LMX2491 具有斜坡／线性调频生成功能的 6．4GHz 低噪声 RF PLL

1 特性

- $-227 \mathrm{dBc} / \mathrm{Hz}$ 标准化锁相环（PLL）噪声
- 500 MHz 至 6.4 GHz 宽带 PLL
- 3.15 V 至 5.25 V 电荷泵 PLL 电源
- 多用途斜坡 1 超宽带信号源生成功能
- 200 MHz 最大相位检测器频率
- 频移键控／相移键控（FSK／PSK）调制引脚
- 数字锁检测
- 3.3 V 单电源供电

2 应用

- 调频连续波（FMCW）雷达
- 军用雷达
- 微波回程
- 测试和测量
- 卫星通信
- 无线基础设施
- 适用于高速模数转换器）数模转换器（ADC／DAC）的采样时钟

3 说明
LMX2491 器件是一款具有斜坡／线性调频生成功能的低噪声 6.4 GHz 宽带 $\Delta-\Sigma$ 分数 NPLL。它由一个相位频率检测器，可编程电荷泉以及适用于外部 VCO 的高频输入组成。LMX2491 广泛支持各类灵活的斜坡功能，包括 FSK，PSK 和多达 8 段的可配置分段线性 FM 调制配置文件。该器件具有精密 PLL 分辨率和快速斜升功能，相位检测器速率高达 200 MHz 。LMX2491 允许读回其任一寄存器。LMX2491 可由 3.3 V 单电源供电运行。此外，该器件支持电压高达 5.25 V 的电荷泵，无需使用外部放大器即可提供相位噪声性能得到改善的简易解决方案。

器件信息			
器件编号	封装	封装尺寸（标称值）	
LMX2491	WQFN（24）	$4.00 \mathrm{~mm} \times 4.00 \mathrm{~mm}$	

（1）要了解所有可用封装，请见数据表末尾的可订购产品附录。简化原理图

An IMPORTANT NOTICE at the end of this data sheet addresses availability，warranty，changes，use in safety－critical applications， intellectual property matters and other important disclaimers．PRODUCTION DATA．

目录

1 特性 1
2 应用 1
3 说明 1
4 修订历史记录 2
5 Pin Configuration and Functions 3
6 Specifications 4
6．1 Absolute Maximum Ratings 4
6．2 Storage Conditions 4
6．3 ESD Ratings 4
6．4 Recommended Operating Conditions 4
6．5 Thermal Information 4
6．6 Electrical Characteristics 5
6．7 Timing Requirements，Programming Interface（CLK， DATA，LE） 6
6．8 Typical Characteristics 6
7 Detailed Description 9
7．1 Overview 9
7．2 Functional Block Diagram 9
7．3 Feature Description 9
7．4 Device Functional Modes 13
7．5 Programming． 14
7．6 Register Maps 14
8 Applications and Implementation 27
8．1 Application Information 27
8．2 Typical Application 27
9 Power Supply Recommendations 39
10 Layout． 39
10．1 Layout Guidelines 39
10．2 Layout Example 40
11 器件和文档支持 41
11.1 器件支持 41
11.2 文档支持 41
11.3 接收文档更新通知 41
11.4 社区资源 41
11.5 商标 41
11.6 静电放电警告 41
11．7 Glossary 41
12 机械，封装和可订购信息 41

4 修订历史记录

Changes from Original（October 2016）to Revision A Page
－Deleted Charge pump output pin from the table 4
－Changed to Supply voltage 4
－Changed to I／O input voltage 4
－Changed to Power down current 5
－Changed DATA field bit description． 6
－Added new plots in Typical Characteristics 7
－Changed Table 1 title 9
－Added CMP0 and CMP1 definition．Changed Equation 1 description． 12
－Added Register Readback 13
－Added MSB bit description 14
－Changed the format in Window and f_{PD} Frequency column 21
－Changed to correct register bits location 23
－Changed to correct value 25
－Added correct start time 26
－Added design details and plots in Typical Application 27

5 Pin Configuration and Functions

Pin Functions

TERMINAL		TYPE	
NO.	NAME		
0	DAP	GND	Die Attach Pad. Connect to PCB ground plane.
1	GND	GND	Ground for charge pump.
2,3	GND	GND	Ground for Fin Buffer
4,5	Fin Fin	Input	Complimentary high frequency input pins. Should be AC-coupled. If driving single-ended, impedance as seen from Fin and Fin same. pins looking outwards from the part should be roughly the
6	Vcc	Supply	Power Supply for Fin Buffer
7	Vcc	Supply	Supply for On-chip LDOs
8	Vcc	Supply	Supply for OSCin Buffer
9	OSCin	Input	Reference Frequency Input
10	GND/	GND/Input	Complimentary input for OSCin. If not used, it is recommended to match the termination as seen from the OSCin terminal looking outwards. However, this may also be grounded as well.
11	GSCin	GND	GND
12	MOD	Input/Output	Ground for OSCin Buffer
13	CE	Input	Chip Enable Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics
14	CLK	GND	Serial Programming Clock.
15	DATA	GND	Serial Programming Data
16	LE	Input	Serial Programming Latch Enable
17	MUXout	Input/Output	Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics
18	Vcc	Supply	Supply for delta sigma engine.
19	Vcc	Supply	Supply for general circuitry.
20	TRIG1	Input/Output	Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics
21	TRIG2	Input/Output	Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics
22	Vcp	Supply	Power Supply for the charge pump.
23	Rset	NC	No connect.
24	CPout	Output	Charge Pump Output

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

		MIN	MAX
V_{CP}	Supply voltage for charge pump	V_{CC}	5.5
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage	-0.3	3.6
$\mathrm{~V}_{\text {IN }}$	I / O input voltage	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$
$\mathrm{~T}_{\text {Solder }}$	Lead temperature (solder 4 seconds)	V	
$\mathrm{T}_{\text {Junction }}$	Junction temperature	V	

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Storage Conditions

applicable before the DMD is installed in the final product

		MIN	MAX
$T_{\text {stg }}$	DMD storage temperature	-65	150
$\mathrm{~T}_{\text {DP }}$	Storage dew point	${ }^{\circ} \mathrm{C}$	

6.3 ESD Ratings

		VALUE	UNIT
Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$	± 2500	V
	Charged-device model (CDM), per JEDEC specification JESD22-C101 ${ }^{(2)}$	± 1500	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	MIN	NOM	MAX
V_{CC}	Supply voltage	3.15	3.3	3.45
$\mathrm{~V}_{\mathrm{CP}}$	Charge pump supply voltage	V_{CC}	V	
T_{A}	Ambient temperature	-40	5.25	V
$\mathrm{~T}_{\mathrm{J}}$	Junction temperature	-40	85	${ }^{\circ} \mathrm{C}$

6.5 Thermal Information

| | | LMX2491 |
| :--- | :---: | :---: | :---: |
| | THERMAL METRIC ${ }^{(1)}$ | RTW (VQFN) |
| | | UNIT |

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.6 Electrical Characteristics

$3.15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{CP}} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$, except as specified. Typical values are at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CP}}=3.3 \mathrm{~V}$, $25^{\circ} \mathrm{C}$.

LOGIC OUTPUT TERMINALS (MUXout, TRIG1, TRIG2, MOD)

V_{OH}	Output high voltage		$0.8 \times \mathrm{V}_{\mathrm{CC}}$	V_{CC}
V_{OL}	Output low voltage			0

LOGIC INPUT TERMINALS (CE, CLK, DATA, LE, MUXout, TRIG1, TRIG2, MOD)

V_{IH}	Input high voltage		1.4	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Input low voltage		0	0.6	V
I_{H}	Input leakage current		-5	5	$\mu \mathrm{~A}$
t_{CE} LOW	Chip enable low time		5	$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{CE}} \mathrm{HIGH}$	Chip enable high time		5	$\mu \mathrm{~s}$	

(1) For optimal phase noise performance, higher input voltage and a slew rate of at least $3 \mathrm{~V} / \mathrm{ns}$ is recommended
(2) PLL Noise Metrics are measured with a clean OSCin signal with a high slew rate using a wide loop bandwidth. The noise metrics model the PLL noise for an infinite loop bandwidth as:
PLL_Total $=10 \times \log \left(10^{\text {PLL_Flat } / 10}+10^{\text {PLL_Flicker(Offset) }} /{ }^{10}\right)$
PLL_Flat $=\mathrm{PN} 1 \mathrm{~Hz}+20 \times \log (\mathrm{N})+10 \times \log \left(\mathrm{f}_{\mathrm{PD}} / 1 \mathrm{~Hz}\right)$
PLL_Flicker $=$ PN10kHz $-10 \times \log ($ Offset $/ 10 \mathrm{kHz})+20 \times \log \left(\mathrm{fvco}^{\prime} / 1 \mathrm{GHz}\right)$
(3) Charge pump mismatch varies as a function of charge pump voltage. Consult typical performance characteristics to see this variation.

