | 0 | 0 | 0 | 0 | $A_0$          | 0 | SACK | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | SACK  | 0 | 0  | 0 | 0 | 0 | 0 | 0 | 1 | SACK | STOP |
|-------|---|---|---|---|---|---|----------------|---|------|---|---|---|---|---|---|---|---|-------|---|----|---|---|---|---|---|---|------|------|
| START | 0 | 1 | 0 | 0 | 0 | 0 | $A_0$          | 0 | SACK | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | SACK  |   |    |   |   |   |   |   |   |      |      |
| START | 0 | 1 | 0 | 0 | 0 | 0 | A <sub>0</sub> | 1 | SACK | 0 | 0 | 0 | 0 | 0 | х | х | х | MNACK | S | то | Р |   |   |   |   |   |      |      |

## **13.6 TEMPERATURE COMPENSATION**

| Global Part Number                     | NCP18WB473F10RB |  |  |  |  |
|----------------------------------------|-----------------|--|--|--|--|
| Resistance (25°C)                      | 47 kΩ ±1%       |  |  |  |  |
| B-Constant (25/50°C)                   | 4050K ±1.5%     |  |  |  |  |
| B-Constant (25/80°C)(Reference Value)  | 4101K           |  |  |  |  |
| B-Constant (25/85°C)(Reference Value)  | 4108K           |  |  |  |  |
| B-Constant (25/100°C)(Reference Value) | 4131K           |  |  |  |  |
| Permissive Operating Current (25°C)    | 0.14mA          |  |  |  |  |
| Rated Electric Power (25°C)            | 100mW           |  |  |  |  |
| Typical Dissipation Constant (25°C)    | 1mW/°C          |  |  |  |  |
| Min. Operating Temp. Range             | -40°C           |  |  |  |  |
| Max. Operating Temp. Range             | 125°C           |  |  |  |  |

Table 10. NTC 47 kΩ - NCP18WB473F10RB - Characteristics



20 40 60 8 Temperature [°C] 100

120

80

10-2

-20

0



11-Apr-2013

## PACKAGING INFORMATION

| Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp       | Op Temp (°C) | Top-Side Markings | Samples |
|------------------|--------|--------------|---------|------|---------|----------------------------|------------------|---------------------|--------------|-------------------|---------|
|                  | (1)    |              | Drawing |      | Qty     | (2)                        |                  | (3)                 |              | (4)               |         |
| TPS65168RSBR     | ACTIVE | WQFN         | RSB     | 40   | 3000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 85    | TPS<br>65168      | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

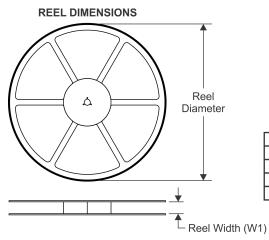
**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

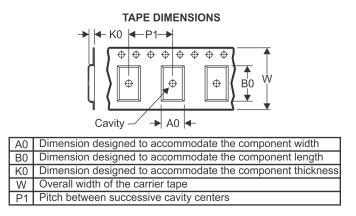
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

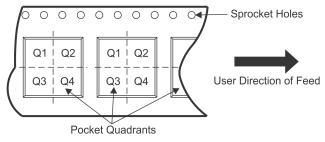
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


# PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

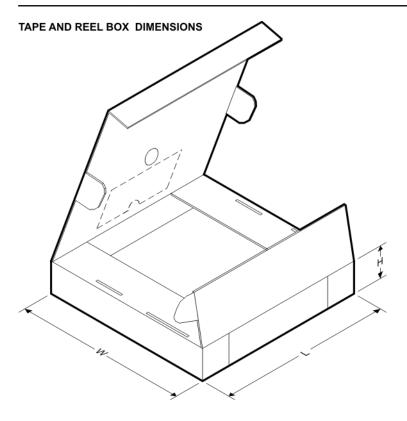
## TAPE AND REEL INFORMATION





## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

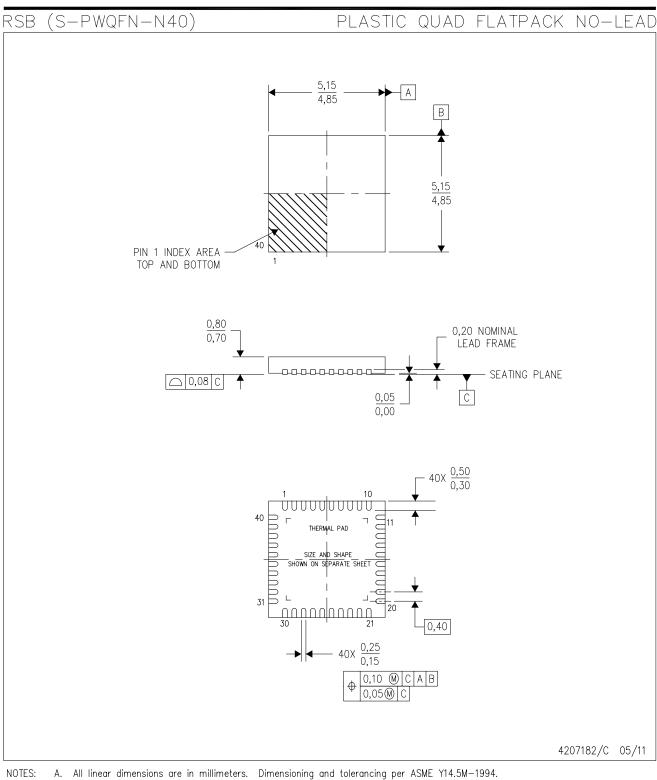



| *All dimensions are nomina | I               |                    |    |      |                          |                          |            |            |            |            |           |                  |
|----------------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                     | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| TPS65168RSBR               | WQFN            | RSB                | 40 | 3000 | 330.0                    | 12.4                     | 5.3        | 5.3        | 1.5        | 8.0        | 12.0      | Q2               |
| TPS65168RSBR               | WQFN            | RSB                | 40 | 3000 | 330.0                    | 12.4                     | 5.3        | 5.3        | 1.5        | 8.0        | 12.0      | Q2               |

TEXAS INSTRUMENTS

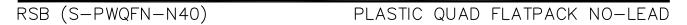
www.ti.com

# PACKAGE MATERIALS INFORMATION


23-Jan-2014



\*All dimensions are nominal

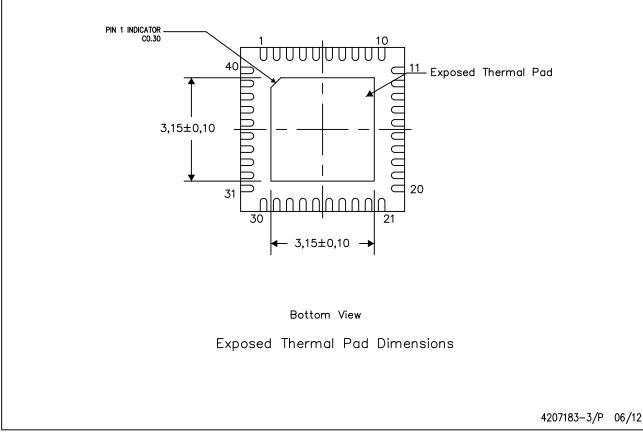

| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TPS65168RSBR | WQFN         | RSB             | 40   | 3000 | 367.0       | 367.0      | 35.0        |
| TPS65168RSBR | WQFN         | RSB             | 40   | 3000 | 367.0       | 367.0      | 35.0        |