6.7 Timing Requirements, Programming Interface (CLK, DATA, LE)

		MIN	TYP	MAX	UNIT
t_{CE}	Clock to LE low time	10			ns
t_{CS}	Data to clock setup time	4			ns
t_{CH}	Data to clock hold time	4			ns
$\mathrm{t}_{\text {CWH }}$	Clock pulse width high	10			ns
$\mathrm{t}_{\text {CWL }}$	Clock pulse width low	10			ns
$\mathrm{t}_{\text {CES }}$	Enable to clock setup time	10			ns
$\mathrm{t}_{\text {EWH }}$	Enable pulse width high	10			ns

Figure 1. Serial Data Input Timing
There are several other considerations for programming:

- The DATA is clocked into a shift register on each rising edge of the CLK signal. On the rising edge of the LE signal, the data is sent from the shift register to an actual counter.
- If no LE signal is given after the last data bit and the clock is kept toggling, then these bits are read into the next lower register. This eliminates the need to send the address each time.
- A slew rate of at least $30 \mathrm{~V} / \mu \mathrm{s}$ is recommended for the CLK, DATA, and LE signals
- Timing specs also apply to readback. Readback can be done through the MUXout, TRIG1, TRIG2, or MOD terminals.

6.8 Typical Characteristics

Optimal performance is for a typical charge pump output voltage between 0.5 and 2.8 volts.

Optimal performance is typically for a charge pump output voltage between 0.5 and 4.5 volts.

Figure 3. Charge Pump Current for $\mathrm{V}_{\mathrm{CP}}=5.5 \mathrm{~V}$

Typical Characteristics (continued)

See Frequency Shift Keying Example for the detail of configuration.

Figure 4. Frequency Shift Keying

See Continuous Sawtooth Ramp Example for the detail of configuration.

Figure 6. Continuous Sawtooth Ramp

See Single Sawtooth Ramp Example for the detail of configuration.

Figure 5. Single Sawtooth Ramp

See Continuous Sawtooth Ramp with FSK Example for the detail of configuration.

Figure 7. Continuous Sawtooth Ramp with FSK

Typical Characteristics (continued)

See Continuous Triangular Ramp Example for the detail of configuration.

Figure 8. Continuous Triangular Ramp

See Arbitrary Waveform Ramp Example for the detail of configuration.

Figure 10. Arbitrary Waveform Ramp

7 Detailed Description

7.1 Overview

The LMX2491 is a microwave PLL, consisting of a reference input and divider, high frequency input and divider, charge pump, ramp generator, and other digital logic. The Vcc power supply pins run at a nominal 3.3 volts, while the charge pump supply pin, Vcp , operates anywhere from V_{CC} to 5 volts. The device is designed to operate with an external loop filter and VCO. Modulation is achieved by manipulating the MASH engine.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 OSCin Input

The reference can be applied in several ways. If using a differential input, this must be terminated differentially with a $100-\Omega$ resistance and AC-coupled to the OSCin and GND/OSCin* terminals. If driving this single-ended, then the GND/OSCin ${ }^{*}$ terminal may be grounded, although better performance is attained by connecting the GND/OSCin* terminal through a series resistance and capacitance to ground to match the OSCin terminal impedance.

7.3.2 OSCin Doubler

The OSCin doubler allows the input signal to the OSCin to be doubled to have higher phase detector frequencies. This works by clocking on both the rising and falling edges of the input signal, so it therefore requires a 50% input duty cycle.

7.3.3 R Divider

The R counter is 16 bits divides the OSCin signal from 1 to 65535 . If DIFF_R $=0$, then any value can be chosen in this range. If DIFF_R $=1$, then the divide is restricted to 2,4 , 8 , and 16 , but allows for higher OSCin frequencies.

7.3.4 PLL N Divider

The 16 -bit N divider divides the signal at the Fin terminal down to the phase detector frequency. It contains a $4 / 5$ prescaler that creates minimum divide restrictions, but allows the N value to increment in values of one.

Table 1. Allowable Minimum N Divider Values

MODULATOR ORDER	MINIMUM N DIVIDE
Integer Mode, 1st-Order Modulator	16
2nd-Order Modulator	17
3rd-Order Modulator	19
4th-Order Modulator	25

7.3.5 Fractional Circuitry

The fractional circuitry controls the N divider with delta sigma modulation that supports a programmable first, second, third, and fourth-order modulator. The fractional denominator is a fully programmable 24 -bit denominator that can support any value from $1,2, \ldots, 2^{24}$, with the exception when the device is running one of the ramps, and in this case it is a fixed size of 2^{24}.

7.3.6 PLL Phase Detector and Charge Pump

The phase detector compares the outputs of the R and N dividers and generates a correction voltage corresponding to the phase error. This voltage is converted to a correction current by the charge pump. The phase detector frequency, $f_{P D}$, can be calculated as follows: $f_{P D}=f_{\text {OSCin }} \times$ OSC_2X $/ R$.
The charge pump supply voltage on this device, V_{CP}, can be either run at the V_{CC} voltage, or up to 5.25 volts to get higher tuning voltages to present to the VCO.

7.3.7 External Loop Filter

The loop filter is external to the device and is application specific. Texas Instruments website has details on this at www.ti.com.

7.3.8 Fastlock and Cycle Slip Reduction

This PLL has a Fastlock and a cycle slipping reduction feature. The user can enable these two features by programming FL_TOC to a non-zero value. Every time PLL_N (the feedback divider, register R17 and R16) is written, the Fastlock feature engages for the prescribed time set in FL_TOC. There are 3 actions that can be enabled while the counter is running:

1. Change the charge pump current to the desired higher value FL_CPG. Typically this value would be set to the maximum at 31x. This increases the loop bandwidth and hence reduces lock time.
2. Change the phase detector frequency with FL_CSR to reduce cycle slipping. The phase detector frequency can be reduced by a factor 2 or 4 to reduce cycle slipping.
3. The loop filter can be configured to have a switchable R2 resistor to increase loop bandwidth and hence reduce lock time. A resistor R2pLF is added in parallel to R2_LF and connected to the a terminal on the PLL to use the internal switch. Any of the terminal MUXout, MOD, TRIG1,or TRIG2 can be configured for the function. The terminal configuration is set as Output TOC Running. Also set the terminal as output inverted $O D$ (OD for open-drain) so the output will be high impedance in normal operation and act as ground in Fastlock. The suggested schematic for that feature is shown in Figure 12.

Figure 12. Suggested Schematic to Enable the Variable Loop Bandwidth Filter In Fastlock Mode

Table 2. Fastlock Settings: Charge Pump Gain and Fastlock Pin Status

PARAMETER	NORMAL OPERATION	FASTLOCK OPERATION
Charge Pump Gain	CPG	FL_CPG
Device Pin	High Impedance	Grounded

The resistor and the charge pump current are changed simultaneously so that the phase margin remains the same while the loop bandwidth is by a factor of K as shown in the following table:

Table 3. Suggested Equations to Calculate R2pLF

	PARAMETER	CALCULATION
FL_CPG	Charge Pump Gain in Fastlock	Typically use the highest value.
K	Loop Bandwidth Multiplier	$\mathrm{K}=$ sqrt(FL_CPG / CPG)
R2pLF	External Resistor	$\mathrm{R} 2 /(\mathrm{K}-1)$

Cycle slip reduction is another method that can also be used to speed up lock time by reducing cycle slipping. Cycle slipping typically occurs when the phase detector frequency exceeds about 100x the loop bandwidth of the PLL. Cycle slip reduction works in a different way than fastlock. To use this, the phase detector frequency is decreased while the charge pump current is simultaneously increased by the same factor. Although the loop bandwidth is unchanged, the ratio of the phase detector frequency to the loop bandwidth is, and this is helpful for cases when the phase detector frequency is high. Because cycle slip reduction changes the phase detector rate, it also impacts other things that are based on the phase detector rate, such as the fastlock timeout-counter and ramping controls.

7.3.9 Lock Detect and Charge Pump Voltage Monitor

The LMX2491 offers two methods to determine if the PLL is in lock: charge pump voltage monitoring and digital lock detect. These features can be used individually or in conjunction to give a reliable indication of when the PLL is in lock. The output of this detection can be routed to the TRIG1, TRIG2, MOD, or MUXout terminals.

7.3.9.1 Charge Pump Voltage Monitor

The charge pump voltage monitor allows the user to set low (CMP_THR_LOW) and high (CMP_THR_HIGH) thresholds for a comparator that monitors the charge pump output voltage.

Table 4. Desired Comparator Threshold Register Settings for Two Charge Pump Supplies

$\mathrm{V}_{\text {CP }}$	THRESHOLD	SUGGESTED LEVEL
3.3 V	CPM THR LOW $=(\text { Vthresh }+0.08) / 0.085$	6 for 0.5-V limit
	CPM THR HIGH $=($ Vthresh $-0 . \overline{96}) / 0.044$	42 for 2.8-V limit
5.0 V	$\begin{gathered} \text { CPM_THR_LOW } \\ =(\text { Vthresh }+0.056) / 0.137 \end{gathered}$	4 for 0.5-V limit
	CPM THR HIGH $=($ Vthresh -1.23) $/ 0.071$	46 for 4.5-V limit

7.3.9.2 Digital Lock Detect

Digital lock detect works by comparing the phase error as presented to the phase detector. If the phase error plus the delay as specified by the PFD_DLY bit is outside the tolerance as specified by DLD_TOL, then this comparison would be considered to be an error, otherwise passing. The DLD_ERR_CNT specifies how may errors are necessary to cause the circuit to consider the PLL to be unlocked. The DLD_PASS_CNT specifies how many passing comparisons are necessary to cause the PLL to be considered to be locked and also resets the count for the errors. The DLD_TOL value should be set to no more than half of a phase detector period plus the PFD_DLY value. The DLD_ERR_CNT and DLD_PASS_CNT values can be decreased to make the circuit more sensitive. If the circuit is too sensitive, then chattering can occur and the DLD_ERR_CNT, DLD_PASS_CNT, or DLD_TOL values should be increased.

NOTE

If the OSCin signal goes away and there is no noise or self-oscillation at the OSCin pin, then it is possible for the digital lock detect to indicate a locked state when the PLL really is not in lock. If this is a concern, then digital lock detect can be combined with charge pump voltage monitor to detect this situation.

7.3.10 FSK/PSK Modulation

Two-level FSK or PSK modulation can be created whenever a trigger event, as defined by the FSK_TRIG field is detected. This trigger can be defined as a transition on a terminal (TRIG1, TRIG2, MOD, or MUX̄out) or done purely in software. The RAMP_PM_EN bit defines the modulation to be either FSK or PSK and the FSK_DEV register determines the amount of the deviation. Remember that the FSK_DEV[32:0] field is programmed as the 2's complement of the actual desired FSK_DEV value. This modulation can be added to the modulation created from the ramping functions as well.

Table 5. How to Obtain Deviation for Two Types of Modulation

RAMP_PM_EN	MODULATION TYPE	DEVIATION
0	2 Level FSK	$\mathrm{f}_{\text {PD }} \times$ FSK_DEV $/ 2^{24}$
1	2 Level PSK	$360^{\circ} \times$ FSK_DEV $/ 2^{24}$

7.3.11 Ramping Functions

The LMX2491 supports a broad and flexible class of FMCW modulation formed by up to 8 linear ramps. When the ramping function is running, the denominator is fixed to a forced value of $2^{24}=16777216$. The waveform always starts at RAMP0 when the LSB of the PLL_N (R16) is written to. After it is set up, it starts at the initial frequency and have piecewise linear frequency modulation that deviates from this initial frequency as specified by the modulation. Each of the eight ramps can be individually programmed. Various settings are as follows:

Table 6. Register Descriptions of the Ramping Function

RAMP CHARACTERISTIC	PROGRAMMING FIELD NAME	RAMPx_LEN RAMPx_DLY
Ramp Length	The user programs the length of the ramp in phase detector cycles. If RAMPx_DLY $=1$, then each count of RAMPx_LEN is actually two phase detector cycles.	
Ramp Slope	RAMPx_LEN RAMPx_DLY RAMPx_INC	The user does not directly program slope of the line, but rather this is done by defining how long the ramp is and how much the fractional numerator is increased per phase detector cycle. The value for RAMPx_INC is calculated by taking the total expected increase in the frequency, expressed in terms of how much the fractional numerator increases, and dividing it by RAMPx_LEN. The value programmed into RAMPx_INC is actually the two's complement of the desired mathematical value.
Trigger for Next Ramp	RAMPx_NEXT_TRIG	The event that triggers the next ramp can be defined to be the ramp finishing or can wait for a trigger as defined by Trigger A, Trigger B, or Trigger C.
Next Ramp	RAMPx_NEXT	This sets the ramp that follows. Waveforms are constructed by defining a chain ramp segments. To make the waveform repeat, make RAMPx_NEXT point to the first ramp in the pattern.
Ramp Fastlock	RAMPx_FL	This allows the ramp to use a different charge pump current or use Fastlock
Ramp Flags	RAMPx_FLAG	This allows the ramp to set a flag that can be routed to external terminals to trigger other devices.

7.3.11.1 Ramp Count

If it is desired that the ramping waveform keep repeating, then all that is needed is to make the RAMPx_NEXT of the final ramp equal to the first ramp. This runs until the RAMP_EN bit is set to zero. If this is not desired, then one can use the RAMP_COUNT to specify how may times the specified pattern is to repeat.

7.3.11.2 Ramp Comparators and Ramp Limits

The ramp comparators and ramp limits use programable thresholds to allow the device to detect whenever the modulated waveform frequency crosses a limit as set by the user. The difference between these is that comparators set a flag to alert the user while a ramp limits prevent the frequency from going beyond the prescribed threshold. In either case, these thresholds are expressed by programming the Extended_Fractional_Numerator. CMPO and CMP1 are two separated comparators but they work in the same fashion.
Extended_Fractional_Numerator $=$ Fractional_Numerator $+\left(\mathrm{N}-\mathrm{N}^{*}\right) \times 2^{24}$

In Equation 1, N^{*} is the PLL feedback value without ramping. Fractional_Numerator and N are the new values as defined by the threshold frequency. The actual value programmed is the 2 's complement of Extended_Fractional_Numerator.

Table 7. Register Descriptions of Ramp Comparators and Limits

TYPE	PROGRAMMING BIT	THRESHOLD
Ramp Limits	RAMP_LIMIT_LOW	Lower Limit
	RAMP_LIMIT_HIGH	Upper Limit

7.3.12 Power-on-reset (POR)

The power-on-reset circuitry sets all the registers to a default state when the device is powered up. This same reset can be done by programming SWRST $=1$. In the programming section, the power on reset state is given for all the programmable fields.

7.3.13 Register Readback

The LMX2491 allows any of its registers to be read back. MOD, MUXout, TRIG1 or TRIG2 pin can be programmed to support register-readback serial-data output. To read back a certain register value, follow the following steps:

1. Set the R/W bit to 1 ; the data field contents are ignored.
2. Send the register to the device; readback serial data will be output starting at the $17^{\text {th }}$ clock cycle.

Figure 13. Register Readback Timing Diagram

7.4 Device Functional Modes

The two primary ways to use the LMX2491 are to run it to generate a set of frequencies

7.4.1 Continuous Frequency Generator

In this mode, the LMX2491 generates a single frequency that only changes when the N divider is programmed to a new value. In this mode, the RAMP_EN bit is set to 0 and the ramping controls are not used. The fractional denominator can be programmed to any value from 1 to 16777216. In this kind of application, the PLL is tuned to different channels, but at each channel, the goal is to generate a stable fixed frequency.

7.4.1.1 Integer Mode Operation

In integer mode operation, the VCO frequency needs to be an integer multiple of the phase detector frequency. This can be the case when the output frequency or frequencies are nicely related to the input frequency. As a rule of thumb, if this an be done with a phase detector of as high as the lesser of 10 MHz or the OSCin frequency, then this makes sense. To operate the device in integer mode, disable the fractional circuitry by programming the fractional order (FRAC_ORDER), dithering (FRAC_DITH), and numerator (FRAC_NUM) to zero.

Device Functional Modes (continued)

7.4.1.2 Fractional Mode Operation

In fractional mode, the output frequency does not need to be an integer multiple of the phase detector frequency. This makes sense when the channel spacing is more narrow or the input and output frequencies are not nicely related. There are several programmable controls for this such as the modulator order, fractional dithering, fractional numerator, and fractional denominator. There are many trade-offs with choosing these, but here are some guidelines

Table 8. Fractional Mode Register Descriptions and Recommendations

PARAMETER	FIELD NAME	HOW TO CHOOSE
		The first step is to find the fractional denominator. To do this, find the frequency that divides the phase detector frequency by the channel spacing. For instance, if the output ranges from 5000 to 5050 in $5-\mathrm{MHz}$ steps and the phase detector is 100 MHz, then the fractional denominator is $100 \mathrm{MHz} / 5=20$. So for a an output of
Fractional Numerator and Denominator	FRAC_NUM FRAC_DEN	M015 MHz, the N divider would be $50+3 / 20$. In this case, the fractional numerator is 3015 3 and the fractional denominator is 20. Sometimes when dithering is used, it makes sense to express this as a larger equivalent fraction. Note that if ramping is active, the fractional denominator is forced to 2 24.
Fractional Order	FRAC_ORDER	There are many trade-offs, but in general try either the 2nd or 3rd-order modulator as starting points. The 3rd-order modulator may give lower main spurs, but may generate others. Also if dithering is involved, it can generate phase noise.
Dithering	FRAC_DITH	Dithering can reduce some fractional spurs, but add noise. Consult application note AN-1879 Fractional N Frequency Synthesis for more details on this.

7.4.2 Modulated Waveform Generator

In this mode, the device can generate a broad class of frequency sweeping waveforms. The user can specify up to 8 linear segments to generate these waveforms. When the ramping function is running, the denominator is fixed to a forced value of $2^{24}=16777216$
In addition to the ramping functions, there is also the capability to use a terminal to add phase or frequency modulation that can be done by itself or added on top of the waveforms created by the ramp generation functions.

7.5 Programming

7.5.1 Loading Registers

The device is programmed using several 24-bit registers. Each register consists of a data field, an address field, and a R/W bit. The MSB is the R/W bit. 0 means register write while 1 means register read. The following 15 bits of the register are the address, followed by the next 8 bits of data. The user has the option to pull the LE terminal high after this data, or keep sending data and it applies this data to the next lower register. So instead of sending three registers of 24 bits each, one could send a single 40 -bit register with the 16 bits of address and 24 bits of data. For that matter, the entire device could be programmed as a single register if desired.

7.6 Register Maps

Registers are programmed in REVERSE order from highest to lowest. Registers NOT shown in this table or marked as reserved can be written as all Os unless otherwise stated. The POR value is the power on reset value that is assigned when the device is powered up or the SWRST bit is asserted.

Table 9. Register Map

REGISTER		D7	D6	D5	D4	D3	D2	D1	D0	POR
0	0	0	0	0	1	1	0	0	0	0x18
1	0x1	Reserved								0x00
2	0x2	0	0	0	0	0	SWRST	POW	N[1:0]	0x00
3-15	0x3-0xF	Reserved								-
16	0×10	PLL_N[7:0]								0x64

Register Maps (continued)

Table 9. Register Map (continued)

REGISTER		D7	D6	D5	D4	D3	D2	D1	D0	POR
17	0x11	PLL_N[15:8]								0x00
18	0×12	0	FRAC_ORDER[2:0]			FRAC_DITHER[1:0]		PLL_N[17:16]		0x00
19	0x13	FRAC_NUM[7:0]								0x00
20	0x14	FRAC_NUM[15:8]								0x00
21	0x15	FRAC_NUM[23:16]								0x00
22	0x16	FRAC_DEN[7:0]								0x00
23	0x17	FRAC_DEN[15:8]								0x00
24	0x18	FRAC_DEN[23:16]								0x00
25	0x19	PLL_R[7:0]								0x04
26	0x1A	PLL_R[15:8]								0x00
27	0x1B	0	FL_CSR[1:0]		PFD_DLY[1:0]		$\begin{gathered} \text { PLL_R- } \\ \text { DIFF }^{-} \end{gathered}$	0	OSC_2X	0x08
28	0x1C	0	0	CPPOL	CPG[4:0]					0x00
29	0x1D	FL_TOC[10:8]			FL_CPG[4:0]					0x00
30	0x1E	0	$\begin{gathered} \text { CPM } \\ \text { FLAGL } \end{gathered}$		CPM_THR_LOW[5:0]					0x0A
31	0x1F	0	$\begin{aligned} & \text { CPM } \\ & \text { FLAGM } \end{aligned}$		CPM_THR_HIGH[5:0]					0x32
32	0x20	FL_TOC[7:0]								0x00
33	0×21	DLD_PASS_CNT[7:0]								$0 \times 0 \mathrm{~F}$
34	0x22	DLD_TOL[2:0]			DLD_ERR_CNTR[4:0]					0x00
35	0x23	$\begin{aligned} & \mathrm{MOD} \\ & \mathrm{MUX[5]} \end{aligned}$	1	MUXout _MUX[5]	$\begin{aligned} & \hline \text { TRIG2 } \\ & \text { MUX[5] } \end{aligned}$	TRIG1 _MUX[5]	0	0	1	0x41
36	0x24	TRIG1_MUX[4:0]					TRIG1_PIN[2:0]			0×08
37	0x25	TRIG2_MUX[4:0]					TRIG2_PIN[2:0]			0x10
38	0x26	MOD_MUX[4:0]					MOD_PIN[2:0]			0×18
39	0×27	MUXout_MUX[4:0]					MUXout_PIN[2:0]			0×38
40-57	$\begin{gathered} 0 \times 28- \\ 0 \times 39 \end{gathered}$	Reserved								-
58	0x3A	RAMP_TRIG_A[3:0]				0	RAMP PM EN	RAMP CLK	RAMP_EN	0x00
59	0x3B	RAMP_TRIG_C[3:0]				RAMP_TRIG_B[3:0]				0x00
60	0x3C	RAMP_CMP0[7:0]								0x00
61	0x3D	RAMP_CMPO[15:8]								0x00
62	0x3E	RAMP_CMP0[23:16]								0x00
63	0x3F	RAMP_CMP0[31:24]								0x00
64	0x40	RAMP_CMPO_EN[7:0]								0x00
65	0x41	RAMP_CMP1[7:0]								0x00
66	0×42	RAMP_CMP1[15:8]								0x00
67	0x43	RAMP_CMP1[23:16]								0x00
68	0x44	RAMP_CMP1[31:24]								0x00
69	0x45	RAMP_CMP1_EN[7:0]								0x00
70	0x46	0	FSK	$\mathrm{G}[1: 0]$	$\begin{aligned} & \text { RAMP } \\ & \text { LIMH[32] } \end{aligned}$	RAMP LIML[32]	$\begin{gathered} \text { FSK } \\ \text { DEV[32] } \end{gathered}$	$\begin{aligned} & \text { RAMP- } \\ & \text { CMP1[32] } \end{aligned}$	RAMP CMPO[32]	0x08
71	0x47	FSK_DEV[7:0]								0x00
72	0x48	FSK_DEV[15:8]								0x00
73	0x49	FSK_DEV[23:16]								0x00
74	$0 \times 4 \mathrm{~A}$	FSK_DEV[31:24]								0x00

Register Maps (continued)

Table 9. Register Map (continued)

REGISTER		D7	D6	D5	D4	D3	D2	D1	D0	POR
75	0x4B	RAMP_LIMIT_LOW[7:0]								0x00
76	0x4C	RAMP_LIMIT_LOW[15:8]								0x00
77	0x4D	RAMP_LIMIT_LOW[23:16]								0x00
78	0x4E	RAMP_LIMIT_LOW[31:24]								0x00
79	0x4F	RAMP_LIMIT_HIGH[7:0]								0xFF
80	0x50	RAMP_LIMIT_HIGH[15:8]								0xFF
81	0×51	RAMP_LIMIT_HIGH[23:16]								0xFF
82	0×52	RAMP_LIMIT_HIGH[31:24]								0xFF
83	0x53	RAMP_COUNT[7:0]								0x00
84	0x54	RAMP_TRIG_INC[1:0]		RAMP AUTO	RAMP_COUNT[12:8]					0x00
85	0×55	Reserved								0x00
86	0x56	RAMP0_INC[7:0]								0x00
87	0×57	RAMPO_INC[15:8]								0x00
88	0x58	RAMPO_INC[23:16]								0x00
89	0x59	RAMPO_ DLY	RAMPO_	RAMPO_INC[29:24]						0x00
90	$0 \times 5 \mathrm{~A}$	RAMP0_LEN[7:0]								0x00
91	0x5B	RAMPO_LEN[15:8]								0x00
92	0x5C	RAMP0_NEXT[2:0]			$\begin{gathered} \text { RAMPO } \\ \text { NEXT_TRIG[1:0] } \end{gathered}$		$\begin{gathered} \text { RAMPO_ } \\ \text { RST }^{-} \\ \hline \end{gathered}$	RAMP0_FLAG[1:0]		0x00
93	0x5D	RAMP1_INC[7:0]								0x00
94	0x5E	RAMP1_INC[15:8]								0x00
95	0x5F	RAMP1_INC[23:16]								0x00
96	0x60	RAMP1 DLY	$\begin{gathered} \text { RAMP1_ } \\ \text { FL } \end{gathered}$	RAMP1_INC[29:24]						0x00
97	0x61	RAMP1_LEN[7:0]								0x00
98	0x62	RAMP1_LEN[15:8]								0x00
99	0x63	RAMP1_NEXT[2:0]			RAMP1 NEXT_TRIG[1:0]		$\begin{gathered} \text { RAMP1_ } \\ \text { RST } \end{gathered}$	RAMP1_FLAG[1:0]		0x00
100	0x64	RAMP2_INC[7:0]								0x00
101	0x65	RAMP2_INC[15:8]								0x00
102	0x66	RAMP2_INC[23:16]								0x00
103	0x67	RAMP2 DLY	$\begin{gathered} \text { RAMP2 } \\ \mathrm{FL}^{2} \\ \hline \end{gathered}$	RAMP2_INC[29:24]						0x00
104	0x68	RAMP2_LEN[7:0]								0x00
105	0x69	RAMP2_LEN[15:8]								0x00
106	0x6A	RAMP2_NEXT[2:0]					RAMP2_ RST	RAMP2_FLAG[1:0]		0x00
107	$0 \times 6 \mathrm{~B}$	RAMP3_INC[7:0]								0x00
108	0x6C	RAMP3_INC[15:8]								0x00
109	0x6D	RAMP3_INC[23:16]								0x00
110	0x6E	RAMP3 DLY	$\begin{gathered} \text { RAMP3 } \\ \text { FL } \end{gathered}$	RAMP3_INC[29:24]						0x00
111	0x6F	RAMP3_LEN[7:0]								0x00
112	0x70	RAMP3_LEN[15:8]								0x00
113	0x71	RAMP3_NEXT[2:0]					$\begin{gathered} \text { RAMP3_ } \\ \text { RST } \end{gathered}$	RAMP3_FLAG[1:0]		0x00

Register Maps (continued)

Table 9. Register Map (continued)

REGISTER		D7	D6	D5	D4	D3	D2	D1	D0	POR
114	0×72	RAMP4_INC[7:0]								0x00
115	0x73	RAMP4_INC[15:8]								0x00
116	0x74	RAMP4_INC[23:16]								0x00
117	0x75	RAMP4 DLY	RAMP4_ FL	RAMP4_INC[29:24]						0x00
118	0×76	RAMP4_LEN[7:0]								0x00
119	0x77	RAMP4_LEN[15:8]								0x00
120	0x78	RAMP4_NEXT[2:0]			RAMP4 NEXT_TRIG[1:0]		$\begin{gathered} \text { RAMP4- } \\ \text { RST }^{2} \end{gathered}$	RAMP4_FLAG[1:0]		0x00
121	0x79	RAMP5_INC[7:0]								0x00
122	$0 \times 7 \mathrm{~A}$	RAMP5_INC[15:8]								0x00
123	0x7B	RAMP5_INC[23:16]								0x00
124	0x7C	RAMP5 DLY	RAMP5_ FL		RAMP5_INC[29:24]					0x00
125	0x7D	RAMP5_LEN[7:0]								0x00
126	0x7E	RAMP5_LEN[15:8]								0x00
127	0x7F	RAMP5_NEXT[2:0]			RAMP5 NEXT_TRIG[1:0]		$\begin{gathered} \hline \text { RAMP5_- } \\ \text { RST } \end{gathered}$	RAMP5_FLAG[1:0]		0x00
128	0x80	RAMP6_INC[7:0]								0x00
129	0×81	RAMP6_INC[15:8]								0x00
130	0x82	RAMP6_INC[23:16]								0x00
131	0x83	RAMP6 DLY	$\begin{gathered} \text { RAMP6 } \\ \text { FL } \end{gathered}$		RAMP6_INC[29:24]					0x00
132	0×84	RAMP6_LEN[7:0]								0x00
133	0×85	RAMP6_LEN[15:8]								0x00
134	0x86	RAMP6_NEXT[2:0]			$\begin{gathered} \text { RAMP6- } \\ \text { NEXT_TRIG[1:0] } \end{gathered}$		$\begin{gathered} \hline \text { RAMP6_- } \\ \text { RST }^{2} \end{gathered}$	RAMP6_FLAG[1:0]		0x00
135	0×87	RAMP7_INC[7:0]								0x00
136	0x88	RAMP7_INC[15:8]								0x00
137	0x89	RAMP7_INC[23:16]								0x00
138	0x8A	RAMP7 DLY	$\begin{gathered} \text { RAMP7_ } \\ \text { FL } \end{gathered}$		RAMP7_INC[29:24]					0x00
139	$0 \times 8 \mathrm{~B}$	RAMP7_LEN[7:0]								0x00
140	$0 \times 8 \mathrm{C}$	RAMP7_LEN[15:8]								0x00
141	0x8D	RAMP7_NEXT[2:0]			NEX	$\overline{\mathrm{y}}[1: 0]$	$\begin{gathered} \text { RAMP7_- } \\ \text { RST }^{-} \end{gathered}$	RAN	AG[1:0]	0x00
$\begin{gathered} 142- \\ 32767 \end{gathered}$	$\begin{aligned} & 0 \times 8 \mathrm{E}- \\ & 0 \times 7 \mathrm{FFF} \end{aligned}$	Reserved								0x00

7.6.1 Register Field Descriptions

The following sections go through all the programmable fields and their states. Additional information is also available in the applications and feature descriptions sections as well. The POR column is the power on reset state that this field assumes if not programmed.

7.6.1.1 POWERDOWN and Reset Fields

Table 10. POWERDOWN and Reset Fields

| FIELD | LOCATION | POR | DESCRIPTION AND STATES | | |
| :---: | :---: | :---: | :--- | :---: | :---: | :---: |
| POWERDOWN
 $[1: 0]$ | | | | Value | POWERDOWN State |

7.6.1.2 Dividers and Fractional Controls

Table 11. Dividers and Fractional Controls

FIELD	LOCATION	POR	DESCRIPTION AND STATES		
$\begin{gathered} \text { PLL_N } \\ {[17: 0]} \\ \hline \end{gathered}$	$\begin{gathered} \text { R18[1] to } \\ \text { R16[0] } \\ \hline \end{gathered}$	16	Feedback N counter Divide value. Minimum count is 16. Maximum is 262132. Writing o the register R16 begins any ramp execution when RAMP_EN $=1$.		
$\text { FRAC_DITHER }_{[1: 0]}$	R18[3:2]	0	Dither used by the fractional modulator	Value	Dither
				0	Weak
				1	Medium
				2	Strong
				3	Disabled
	R18[6:4]	0	Fractional Modulator order	Value	Modulator Order
				0	Integer Mode
				1	1st Order Modulator
				2	2nd Order Modulator
				3	3rd Order Modulator
				4	4th Order Modulator
				5-7	Reserved
$\begin{gathered} \text { FRAC_NUM } \\ \text { [23:0] } \\ \hline \end{gathered}$	$\begin{aligned} & \text { R21[7] to } \\ & \text { R19[0] } \end{aligned}$	0	Fractional Numerator. This value should be less than or equal to the fractional denominator.		
$\begin{gathered} \text { FRAC_DEN } \\ \text { [23:0] } \end{gathered}$	$\begin{gathered} \text { R24[7] to } \\ \text { R22[0] } \\ \hline \end{gathered}$	0	Fractional Denominator. If RAMP_EN = 1, this field is ignored and the denominator is fixed to 2^{24}.		
$\begin{aligned} & \text { PLL_R } \\ & \text { [15:0] } \end{aligned}$	$\begin{aligned} & \text { R26[7] to } \\ & \text { R25[0] } \end{aligned}$	1	Reference Divider value. Selecting 1 bypasses counter.		
OSC_2X	R27[0]	0	Enables the Doubler before the Reference divider	Value	Doubler
				0	Disabled
				1	Enabled
PLL_R _DIFF	R27[2]	0	Enables the Differential R counter. This allows for higher OSCin frequencies, but restricts PLL_R to divides of $2,4,8$ or 16.	Value	R Divider
				0	Single-Ended
				1	Differential
$\begin{gathered} \text { PFD_DLY } \\ {[1: 0]} \end{gathered}$	R27[4:3]	1	Sets the charge pump minimum pulse width. This could potentially be a trade-off between fractional spurs and phase noise. Setting 1 is recommended for general use.	Value	Pulse Width
				0	Reserved
				1	860 ps
				2	1200 ps
				3	1500 ps
$\begin{aligned} & \mathrm{CPG} \\ & {[4: 0]} \end{aligned}$	R28[4:0]	0	Charge pump gain	Value	Charge Pump State
				0	Tri-State
				1	$100 \mu \mathrm{~A}$
				2	$200 \mu \mathrm{~A}$
			
				31	3100 /
CPPOL	R28[5]	0	Charge pump polarity is used to accommodate VCO with either polarity so that feedback of the PLL is always correct. IF reference (R) output is faster than feedback (N) output, R28[5]==0 THEN charge pump will source current R28[5]==1 THEN charge pump will sink current	Value	Charge Pump Polarity
				0	Positive
				1	Negative

7.6.1.2.1 Speed Up Controls (Cycle Slip Reduction and Fastlock)

Table 12. FastLock and Cycle Slip Reduction

FIELD	LOCATION	POR	DESCRIPTION	ND STA	
$\underset{[1: 0]}{\mathrm{FL}_{[1} \mathrm{CSR}}$	R27[6:5]	0	Cycle Slip Reduction (CSR) reduces the phase detector frequency by multiplying both the R and N counters by the CSR value while either the FastLock Timer is counting or the RAMPx_FL = 1 and the part is ramping. Care must be taken that the R and N divides remain inside the range of the counters. Cycle slip reduction is generally not recommended during ramping.	Value	CSR Value
				0	Disabled
				1	$x 2$
				2	x 4
				3	Reserved
$\underset{[4: 0]}{\mathrm{FL} \mathrm{CPG}}$	R29[4:0]	0	Charge pump gain only when Fast Lock Timer is counting down or a ramp is running with RAMPx_FL $=1$	Value	Fastlock Charge Pump Gain
				0	Tri-State
				1	$100 \mu \mathrm{~A}$
				2	$200 \mu \mathrm{~A}$
				\ldots	..
				31	$3100 \mu \mathrm{~A}$
$\begin{gathered} \text { FL_TOC } \\ {[10: 0]} \end{gathered}$	$\begin{gathered} \text { R29[7:5] } \\ \text { and } \\ \text { R32[7:0] } \end{gathered}$	0	Fast Lock Timer. This counter starts counting when the user writes the PLL_N(Register R16). During this time the FL_CPG gain is sent to the charge pump, and the FL_CSR shifts the R and N counters if enabled. When the counter terminates, the normal CPG is presented and the CSR undo's the shifts to give a normal PFD frequency.	Value	Fastlock Timer Value
				0	Disabled
				1	$1 \times 32=32$
				\ldots	
				2047	$2047 \times 32=65504$

7.6.2 Lock Detect and Charge Pump Monitoring

Table 13. Lock Detect and Charge Pump Monitor

FIELD	LOCATION	POR	DESCRIPTION AND STATES		
$\underset{\substack{\text { C5:0] }}}{\text { CPM_THR LOW }}$	R30[5:0]	0x0A	Charge pump voltage low threshold value. When the charge pump voltage is below this threshold, the LD goes low.	Value	Threshold
				0	Lowest
				\ldots	\ldots
				63	Highest
CPM_FLAGL	R30[6]	-	This is a read only bit. Low indicates the charge pump voltage is below the minimum threshold.	Value	Flag Indication
				0	Charge pump is below CPM_THR_LOW threshold
				1	Charge pump is above CPM_THR_LOW threshold
	R31[5:0]	0x32	Charge pump voltage high threshold value. When the charge pump voltage is above this threshold, the LD goes low.	Value	Threshold
				0	Lowest
				\ldots	\ldots
				63	Highest
CPM_FLAGH	R31[6]	-	This is a read only bit. Charge pump voltage high comparator reading. High indicates the charge pump voltage is above the maximum threshold.	Value	Threshold
				0	Charge pump is below CPM_THR_HIGH threshold
				1	Charge pump is above CPM_THR_HIGH threshold
$\begin{aligned} & \text { DLD_ PASS_CNT } \\ & {[7: 0]} \end{aligned}$	R33[7:0]	0xFF	Digital Lock Detect Filter amount. There mu and less than DLD_ERR edges before the smaller speeds the detection of lock, but also	be at le is consid llows a high	DLD_PASS_CNT good edges red in lock. Making this number er chance of DLD chatter.
$\underset{[4: 0]}{\text { DLD_CNT }}$	R34[4:0]	0	Digital Lock Detect error count. This is th DLD_TOL that are allowed before DLD is recommended value is 4 .	maximum -asserted	number of errors greater than Although the default is 0 , the
$\begin{gathered} \text { DLD } \overline{T O L O L} \\ {[2: 0]} \end{gathered}$	R34[7:5]	0	Digital Lock detect edge window. If both N and R edges are within this window, it is considered a "good" edge. Edges that are farther apart in time are considered "error" edges. Window choice depends on phase detector frequency, charge pump minimum pulse width, fractional modulator order and the users desired margin.	Value	Window and $\mathrm{f}_{\text {PD }}$ Frequency
				0	$1 \mathrm{~ns}\left(\mathrm{f}_{\mathrm{PD}}>130 \mathrm{MHz}\right.$)
				1	$\begin{gathered} 1.7 \mathrm{~ns}\left(80 \mathrm{MHz}<\mathrm{f}_{\mathrm{PD}} \leq 130\right. \\ \mathrm{MHz}) \\ \hline \end{gathered}$
				2	$3 \mathrm{~ns}\left(60 \mathrm{MHz}<\mathrm{f}_{\text {PD }} \leq 80 \mathrm{MHz}\right)$
				3	$6 \mathrm{~ns}\left(45 \mathrm{MHz}<\mathrm{f}_{\mathrm{PD}} \leq 60 \mathrm{MHz}\right)$
				4	$\begin{gathered} 10 \mathrm{~ns}\left(30 \mathrm{MHz}<\mathrm{f}_{\mathrm{PD}} \leq 45\right. \\ \mathrm{MHz}) \end{gathered}$
				5	$18 \mathrm{~ns}\left(\mathrm{f}_{\mathrm{PD}} \leq 30 \mathrm{MHz}\right.$)
				6 and 7	Reserved

7.6.3 TRIG1, TRIG2, MOD, and MUXout Pins

Table 14. TRIG1, TRIG2, MOD, and MUXout Terminal States

FIELD	LOCATION	POR	DESCRIPTION AND STATES		
$\underset{[2: 0]}{\text { TRIG1_PIN }}$	R36[2:0]	0	This is the terminal drive state for the TRIG1, TRIG2, MOD, and MUXout Pins	Value	Pin Drive State
				0	TRISTATE (default)
				1	Open Drain Output
				2	Pullup / Pulldown Output
$\underset{[2: 0]}{\text { TRIG2 }}$	R37[2:0]	0		3	Reserved
$\underset{[2: 0]}{\mathrm{MOD}} \mathrm{PIN}$	R38[2:0]	0		4	GND
$\underset{[2: 0]}{\text { MUXout_PIN }}$	R39[2:0]	0		5	Inverted Open Drain Output
				6	Inverted Pullup / Pulldown Output
				7	Input

Table 15. TRIG1, TRIG2, MOD, and MUXout Selections

FIELD	LOCATION	POR	DESCRIPTION AND STATES		

7.6.4 Ramping Functions

Table 16. Ramping Functions

FIELD	LOCATION	POR	DESCRIPTION AND STATES		
RAMP_EN	R58[0]	0	Enables the RAMP functions. When this bit is set, the Fractional Denominator is fixed to 2^{24}. RAMP execution begins at RAMP0 upon the PLL_N[7:0] write. The Ramp should be set up before RAMP_EN is set.	Value	Ramp
				0	Disabled
				1	Enabled
RAMP_CLK	R58[1]	0	RAMP clock input source. The ramp can be clocked by either the phase detector clock or the MOD terminal based on this selection.	Value	Source
				0	Phase Detector
				1	MOD Terminal
RAMP_PM_EN	R58[2]	0	Phase modulation enable.	Value	Modulation Type
				0	Frequency Modulation
				1	Phase Modulation
RAMP_TRIGA [3:0]	R58[7:4]	0	Trigger A, B, and C Sources	Value	Source
				0	Never Triggers (default)
				1	TRIG1 terminal rising edge
				2	TRIG2 terminal rising edge
				3	MOD terminal rising edge
				4	DLD Rising Edge
				5	CMP0 detected (level)
				6	RAMPx_CPG Rising edge
$\begin{gathered} \text { RAMP_TRIGB } \\ {[3: 0]} \\ \text { RAMP_TRIGC } \\ {[3: 0]} \end{gathered}$	R59[3:0]			7	RAMPx_FLAG0 Rising edge
	R59[7:4]			8	Always Triggered (level)
				9	TRIG1 terminal falling edge
				10	TRIG2 terminal falling edge
				11	MOD terminal falling edge
				12	DLD Falling Edge
				13	CMP1 detected (level)
				14	RAMPx_CPG Falling edge
				15	RAMPx_FLAG0 Falling edge
$\begin{gathered} \text { RAMP_CMPO } \\ {[32: 0]} \end{gathered}$	$\begin{gathered} \text { R70[0], } \\ \text { R63[7] to } \\ \text { R60[0] } \\ \hline \end{gathered}$	0	Twos compliment of Ramp Comparator 0 value. Be aware of that the MSB is in Register R70.		
$\underset{[7: 0]}{\text { RAMP_CMPO_EN }}$	R64[7:0]	0	Comparator 0 is active during each RAMP corresponding to the bit. Place a 1 for ramps it is active in and 0 for ramps it should be ignored. RAMP0 corresponds to R64[0], RAMP7 corresponds to R64[7]		
$\begin{gathered} \text { RAMP_CMP1 } \\ {[32: 0]} \end{gathered}$	$\begin{aligned} & \text { R70[1], } \\ & \text { R68[7] to } \\ & \text { R65[0] } \end{aligned}$	0	Twos compliment of Ramp Comparator 1 value. Be aware of that the MSB is in Register R70.		
$\underset{[7: 0]}{R A M P=C M P 1 _E N}$	R69[7:0]	0	Comparator 1 is active during each RAMP corresponding to the bit. Place a 1 for ramps it is active in and 0 for ramps it should be ignored. RAMP0 corresponds to R64[0], RAMP7 corresponds to R64[7].		
	$\begin{aligned} & \text { R76[4] to } \\ & \text { R75[3] } \end{aligned}$	0	Deviation trigger source. When this trigger source specified is active, the FSK_DEV value is applied.	Value	Trigger
				0	Always Triggered
				1	Trigger A
				2	Trigger B
				3	Trigger C
$\begin{gathered} \text { FSK_DEV } \\ \text { [32:0] } \end{gathered}$	$\begin{aligned} & \text { R70[2], } \\ & \text { R74[7] to } \\ & \text { R71[0] } \end{aligned}$	0	Twos compliment of the deviation value for This value should be written with 0 when not R70.	quency ed. Be	ulation and phase modulation. re that the MSB is in Register

Table 16. Ramping Functions (continued)

FIELD	LOCATION	POR	DESCRIPTION AND STATES		
	$\begin{gathered} \text { R70[3], } \\ \text { R78[7] to } \\ \text { R75[0] } \end{gathered}$	0	Twos compliment of the ramp lower limit that the ramp can not go below. The ramp limit occurs before any deviation values are included. Care must be taken if the deviation is used and the ramp limit must be set appropriately. Be aware that the MSB is in Register R70.		
RAMP_LIMIT_HIGH	R70[4], R82[7] to R79[0]	$\begin{gathered} 0 \times 1 F F \\ \text { FFFF } \\ \text { FF } \end{gathered}$	Twos compliment of the ramp higher limit that the ramp can not go above. The ramp limit occurs before any deviation values are included. Care must be taken if the deviation is used and the ramp limit must be set appropriately. Be aware that the MSB is in Register R70.		
$\begin{gathered} \text { RAMP_COUNT } \\ {[12: 0]} \end{gathered}$	$\begin{gathered} \text { R84[4] to } \\ \text { R83[0] } \end{gathered}$	0	Number of RAMPs that is executed before a trigger or ramp enable is brought down. Load zero if this feature is not used. Counter is automatically reset when RAMP_EN goes from 0 to 1 .		
RAMP_AUTO	R84[5]	0	Automatically clear RAMP_EN when RAMP Count hits terminal count.	Value	Ramp
				0	RAMP_EN unaffected by ramp counter (default)
				1	RAMP_EN automatically brought low when ramp counter terminal counts
$\underset{[1: 0]}{\text { RAMP_TRIG_INC }}$	R84[7:6]	0	Increment Trigger source for RAMP Counter. To disable ramp counter, load a count value of 0 .	Value	Source
				0	Increments occur on each ramp transition
				1	Increment occurs on Trigger A
				2	Increment occurs on Trigger B
				3	Increment occurs on Trigger C

7.6.5 Individual Ramp Controls

These bits apply for all eight ramp segments. For the field names, x can be $0,1,2,3,4,5,6$, or 7 .
Table 17. Individual Ramp Controls

FIELD	$\begin{aligned} & \text { LOCATI } \\ & \text { ON } \end{aligned}$	POR	DESCRIPTION AND STATES		
$\begin{gathered} \text { RAMPx } \\ \text { _INC[29:0] } \end{gathered}$	Varies	0	Signed ramp increment.		
RAMPx _FL	Varies	0	This enables fastlock and cycle slip reduction for ramp x .	Value	CPG
				0	Disabled
				1	Enabled
$\begin{gathered} \text { RAMPx } \\ \text { _DLY } \end{gathered}$	Varies	0	During this ramp, each increment takes $2 f_{\text {PD }}$ cycles per LEN clock instead of the normal $1 \mathrm{f}_{\mathrm{PD}}$ cycle. Slows the ramp by a factor of 2 .	Value	Clocks
				0	1 fPD clock per RAMP tick.(default)
				1	2 fPD clocks per RAMP tick.
RAMPx LEN	Varies	0	Number of $f_{P D}$ clocks (if DLY is 0) to continue to increment RAMP. $1=1$ cycle, $2=2$ cycles, etc. Maximum of 65536 cycles.		
$\begin{aligned} & \text { RAMPx } \\ & \text { _FLAG[1:0] } \end{aligned}$	Varies	0	General purpose FLAGs sent out of RAMP at the start of a ramp pattern.	Value	Flag
				0	Both FLAG1 and FLAG0 are zero. (default)
				1	FLAG0 is set, FLAG1 is clear
				2	FLAG0 is clear, FLAG1 is set
				3	Both FLAG0 and FLAG1 are set.
RAMPx _RST	Varies	0	Forces a clear of the ramp accumulator at the start of a ramp pattern. This is used to erase any accumulator creep that can occur depending on how the ramps are defined.	Value	Reset
				0	Disabled
				1	Enabled
$\begin{aligned} & \text { RAMPx- } \\ & \text { NEXT } \\ & \text { TRIG } \\ & {[1: 0]} \end{aligned}$	Varies	0	Determines what event is necessary to cause the state machine to go to the next ramp. It can be set to when the RAMPx_LEN counter reaches zero or one of the events for Triggers A, B, or C.	Value	Operation
				0	RAMPx_LEN
				1	Trigger A
				2	Trigger B
				3	Trigger C
$\begin{gathered} \text { RAMPx } \\ \text { _NEXT[2:0] } \end{gathered}$	Varies	0	The next RAMP to execute when the length counter times out		

8 Applications and Implementation

NOTE

Information in the following applications sections is not part of the Tl component specification, and TI does not warrant its accuracy or completeness. Tl's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LMX2491 can be used in a broad class of applications such as generating a single frequency for a high frequency clock, generating a tunable range of frequencies, or generating swept waveforms that can be used in applications such as radar.

8.2 Typical Application

Figure 14 is an example that could be used in a typical application.

Figure 14. Typical Schematic

Typical Application (continued)

8.2.1 Design Requirements

For these examples, it will be assumed that there is a 100 MHz input signal and the output frequency is between 1500 and 1520 MHz with various modulated waveforms.

Table 18. Design Requirements

PARAMETER	SYMBOL	VALUE	COMMENTS
Input frequency	$\mathrm{f}_{\text {OSCin }}$	100 MHz	
Phase detector frequency	f_{PD}	50 MHz	There are many possibilities, but this choice gives good performance.
VCO frequency	$\mathrm{f}_{\mathrm{VcO}}$	$1500-1520 \mathrm{MHz}$	In the different examples, the VCO frequency is actually changing. However, the same loop filter design can be used for all examples. Unmodulated VCO frequency or steady state VCO frequency without ramp is 1500 MHz.
VCO gain	$\mathrm{K}_{\mathrm{VCO}}$	$65 \mathrm{MHz/V}$	This parameter has nothing to do with the LMX2491, but is rather set by the external VCO choice.

8.2.2 Detailed Design Procedure

The first step is to calculate the reference divider (PLL_R) and feedback divider (PLL_N) values as shown in the table that follows.

Table 19. Detailed Design Procedure

$\begin{gathered} \text { PARAMETE } \\ \mathbf{R} \end{gathered}$	SYMBOL AND CALCULATIONS	VALUE	COMMENTS
Average VCO frequency	$\mathrm{f}_{\text {VCOavg }}=\left(\mathrm{f}_{\mathrm{VCO}} \mathrm{max} \times \mathrm{f}_{\text {VCOmin }}\right) / 2$	1510 MHz	To design a loop filter, one designs for a fixed VCO value, although it is understood that the VCO will tune around. This typical value is usually chosen as the average VCO frequency
VCO gain	$\mathrm{K}_{\mathrm{vco}}$	$65 \mathrm{MHz} / \mathrm{V}$	This parameter has nothing to do with LMX2491, but is rather set by the external VCO choice. In this case, it was the CVCO55BE-1400-1624 VCO.
VCO input capacitance	Cvco	120 pF	This parameter has nothing to do with LMX2491, but is rather set by the external VCO choice.
PLL loop bandwidth	LBW	380 kHz	This bandwidth is very wide to allow the VCO frequency to be modulated.
Charge pump gain	CPG	3.1 mA	Using the larger gain allows a wider loop bandwidth and gives good phase performance.
R-divider	PLL_R $=\mathrm{f}_{\text {OSCin }} / \mathrm{f}_{\text {PD }}$	2	
N-divider	PLL_N $=\mathrm{f}_{\mathrm{VCO}} / \mathrm{f}_{\text {PD }}$	96	
Loop filter components	C1_LF	68 pF	These were calculated by TI PLLatinum Simulator Tool.
	C2_LF	3.9 nF	
	C3_LF	150 pF	
	R2_LF	390Ω	
	R3_LF	150Ω	

Once a loop filter bandwidth is chosen, the external loop filter component values can be calculated with a tool such as PLLatinum Simulator Tool. It is also highly recommended to look at the EVM User's Guide. TICS Pro software is an excellent starting point and example to see how to program this device.

8.2.3 TICS Pro Basic Setup

In the following application examples, TICS Pro is used to program the device to implement different ramp profiles. The following procedure shows how to setup TICS Pro to put the device to lock to 1500 MHz without modulation or ramp.

Figure 15. TICS Pro

1. In the Menu bar, click Select Device and then select LMX2491.
2. In the Menu bar, click Default Configuration and then select Default Mode.
3. In the Page window, click PLL.
4. In the Main window, change R Divider value to 2 and VCO value to 1500 .
5. In the Menu bar, click USB Communications and then click Write All Registers. The device is now locked to 1500 MHz .
Other TICS Pro fundamentals:

- When a particular content in the Main window is moused-over, the Context window will show a brief description of that content.
- An alternative method to write all registers is press the Ctrl key and L key from the keyboard.
- Whenever a value is updated in the Main window, the Message window will show which register is being updated

8.2.4 Frequency Shift Keying Example

FSK operation requires an external input trigger signal at either MOD, TRIG1 or TRIG2 pin. In this example, MOD pin is selected as the Trigger A source. A 20 kHz square-wave clock will be applied to MOD pin to toggle the RF output to switch between 1500 MHz and 1502 MHz . That is, FSK frequency deviation is 2 MHz . The following register bits are required to set in order to initiate FSK operation.

Table 20. FSK Register Settings

PARAMETER	REGISTER BIT	SETTING	COMMENTS
Frequency deviation	FSK_DEV	$671089=2 \mathrm{MHz}$	Frequency deviation $=\left(f_{\text {PD }} \times\right.$ FSK_DEV) $/ 2^{24}$
MOD pin characteristic	MOD_PIN	$7=$ Input	Set MOD pin as an input pin
FSK trigger source	FSK_DEV_TRIG	$1=$ Trigger A	Use Trigger A to trigger FSK
Trigger source definition	RAMP_TRIGA	$3=$ MOD Rising Edge	When there is a L-to-H transition at MOD pin, the set amount of frequency deviation will be added to the unmodulated carrier
Enable ramp	RAMP_EN	$1=$ Enabled	Activate FSK operation

Figure 16. TICS Pro FSK Configuration

Figure 17. Frequency Shift Keying Example

8.2.5 Single Sawtooth Ramp Example

In this example, Trigger B is used to trigger the ramp generator of LMX2491 to general a single frequency ramp between 1500 MHz and 1520 MHz . Ramp duration is $50 \mu \mathrm{~s}$. The ramp will finish and return back to 1500 MHz immediately when the output frequency reaches 1520 MHz . Trigger 1 pin is assigned as Trigger B source.
Two ramp segments are setup to create this one-time single ramp. RAMPO is used to establish a trigger for the second ramp segment - RAMP1. When a trigger signal is received, RAMP1 will execute and bring the output frequency to 1520 MHz in $50 \mu \mathrm{~s}$.

Table 21. Single Sawtooth Ramp Register Settings

PARAMETER	REGISTER BIT	SETTING	COMMENTS
Set maximum ramp frequency threshold	RAMP_LIMIT_HIGH	$\begin{aligned} & 16777216=1550 \\ & \mathrm{MHz} \end{aligned}$	This threshold frequency can be anything above 1520 MHz . The fractional numerator is equal to 0 at 1550 MHz . The N-Divider difference between 1500 MHz and 1550 MHz is 1 . From Equation 1, this threshold is equal to $0+\left(1 \times 2^{24}\right)=16777216$.
Set minimum ramp frequency threshold	RAMP_LIMIT_LOW	$\begin{aligned} & 8573157376=1450 \\ & \mathrm{MHz} \end{aligned}$	This threshold frequency can be anything below 1500 MHz . This threshold is equal to -16777216 . This is a 33 -bit long register, 2's complement is therefore equal to 8573157376 .
Number of ramp in each ramp segment	RAMPO LEN, RAMP1_LEN	$2500=$ for ramp duration equals $50 \mu \mathrm{~s}$	The duration of RAMPO is not matter, for demonstration convenience, it has the same ramp duration as RAMP1. During ramp, LMX2491 ramp generator will increment its output frequency once per phase detector cycle. For ramp duration of 50 $\mu \mathrm{s}$ and $\mathrm{f}_{\mathrm{PD}}=50 \mathrm{MHz}$, there are $2500 \mathrm{ramps}[=50 \mu \mathrm{~s} /(1 / 50$ $\mathrm{MHz})]$.
Frequency change per ramp in RAMP0	RAMPO_INC	0	Since the output frequency would not change in RAMP0, there is no frequency increment.
Set next ramp segment	RAMPO_NEXT	1 = RAMP1	Set RAMP1 as the next ramp segment following RAMP0.
Set next ramp segment trigger source	RAMPO_NEXT_TRIG	$2=$ Trigger B	Use Trigger B to trigger the execution of RAMP1.
Rest fractional numerator	RAMPO_RST	1 = Reset	RAMP0 will execute again after RAMP1 is finished but RAMP1 does not end at 1500 MHz , a reset to the fractional numerator is required before RAMPO is executed.
Frequency change per ramp in RAMP1	RAMP1_INC	$2684=8 \mathrm{kHz}$	Between 1500 MHz and 1520 MHz , there are 2500 ramps. For each ramp, the output frequency will increment by $20 \mathrm{MHz} / 2500=8$ kHz . For $f_{\mathrm{PD}}=50 \mathrm{MHz}$ and fractional denominator $=2^{24}$, fractional numerator is incremented by a value of $\left(8 \mathrm{kHz} \times 2^{24}\right) / 50 \mathrm{MHz} \approx$ 2684.
Set next ramp segment	RAMP1_NEXT	0 = RAMP0	Set RAMP0 as the next ramp segment following RAMP1.
Set next ramp segment trigger source	RAMP1_NEXT_TRIG	$0=$ TOC Timeout	After RAMP1 is finished, the next ramp segment will execute immediately.
Trigger source definition	RAMP_TRIGB	1 = TRIG1 Rising Edge	When there is a L-to-H transition at TRIG1 pin, RAMP1 will execute.
TRIG1 pin characteristic	TRIG1_PIN	7 = Input	Set TRIG1 pin as an input pin.

It is recommended to use the Ramp Calculator in TICS Pro to create the ramp profile. TICS Pro will calculate the ramp-related register values automatically.

Figure 18. TICS Pro Ramp Calculator

Figure 19. Single Sawtooth Ramp Example

8.2.6 Continuous Sawtooth Ramp Example

This example shows how to generate a continuous sawtooth ramp. Only one ramp segment is necessary as it will loop back to itself.

Figure 20. Continuous Sawtooth Ramp Configuration

Figure 21. Continuous Sawtooth Ramp Example

8.2.7 Continuous Sawtooth Ramp with FSK Example

A ramp and FSK can coexist at the same time. Since the amount of FSK is added to the instantaneous carrier, the FSK will appear at the envelope of the ramp. Furthermore, a ramp and FSK are two independent operations, their register settings can be combined in a single configuration setting. That is, when RAMP_EN is enabled, both frequency ramp and FSK will be activated together.

Figure 22. Continuous Sawtooth Ramp with FSK Configuration

Figure 23. Continuous Sawtooth Ramp with FSK Example

8.2.8 Continuous Triangular Ramp Example

Two ramp segments are used to create this ramp pattern. RAMP0 ramps from 1500 MHz to 1520 MHz . RAMP1 brings the frequency back to 1500 MHz and then RAMPO starts over again. Since RAMP1 already brought the frequency back to 1500 MHz , which is also the start frequency of RAMPO, a reset to fractional numerator is not required.
Limits and Comparators

VCO Output Limit					Register Programming				
						sign	Decimal Value	2's Complement	
High	1550	MHz			High 0		16777216	16777216	
Low	1450	MHz	$$		Low 1		16777216	8573157376	
CMPO	1505	MHz	- \\| $\square \square \square \square \square \square$	Ramp Comparators			Decimal Value 1677721	2's Complement 1677721	
CMP1	1515	MHz	จ $\square \square \square \square \square \square \square$		CMP1 0		5033164	5033164	

Figure 24. Continuous Triangular Ramp Configuration
Ramp comparators are enabled so as to output flag signals when the threshold frequencies are hit. MOD pin is assigned for CMP0 while TRIG1 pin is assigned for CMP1. RAMP_CMP0_EN is equal to 3 because ramp segment 0 and 1 are monitored.

Figure 25. Ramp Comparators Configuration

Figure 26. Continuous Triangular Ramp Example

Figure 27. Ramp Comparators Output Flags

8.2.9 Continuous Trapezoid Ramp Example

This is a long-ramp example, the ramp duration is 2 ms . Since $f_{P D}=50 \mathrm{MHz}, 100000$ ramps are required for each ramp segment. However, LMX2491 supports up to a maximum ramp length (RAMPx_LEN) of 65536 only. There are two solutions to resolve this problem:

1. Reduce phase detector frequency. For example, reduce $f_{P D}$ to 25 MHz , then the required RAMPx_LEN becomes 50000.
2. Enable RAMPx_DLY. When this register bit is set, the ramp generator will ramp every 2 phase detector cycles instead of the normal $1 \mathrm{f}_{\mathrm{PD}}$ cycle. In this example, this bit is set and as a result, RAMPx_LEN is 50000.

Four ramp segments are used to construct the ramp pattern. Again there is no need to reset the fractional numerator because the last ramp end frequency is equal to the first ramp start frequency.

Figure 28. Continuous Trapezoid Ramp Configuration

Figure 29. Continuous Trapezoid Ramp Example

8.2.10 Arbitrary Waveform Ramp Example

An arbitrary ramp waveform can be easily constructed with the 8 ramp segments provided in LMX2491. LMX2491 also provides flag signals output to indicate the start of a ramp. This example used the MOD pin to initiate the ramp and used TRIG1 and TRIG2 as the output flags to indicate the status of the ramp.

Figure 30. Arbitrary Waveform Ramp Configuration

Figure 31. Arbitrary Waveform Ramp Example

Figure 32. Arbitrary Waveform Ramp Timing

9 Power Supply Recommendations

For power supplies, TI recommends placing 100 nF close to each of the power supply pins. If fractional spurs are a large concern, using a ferrite bead to each of these power supply pins can reduce spurs to a small degree.

10 Layout

10.1 Layout Guidelines

For layout examples, the EVM instructions are the most comprehensive document. In general, the layout guidelines are similar to most other PLL devices. For the high frequency Fin pin, it is recommended to use 0402 components and match the trace width to these pad sizes. Also the same needs to be done on the Fin ${ }^{*}$ pin. If layout is easier to route the signal to Fin* instead of Fin, then this is acceptable as well.

10.2 Layout Example

Figure 33. Layout Recommendation

11 器件和文档支持

11.1 器件支持

11．1．1 开发支持
德州仪器（TI）提供多款开发辅助软件工具，包括 TICS Pro 编程辅助工具，PLLatinum Simulator Tool 回路滤波器设计辅助工具以及相位噪声／毛刺仿真辅助工具。所有这些工具均可从以下网址获得：www．ti．com。

11.2 文档支持

11．2．1 相关文档

相关文档如下：

- 《AN－1879 分数 N 频率合成》（文献编号：SNAA062）
- 《PLL 性能仿真和设计》

11.3 接收文档更新通知

要接收文档更新通知，请导航至德州仪器 TI．com．cn 上的器件产品文件夹。请单击右上角的通知我进行注册，即可收到任意产品信息更改每周摘要。有关更改的详细信息，请查看任意已修订文档中包含的修订历史记录。

11.4 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商＂按照原样＂提供。这些内容并不构成 TI 技术规范，并且不一定反映 TI 的观点；请参阅 TI 的《使用条款》。
TI E2ETM 在线社区 TI 的工程师对工程师（E2E）社区。此社区的创建目的在于促进工程师之间的协作。在 e2e．ti．com 中，您可以咨询问题，分享知识，拓展思路并与同行工程师一道帮助解决问题。
设计支持 $T I$ 参考设计支持可帮助您快速查找有帮助的 E2E 论坛，设计支持工具以及技术支持的联系信息。

11.5 商标

E2E is a trademark of Texas Instruments．
All other trademarks are the property of their respective owners．
11.6 静电放电警告

ESD 可能会损坏该集成电路。德州仪器（TI）建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序，可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级，大至整个器件故障。精密的集成电路可能更容易受到损坏，这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11．7 Glossary

SLYZ022－TI Glossary．
This glossary lists and explains terms，acronyms，and definitions．

12 机械，封装和可订购信息

以下页中包括机械封装，封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据发生变化时，我们可能不会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本，请参阅左侧的导航栏。

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
LMX2491RTWR	ACTIVE	WQFN	RTW	24	1000	RoHS \& Green	SN	Level-3-260C-168 HR	-40 to 85	X2491	Samples
LMX2491RTWT	ACTIVE	WQFN	RTW	24	250	RoHS \& Green	SN	Level-3-260C-168 HR	-40 to 85	X2491	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as " Pb -Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

Reel Width (W1)
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
LMX2491RTWR	WQFN	RTW	24	1000	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LMX2491RTWT	WQFN	RTW	24	250	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMX2491RTWR	WQFN	RTW	24	1000	208.0	191.0	35.0
LMX2491RTWT	WQFN	RTW	24	250	208.0	191.0	35.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL

78\% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE

NOTES: (continued)
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI＂按原样＂提供技术和可靠性数据（包括数据表），设计资源（包括参考设计），应用或其他设计建议，网络工具，安全信息和其他资源不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性，某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：（1）针对您的应用选择合适的 TI 产品，（2）设计，验证并测试您的应用，（3）确保您的应用满足相应标准以及任何其他功能安全，信息安全，监管或其他要求。
这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔，损害，成本，损失和债务，TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti．com 上其他适用条款／TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址：Texas Instruments，Post Office Box 655303，Dallas，Texas 75265
Copyright © 2022 ，德州仪器（TI）公司