# **MECHANICAL DATA**



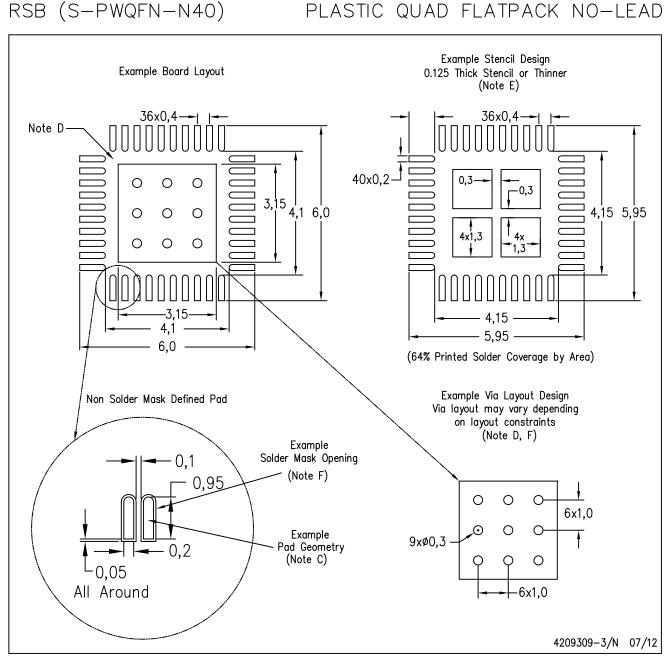
- B. This drawing is subject to change without notice.
  - C. QFN (Quad Flatpack No-Lead) Package configuration.
  - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
  - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.






#### THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.









NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.





10-Dec-2020

## PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2) | Lead finish/<br>Ball material<br>(6) | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|-----------------|--------------------------------------|----------------------|--------------|-------------------------|---------|
| TPS65168RSBR     | ACTIVE        | WQFN         | RSB                | 40   | 3000           | RoHS & Green    | NIPDAU                               | Level-2-260C-1 YEAR  | -40 to 85    | TPS<br>65168            | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

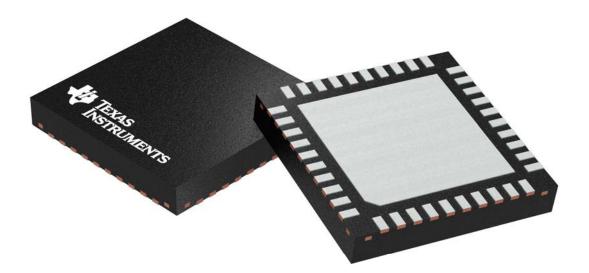
<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

<sup>(6)</sup> Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

# **RSB 40**

5 x 5 mm, 0.4 mm pitch

# **GENERIC PACKAGE VIEW**

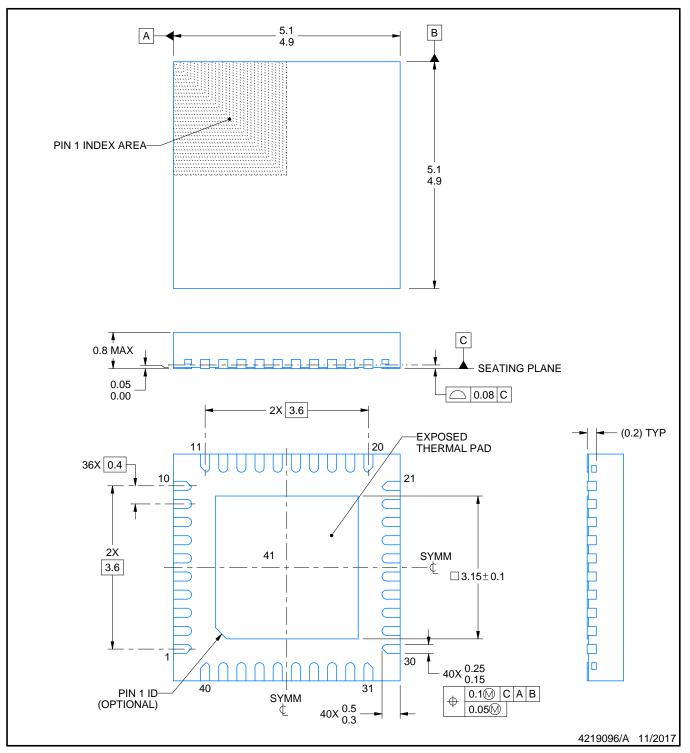
# WQFN - 0.8 mm max height PLASTIC QUAD FLATPACK - NO LEAD



Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



4207182/D


# **RSB0040E**



# **PACKAGE OUTLINE**

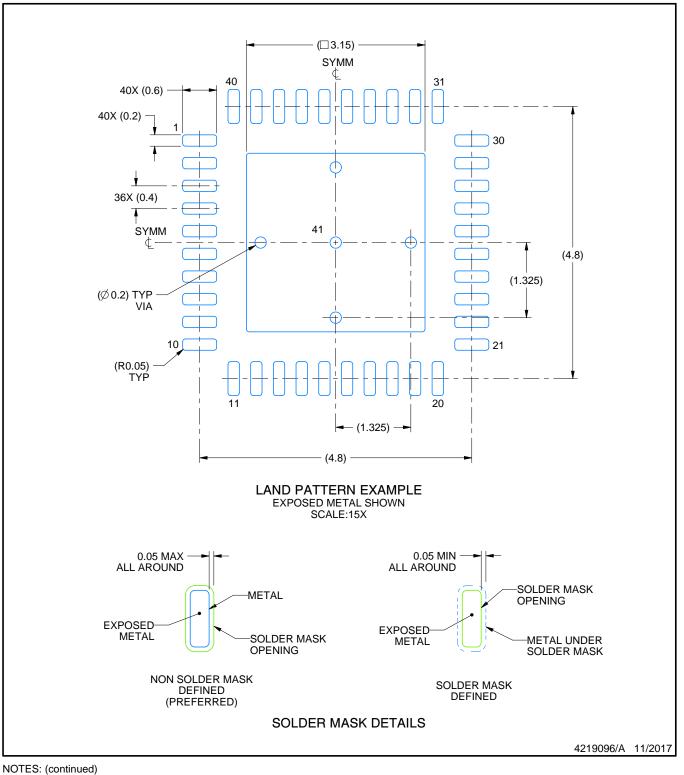
## WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD



#### NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.




# **RSB0040E**

# **EXAMPLE BOARD LAYOUT**

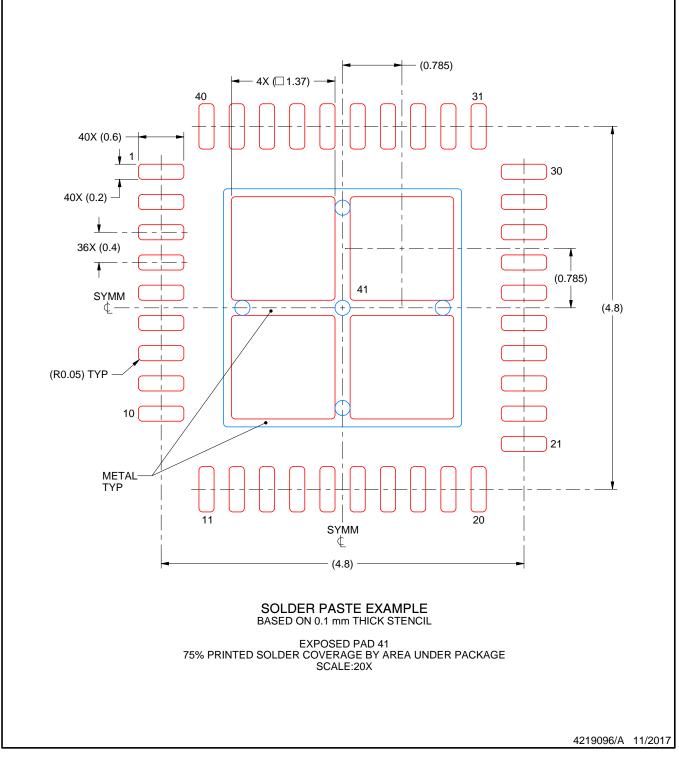
## WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD



4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.




# **RSB0040E**

# **EXAMPLE STENCIL DESIGN**

## WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated