

Now

VSP5324-Q1

ZHCSH90A - JANUARY 2015-REVISED DECEMBER 2017

VSP5324-Q1 4 通道、12 位、80MSPS ADC

- 特性 1
- 适用于汽车类 应用
- 具有符合 AEC-Q100 标准的下列结果 .
 - 器件温度等级 2: -40°C 至 +105°C
 - 器件人体放电模型(HBM) ESD 分类等级 2
 - 器件充电模型 (CDM) ESD 分类等级 C4B
- 针对低功耗而设计:
 - 单信道接口: 50MSPS 时,每通道 65mW
 - 双信道接口: 80MSPS 时,每通道 82mW
- 动态性能: •
 - 5MHz 输入频率, 80MSPS
 - 信噪比 (SNR): 70dBFS
 - 无杂散动态范围 (SFDR): 85dBc
- 串行低压差分信令 (LVDS) 模数转换器 (ADC) 数据 输出
- 多种 LVDS 测试模式以验证数据捕捉
- 封装: 9mm x 9mm VQFN-64
- 工作温度: -40°C 至 +105°C

- 2 应用
- 深度传感: •
 - 位置和接近传感
 - 3D 扫描
 - 3D 机器视觉 _
 - 安全和监控
 - 手势控制

3 说明

VSP5324-Q1 器件是一款低功耗、12 位、80MSPS、 四通道模数转换器 (ADC)。低功耗和在一个紧凑封装 内的多通道集成使得此器件对于 3D 时差测距 (ToF) 系 统具有很大的吸引力。

串行低压差分信令 (LVDS) 输出减少了接口线路的数量 并实现高度系统集成。

此器件采用紧凑型 9mm x 9mm VQFN-64 封装。

器件信息(1)

器件型号	封装	封装尺寸(标称值)
VSP5324-Q1	VQFN (64)	9.00mm x 9.00mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

信噪比与输入信号频率间的关系

目录

1	特性	1
2	应用	1
3	说明	1
4	修订历史记录	2
5	Pin Configuration and Functions	3
6	Specifications	6
	6.1 Absolute Maximum Ratings	<mark>6</mark>
	6.2 ESD Ratings	<mark>6</mark>
	6.3 Recommended Operating Conditions	<mark>6</mark>
	6.4 Thermal Information	7
	6.5 Electrical Characteristics: Dynamic Performan	ce 7
	6.6 Electrical Characteristics: General	8
	6.7 Electrical Characteristics: Digital	9
	6.8 Timing Requirements	9
	6.9 LVDS Timing at Different Sampling Frequenci (One-Lane Interface, 12x Serialization)	es 10
	6.10 LVDS Timing at Different Sampling Frequence (Two-Lane Interface, 6x Serialization)	cies 10
	6.11 Serial Interface Timing Requirements	10
	6.12 Typical Characteristics	12
7	Detailed Description	19
	7.1 Overview	19

	7.2	Functional Block Diagrams 1	19
	7.3	Feature Description	20
	7.4	Device Functional Modes	26
	7.5	Programming	27
	7.6	Register Maps	29
8	Appl	ication and Implementation	51
	8.1	Application Information	51
	8.2	Typical Application	51
9	Powe	er Supply Recommendations	53
10	Layo	out 5	53
	10.1	Layout Guidelines	53
	10.2	Layout Example	54
11	器件	和文档支持 5	55
	11.1	器件支持	55
	11.2	文档支持	56
	11.3	接收文档更新通知	56
	11.4	社区资源	56
	11.5	商标	57
	11.6	静电放电警告	57
	11.7	Glossary	57
12	机械	、封装和可订购信息5	57

4 修订历史记录

汪: 乙丽版本的贝码可能与当丽版本有用

Changes from Original (December 2014) to Revision A

Page

•	已更改 将器件可见性从定制更改为目录	1
•	已添加接收文档更新通知和社区资源	56

5 Pin Configuration and Functions

NC - No internal connection

Pin Functions

PIN		TYPE	DESCRIPTION	
NAME	NO.	TTPE	DESCRIPTION	
ADCLKM	24	Digital output	Negative LVDS differential frame clock output pin	
ADCLKP	23	Digital output	Positive LVDS differential frame clock output pin	
	3			
	6			
	9		Analog ground pin	
AGND	37	Ground		
	40			
	43			
	46			
	50			
AVDD	57	Supply	Analog supply pin, 1.8 V	
	60			
CLKM	59	Analog input	Negative clock input Differential clock input: apply differential clocks (sine wave, LVPECL, and LVDS) to CLKP and CLKM. Single-ended clock input: apply a CMOS clock to CLKP and tie CLKM to ground.	

www.ti.com.cn

NSTRUMENTS

Texas

Pin Functions (continued)

PIN		TYPE	DECODIDION	
NAME	NO.	IYPE	DESCRIPTION	
CLKP	58	Analog input	Positive clock input Differential clock input: apply differential clocks (sine wave, LVPECL, and LVDS) to CLKP and CLKM. Single-ended clock input: apply a CMOS clock to CLKP and tie CLKM to ground.	
CS	61	Digital input	Serial interface enable pin	
IN1_M	2	Analog input	Channel 1 negative differential analog input	
IN1_P	1	Analog input	Channel 1 positive differential analog input	
IN2_M	8	Analog input	Channel 2 negative differential analog input	
IN2_P	7	Analog input	Channel 2 positive differential analog input	
IN3_M	42	Analog input	Channel 3 negative differential analog input	
IN3 P	41	Analog input	Channel 3 positive differential analog input	
IN4 M	48	Analog input	Channel 4 negative differential analog input	
IN4 P	47	Analog input	Channel 4 positive differential analog input	
INT/EXT	56	Digital input	Internal and external reference control input pin Logic high: device uses internal reference Logic low: device uses external reference	
LCLKM	26	Digital output	Negative LVDS differential bit clock output pin	
LCLKP	25	Digital output	Positive LVDS differential bit clock output pin	
	12	·		
LGND	14	Ground	Digital ground pin	
	36			
LVDD	35	Supply	Digital and LVDS supply pin, 1.8 V	
	4			
	5			
	10			
	11			
NC	38		Unused: do not connect	
	39			
	44			
	45	_		
	51			
OUT1A_M	16	Interface	Channel 1A negative LVDS differential output pin. This pin can be used with either one- or two-lane interface.	
OUT1A_P	15	Interface	Channel 1A positive LVDS differential output pin. This pin can be used with either one- or two-lane interface.	
OUT1B_M	18	Interface	Channel 1B negative LVDS differential output pin. This pin is used with two-lane interface. In one-lane interface, this pin is unused and must be floated without a $100-\Omega$ termination.	
OUT1B_P	17	Interface	Channel 1B positive LVDS differential output pin. This pin is used with two-lane interface. In one-lane interface, this pin is unused and must be floated without a $100-\Omega$ termination.	
OUT2A_M	20	Interface	Channel 2A negative LVDS differential output pin. This pin can be used with either one- or two-lane interface.	
OUT2A_P	19	Interface	Channel 2A positive LVDS differential output pin. This pin can be used with either one- or two-lane interface.	
OUT2B_M	22	Interface	Channel 2B negative LVDS differential output pin. This pin is used with two-lane interface. In one-lane interface, this pin is unused and must be floated without a $100-\Omega$ termination.	
OUT2B_P	21	Interface	Channel 2B positive LVDS differential output pin. This pin is used with two-lane interface. In one-lane interface, this pin is unused and must be floated without a $100-\Omega$ termination.	
OUT3A_M	30	Interface	Channel 3A negative LVDS differential output pin. This pin can be used with either one- or two-lane interface.	
OUT3A_P	29	Interface	Channel 3A positive LVDS differential output pin. This pin can be used with either one- or two-lane interface.	

www.ti.com.cn

Pin Functions (continued)

PIN		тург	DESCRIPTION	
NAME	NO.	TIPE	DESCRIPTION	
OUT3B_M	28	Interface	Channel 3B negative LVDS differential output pin. This pin is used with two-lane interface. In one-lane interface, this pin is unused and must be floated without a $100-\Omega$ termination.	
OUT3B_P	27	Interface	Channel 3B positive LVDS differential output pin. This pin is used with two-lane interface. n one-lane interface, this pin is unused and must be floated without a 100- Ω termination.	
OUT4A_M	34	Interface	Channel 4A negative LVDS differential output pin. This pin can be used with either one- or two-lane interface.	
OUT4A_P	33	Interface	Channel 4A positive LVDS differential output pin. This pin can be used with either one- or two-lane interface.	
OUT4B_M	32	Interface	Channel 4B negative LVDS differential output pin. This pin is used with two-lane interface. In one-lane interface, this pin is unused and must be floated without a $100-\Omega$ termination.	
OUT4B_P	31	Interface	Channel 4B positive LVDS differential output pin. This pin is used with two-lane interface. In one-lane interface, this pin is unused and must be floated without a $100-\Omega$ termination.	
PD	13	Digital input	Power-down control input pin Logic high: device is in power-down state; logic low: normal operation	
REFB	54	Analog input	Reference bottom voltage pin Internal reference mode: the reference bottom voltage (0.45 V) is output on this pin. External reference mode: the reference bottom voltage (0.45 V) must be externally applied to this pin. There are no required decoupling capacitors on this pin.	
REFT	55	Analog input	Reference top voltage pin Internal reference mode: the reference top voltage (1.45 V) is output on this pin. External reference mode: reference top voltage (1.45 V) must be externally applied to this pin. There are no required decoupling capacitors on this pin.	
RESET	64	Digital input	Serial interface reset pin; active low	
SCLK	63	Digital input	Serial interface clock pin	
SDATA	62	Digital input	Serial interface data pin	
SDOUT	52	Digital output	Serial interface readout pin	
SYNC	49	Digital input	Control input pin synchronizes test patterns across channels. When unused, this pin should be tied to ground.	
VCM	53	Analog output	Common-mode voltage pin Internal reference mode: common-mode voltage output pin, 0.95 V. External reference mode: reference voltage must be externally applied to this pin.	

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range, unless otherwise noted.⁽¹⁾

		MIN	MAX	UNIT
Supply voltogo	AVDD	-0.3	2.2	V
Supply voltage	LVDD	-0.3	2.2	V
Ground voltage differences	Between AGND and LGND	-0.3	0.3	V
	Digital outputs	-0.3	lesser of 2.2 or (LVDD + 0.3)	V
Input voltage	Digital inputs (CLKN, CLKP ⁽²⁾ , RESET, SCLK, SDATA, CS, SYNC, PD, INT/EXT)	-0.3	lesser of 2.2 or (LVDD + 0.3)	V
	Analog inputs	-0.3	lesser of 2.2 or (LVDD + 0.3)	V
Input current (all pins e	except supplies)	-10	-10 10	
Ambient temperature, under bias, T _A		-40	105	°C
Junction temperature, T _J 12		125	°C	
Storage temperature,	prage temperature, T _{sto} –55 125		°C	

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) When AVDD is turned off, TI recommends switching off the input clock (or ensuring the voltage on CLKP, CLKN is less than |0.3 V|). This setting prevents the ESD protection diodes at the clock input pins from turning on.

6.2 ESD Ratings

				VALUE	UNIT
V _(ESD)		Human body model (HBM), per AEC Q100-002 ⁽¹⁾		±2000	
	Electrostatic discharge	Charged device model (CDM), per AEC Q100-011	Other pins	±500	V
			Corner pins (1, 16, 17, 32, 33, 48, 49, and 64)	±750	•

(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

Over operating free-air temperature range, unless otherwise noted.

			MIN	NOM	MAX	UNIT
V _(AVDD)	Analog supply voltage		1.7	1.8	1.9	V
V _(LVDD)	Digital supply voltage		1.7	1.8	1.9	V
V _{ID}	Differential input voltage			2		V _{PP}
VIC	Input common-mode voltag	e		$V_{IC} \pm 50$		mV
	Innut ala de acompla rata	Two-lane LVDS interface	10		80	MSPS
	input clock sample rate	One-lane LVDS interface	10		50	MSPS
		Sine wave, ac-coupled		1.5		V _{PP}
(V _{CLKP} –	Input clock amplitude differential	LVPECL, ac-coupled		1.6		V _{PP}
V _{CLKM})		LVDS, ac-coupled		0.7		V _{PP}
		LVCMOS, single-ended, ac-coupled		3.3		V
	Duty cycle		35%	50%	65%	
C _{LOAD}	Maximum external capacita	nce from each output pin to DRGND		5		pF
R _{LOAD}	Differential resistance betwee	een LVDS output pairs (LVDS mode)		100		Ω
T _A	Operating free-air		-40		105	°C

6.4 Thermal Information

		VSP5324-Q1	
	THERMAL METRIC ⁽¹⁾	RGC (VQFN)	UNIT
		64 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	20.6	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	6.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	2.7	°C/W
ΨJT	Junction-to-top characterization parameter	0.2	°C/W
Ψјв	Junction-to-board characterization parameter	2.6	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	0.4	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics: Dynamic Performance

Typical values are at 25°C, $V_{(AVDD)} = 1.8$ V, $V_{(LVDD)} = 1.8$ V, sampling frequency = 80 MSPS, 50% clock duty cycle, and -1-dBFS differential analog input, unless otherwise noted. Minimum and maximum values are across the full temperature range of $T_{MIN} = -40$ °C to $T_{MAX} = 105$ °C, $V_{(AVDD)} = 1.8$ V, $V_{(LVDD)} = 1.8$ V.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Resolution				12	Bits
CNID	Signal to point ratio	$f_{\rm IN} = 5 \rm MHz$	68	70		dBFS
SINK	Signal-to-hoise ratio	$f_{IN} = 30 \text{ MHz}$		69.5		dBFS
	Circulto union and distortion ratio	$f_{\rm IN} = 5 \rm MHz$		69.8		dBFS
SINAD	Signal-to-hoise and distortion ratio	$f_{IN} = 30 \text{ MHz}$		69.2		dBFS
SEDB	Spurious free dynamic renge	$f_{\rm IN} = 5 \ {\rm MHz}$	64	85		dBc
SFDR	Spunous-free dynamic range	$f_{IN} = 30 \text{ MHz}$		82		dBc
	Total harmonia distortion	$f_{\rm IN} = 5 \rm MHz$	63	81.5		dBc
שחו	Total harmonic distortion	$f_{IN} = 30 \text{ MHz}$		78		dBc
	Casand harmonic distortion	$f_{\rm IN} = 5 \ {\rm MHz}$	64	90		dBc
ΠU2	Second-narmonic distortion	$f_{IN} = 30 \text{ MHz}$		86		dBc
	Third hormonic distortion	$f_{\rm IN} = 5 \rm MHz$	64	85		dBc
пра		$f_{IN} = 30 \text{ MHz}$		82		dBc
	Worst spur	$f_{\rm IN} = 5 \rm MHz$		91		dBc
	(other than second and third harmonics)	$f_{IN} = 30 \text{ MHz}$		83		dBc
IMD	Two-tone intermodulation distortion	f1 = 8 MHz, $f2 = 10$ MHz, each tone at -7 dBFS		83		dBc
	Crosstalk (far channel)	10-MHz full-scale signal on aggressor channel; no input signal applied on victim channel		95		dB
	Input overload recovery	Recovery to within 1% (of full-scale) for 6-dB overload with sine-wave input		1		Clock cycle
PSRR	AC power-supply rejection ratio	For 50-mV _{PP} signal on AVDD supply, up to 10 MHz, no signal applied to analog inputs		50		dB
ENOB	Effective number of bits	$f_{\rm IN} = 5 \rm MHz$		11.3		Bits
DNL	Differential nonlinearity	$f_{\rm IN} = 5 \rm MHz$	-0.8	±0.2	0.8	LSBs
INL	Integral nonlinearity	$f_{IN} = 5 \text{ MHz}$		±0.3	1	LSBs

VSP5324-Q1

ZHCSH90A - JANUARY 2015-REVISED DECEMBER 2017

www.ti.com.cn

6.6 Electrical Characteristics: General

Typical values are at 25°C, $V_{(AVDD)} = 1.8$ V, $V_{(LVDD)} = 1.8$ V, sampling frequency = 80 MSPS, 50% clock duty cycle, and -1-dBFS differential analog input, unless otherwise noted. Minimum and maximum values are across the full temperature range of $T_{MIN} = -40$ °C to $T_{MAX} = 105$ °C, $V_{(AVDD)} = 1.8$ V, $V_{(LVDD)} = 1.8$ V.

	PARA	METER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG	INx_PUT		_ <u>_</u>			ų	
		Voltage range			2		V _{PP}
V _{ID}	Differential	Resistance, at dc			2		kΩ
	input	PARAMETER UT rential Voltage range Resistance, at dc Capacitance, at dc og input bandwidth og input common-mode current input pin) Imon-mode output voltage 1 output current capability et error error resulting from internal ence inaccuracy alone error of channel alone Y og supply current og power al power LVDS interface I power			2.2		pF
	Analog input	bandwidth			550		MHz
	Analog input (per input pin)	common-mode current			1.6		μΑ/ MSPS
V _{OC}	Common-mod	de output voltage			0.95		V
I _{O(VCM)}	VCM output o	urrent capability			5		mA
DC ACCU	RACY						
	Offset error				±5	±20	mV
EGREF	Gain error resulting from internal reference inaccuracy alone			-2		2	%FS
EGCHAN	Gain error of	channel alone			0.5		%FS
POWER S	UPPLY						
			80 MSPS		114	135	mA
IAVDD	Analog supply	/ current	50 MSPS		86		mA
	Output huffer		Two-lane LVDS interface, 80 MSPS, 350-mV swing with 100- Ω external termination		69	85	mA
ILVDD	Output buller	supply current	One-lane LVDS interface, 50 MSPS, 350-mV swing with 100-Ω external termination		56		mA
			80 MSPS		205		mW
	Analog power	-	50 MSPS		155		mW
			Two-lane LVDS interface, 80 MSPS, 350-mV swing with 100-Ω external termination		124		mW
Digital power LVDS interface		LVDS Interface	One-lane LVDS interface, 50 MSPS, 350-mV swing with 100-Ω external termination		101		mW
			80 MSPS, two-lane LVDS interface		329		mW
	rotar power		50 MSPS, one-lane LVDS interface		256		mW
	Global power	-down				40	mW
	Standby powe	er			135		mW

6.7 Electrical Characteristics: Digital

At $V_{(AVDD)} = 1.8$ V, $V_{(LVDD)} = 1.8$ V, unless otherwise noted. The DC specifications refer to the condition where the digital outputs do not switch, but are tied permanently to a valid logic level 0 or 1.

	· · · ·					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL	. INX_PUTS (RESET, SCLK, SDA	ATA, CS, PDN, SYNC, INT/EXT)				
VIH	High-level input voltage	All digital inputs support 1.8-V and 3.3-V CMOS logic levels	> 1.3			V
V _{IL}	Low-level input voltage	All digital inputs support 1.8-V and 3.3-V CMOS logic levels			< 0.4	V
I _{IH}	High-level input current	V _{IH} = 1.8 V		6		μA
IIL	Low-level input current	$V_{IL} = 0 V$		< 0.1		μA
DIGITAL	OUTPUTS					
V _{OH}	High-level output voltage	CMOS interface (SDOUT)	AVDD - 0.1			V
V _{OL}	Low-level output voltage	CMOS interface (SDOUT)			0.1	V
V _{OD(H)}	High-level output differential voltage	LVDS interface (OUTP, OUTM, LCLKP, LCLKM, ADCLKP, ADCLKM), with an external 100- Ω termination	245		420	mV
V _{OD(L)}	Low-level output differential voltage	LVDS interface (OUTP, OUTM, LCLKP, LCLKM, ADCLKP, ADCLKM), with an external 100- Ω termination	-420		-245	mV
V _{OC}	Output common-mode voltage			1.05		V

6.8 Timing Requirements⁽¹⁾

Typical values are at 25°C, $V_{(AVDD)} = 1.8$ V, $V_{(LVDD)} = 1.8$ V, sampling frequency = 80 MSPS, sine wave input clock, $C_{(LOAD)} = 5$ pF, and $R_{(LOAD)} = 100 \Omega$, unless otherwise noted. Minimum and maximum values are across the full temperature range of $T_{MIN} = -40$ °C to $T_{MAX} = 105$ °C, $V_{(AVDD)} = 1.8$ V, and $V_{(LVDD)} = 1.7$ V to 1.9 V.

			MIN	NOM	MAX	UNIT
	Aperture delay			4		ns
	Aperture delay matching ⁽²⁾⁽³⁾	Between the two channels of the same device		±175		ps
	Aperture delay variation	Between two devices at the same temperature and LVDD supply		2.5		ns
	Aperture jitter (RMS)			320		fs
	Wakoup time	Time to valid data after coming out of partial power-down mode		5	50	μs
	wakeup iine	Time to valid data after coming out of global power-down mode		100	500	μs
		One-lane LVDS output interface		11		Clock cycles
	ADC latency	Two-lane LVDS output interface		15		Clock cycles
t _{su}	Data setup time	Data valid to zero crossing of LCLKP, 80 MSPS, two-lane LVDS	0.61			ns
t _h	Data hold time ⁽⁴⁾	Zero crossing of LCLKP to data becoming invalid, 80 MSPS, two-lane LVDS	0.74			ns
	Clock propagation delay	Input clock rising edge crossover to frame clock rising edge crossover, two-lane LVDS for $10 \le f_S \le 80$ MSPS		(11 / 12) × t _S + t _d		ns
чр	CIOCK Propagation delay	Input clock rising edge crossover to frame clock rising edge crossover, one-lane LVDS for $10 \le f_S \le 65$ MSPS		$(9 / 12) \times t_{S} + t_{d}$		ns
t _d	Delay time		6.8	9	11.8	ns

(1) Timing parameters are ensured by design and characterization and are not tested in production.

(2) C_(LOAD) is the effective external single-ended load capacitance between each output pin and ground.

(3) R_(LOAD) is the differential load resistance between the LVDS output pair.

(4) Data valid refers to a logic high of 100 mV and a logic low of -100 mV.

Copyright © 2015–2017, Texas Instruments Incorporated

Timing Requirements⁽¹⁾ (continued)

Typical values are at 25°C, $V_{(AVDD)} = 1.8$ V, $V_{(LVDD)} = 1.8$ V, sampling frequency = 80 MSPS, sine wave input clock, $C_{(LOAD)} = 5$ pF, and $R_{(LOAD)} = 100 \Omega$, unless otherwise noted. Minimum and maximum values are across the full temperature range of $T_{MIN} = -40$ °C to $T_{MAX} = 105$ °C, $V_{(AVDD)} = 1.8$ V, and $V_{(LVDD)} = 1.7$ V to 1.9 V.

	· · ·		MIN	NOM	MAX	UNIT
	LVDS bit clock duty cycle	Differential clock duty cycle (LCLKP – LCLKM)		50		%
t _f	Data fall time	Rise time measured from –100 mV to 100 mV, 10 MSPS ≤ sampling frequency ≤ 80 MSPS		0.2		ns
t _r	Data rise time	Rise time measured from –100 mV to 100 mV, 10 MSPS ≤ sampling frequency ≤ 80 MSPS		0.2		ns
t _{r(CLK)}	Output clock rise time	Rise time measured from –100 mV to 100 mV, 10 MSPS ≤ sampling frequency ≤ 80 MSPS		0.18		ns
t _{f(CLK)}	Output clock fall time	Rise time measured from –100 mV to 100 mV, 10 MSPS ≤ sampling frequency ≤ 80 MSPS		0.18		ns

6.9 LVDS Timing at Different Sampling Frequencies (One-Lane Interface, 12x Serialization)

See 1 and 2.

			MIN	MAX	UNIT
		$f_{(SAMPLE)} = 40 \text{ MSPS}$	0.75		
t _h	LCLKP zero-crossing to data becoming invalid (both edges)	$f_{(SAMPLE)} = 50 \text{ MSPS}$	0.47		ns
		$f_{(SAMPLE)} = 65 \text{ MSPS}$	0.25		
t _{su}	Data valid to LCLKP zero-crossing (both	$f_{(SAMPLE)} = 40 \text{ MSPS}$	0.62		
		$f_{(SAMPLE)} = 50 \text{ MSPS}$	0.38		ns
		$f_{(SAMPLE)} = 65 \text{ MSPS}$	0.19		

6.10 LVDS Timing at Different Sampling Frequencies (Two-Lane Interface, 6x Serialization)

See 1 and 2.

			MIN	MAX	UNIT
		$f_{(SAMPLE)} = 40 \text{ MSPS}$	1.9		
t _h	LCLKP zero-crossing to data becoming invalid (both edges)	$f_{(SAMPLE)} = 50 \text{ MSPS}$	1.55		ns
		1.1			
t _{su}		$f_{(SAMPLE)} = 40 \text{ MSPS}$	1.44		
	Data valid to LCLKP zero-crossing (both	$f_{(SAMPLE)} = 50 \text{ MSPS}$	1.02		ns
		$f_{(SAMPLE)} = 65 \text{ MSPS}$	0.64		

6.11 Serial Interface Timing Requirements

See <u>8</u> 3.

		MIN	MAX	UNIT
$f_{({ m SCLK})}$	SCLK frequency = 1 / t _{SCLK}	> DC		MHz
t _{su(LOADS)}	SEN to SCLK setup time	33		ns
t _{su(LOADH)}	SCLK to SEN hold time	33		ns
t _{su(D)}	SDATA setup time	33		ns
t _{h(D)}	SDATA hold time	33		ns

(1) With an external 100- Ω termination..

图 1. LVDS Output Voltage Levels

图 2. LVDS Mode Timing

VSP5324-Q1

ZHCSH90A - JANUARY 2015-REVISED DECEMBER 2017

EXAS

图 3. Serial Interface Timing

6.12 Typical Characteristics

Typical Characteristics (接下页)

Typical values are at 25°C, $V_{(AVDD)} = 1.8$ V, $V_{(LVDD)} = 1.8$ V, 80-MSPS sampling clock frequency, 50% clock duty cycle, and -1-dBFS differential analog input, unless otherwise noted.

版权 © 2015-2017, Texas Instruments Incorporated

VSP5324-Q1

ZHCSH90A-JANUARY 2015-REVISED DECEMBER 2017

www.ti.com.cn

Typical Characteristics (接下页)

Typical Characteristics (接下页)

VSP5324-Q1

ZHCSH90A-JANUARY 2015-REVISED DECEMBER 2017

www.ti.com.cn

Typical Characteristics (接下页)

Typical Characteristics (接下页)

VSP5324-Q1

ZHCSH90A-JANUARY 2015-REVISED DECEMBER 2017

www.ti.com.cn

Typical Characteristics (接下页)

7 Detailed Description

7.1 Overview

The VSP5324-Q1 device is a high-performance, 12-bit, quad-channel, analog-to-digital converter (ADC) with sample rates up to 80 MSPS. The conversion process is initiated by a rising edge of the external input clock and when the analog input signal is sampled. The sampled signal is sequentially converted by a series of small resolution stages, with the outputs combined in a digital correction logic block. At every clock edge the sample propagates through the pipeline, resulting in a data latency of 11 clock cycles. The output is available as 12-bit data, in serial (low-voltage differential signaling) LVDS format, coded in either offset binary or binary twos complement format.

7.2 Functional Block Diagrams

图 40. Quad ADC, One-Lane Configuration

Functional Block Diagrams (接下页)

图 41. Quad ADC, Two-Lane Configuration

7.3 Feature Description

7.3.1 Analog Input

The analog input consists of a switched-capacitor-based differential sample-and-hold architecture, as shown in \blacksquare 42. This differential topology results in very good AC performance even for high-input frequencies at high sampling rates. The INx_P and INx_M pins must be externally biased around a common-mode voltage of 0.95 V, available on the VCM pin. For a full-scale differential input, each input pin (INx_P, INx_M) must swing symmetrically between VCM + 0.5 V and VCM – 0.5 V, resulting in a 2-V_{PP} differential input swing. The input sampling circuit has a high 3-dB bandwidth that extends up to 550 MHz (measured from the input pins to the sampled voltage).

Feature Description (接下页)

图 42. Analog Input Equivalent Circuit

7.3.1.1 Large- and Small-Signal Input Bandwidth

The analog input circuit small-signal bandwidth is high, approximately 550 MHz. When using an amplifier to drive the VSP5324-Q1 device, the total amplifier noise up to small-signal bandwidth must be considered. The device large-signal bandwidth depends on the input signal amplitude. The VSP5324-Q1 device supports $2-V_{PP}$ amplitude for input signal frequencies up to 80 MHz. For higher frequencies (greater than 80 MHz), the input signal amplitude must be decreased proportionally. For example, at 160 MHz, the device supports a maximum of $1-V_{PP}$ signal.

7.3.2 Digital Processing Block

The VSP5324-Q1 device integrates a set of commonly-used digital functions that can be used to ease system design such as test patterns and gain.

7.3.2.1 Digital Gain

The VSP5324-Q1 device includes programmable digital gain settings from 0 dB to 12 dB in 1-dB steps. The benefit of digital gain is to obtain improved SFDR performance. SFDR improvement is achieved at the expense of SNR; for each gain setting, SNR degrades by approximately 1 dB. Therefore, gain can be used to trade-off between SFDR and SNR.

For each gain setting, the analog input full-scale range support scales proportionally, as shown in \underline{x} 1. After reset, the device is in 0-dB gain mode. To use other gain settings, program the GAIN_CHx bits in registers 2Ah (see the *Register 2Ah* (offset = 2Ah) [reset = 0] section) and 2Bh (see the *Register 2Bh* (offset = 2Bh) [reset = 0] section).

DIGITAL GAIN (dB)	FULL-SCALE (V _{PP})
0	2
1	1.78
2	1.59
3	1.42
4	1.26
5	1.12
6	1.00
7	0.89
8	0.80
9	0.71
10	0.63
11	0.56
12	0.50

表 1. Analog Input Full-Scale Range Across Gains

7.3.2.2 ADC Input Polarity Inversion

Normally, the INx_P pin represents the positive analog input pin and INx_M represents the complementary negative input. Setting the INVERT_ CH[4:1] bits listed in $\frac{1}{8}$ 2 (which provide individual control for each channel) causes the inputs to be swapped. INN now represents the positive input and INx_P represents the negative input.

表 2. Polarity Inversion

ADDRESS (HEX)	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
24	PRBS_SEED[22:16]						X ⁽¹⁾	INVERT_ CH4	х	INVERT_ CH3	х	х	INVERT_ CH2	х	INVERT_ CH1	

(1) X = don't care.

7.3.2.3 SYNC Function

The SYNC function can be used to synchronize the RAMP test patterns across channels. This function can be enabled using either the hardware pin (SYNC) or software register bits.

To enable the software sync, set the register bit, EN_SYNC. To use the SYNC pin, set the EN_SYNC and HARD_SYNC_TP register bits. Note that SYNC pin is disabled after reset.

7.3.2.4 Output Data Format

Two output data formats are supported: twos complement and offset binary. These modes can be selected using the BTC_MODE serial interface register bit.

For a positive overload, the D[11:0] output data bits are FFFh in offset binary output format and 7FFh in twos complement output format. For a negative input overload, the output code is 000h in offset binary output format and 800h in twos complement output format.

7.3.3 Serial LVDS Interface

The VSP5324-Q1 device offers several flexible output options which makes interfacing to an (application-specific integrated circuit) ASIC or an (field-programmable gate array) FPGA easy. Each option can be easily programmed using the serial interface. 表 3 lists a summary of all options. This table also lists the default values after power-up and reset and a detailed description of each option. The output interface options are one-lane and two-lane serialization, and are described in the *One-Lane, 12x Serialization with DDR Bit Clock and 1x Frame Clock* and *Two-Lane, 6x Serialization with DDR Bit Clock and 0.5x Frame Clock* sections, respectively.

		AVAILA	ABLE IN		
FEATURE	OPTIONS	ONE- LANE	TWO- LANE	DEFAULT AFTER RESET	DESCRIPTION
Lane interface	One and two lanes	Yes	Yes	One-lane	One-lane: ADC data are sent serially over one pair of LVDS pins Two-lane: ADC data are split and sent serially over two pairs of LVDS pins
Serialization factor	12x	Yes	No	12x	—
DDD hit clock from one	6x	Yes	No	6x	—
DDR bit clock frequency	Зx	No	Yes	—	Only with two-lane interface
	1x sample rate	Yes	No	1x	—
Frame clock frequency	1/2x sample rate	No	Yes	—	Only with two-lane interface
	Byte-wise	No	Yes	Byte-wise	These options are available only with
	Bit-wise	No	Yes	Byte-wise	two-lane interface. Byte wise: ADC data are solit into
Bit sequence	Word-wise	No	Yes	Byte-wise	upper and lower bytes that are output on separate lanes. Bit wise: ADC data are split into even and odd bits that are output on separate lanes. Word wise: Successive ADC data samples are sent over separate lanes.

表 3. Summary of Output Interface Options

7.3.3.1 One-Lane, 12x Serialization with DDR Bit Clock and 1x Frame Clock

The 12-bit ADC data are serialized and output over one LVDS pair per channel along with a 6x bit clock and 1x frame clock, as shown in ₹ 43. The output data rate is 12x sample rate and is therefore suited for low sample rates (typically up to 50 MSPS).

(1) Upper number is the data bit in MSB-first mode. Lower number in parenthesis is the data bit in LSB-first mode.

图 43. LVDS Output Interface, One-Lane, 12x Serialization

www.ti.com.cn

NSTRUMENTS

ÈXAS

7.3.3.2 Two-Lane, 6x Serialization with DDR Bit Clock and 0.5x Frame Clock

In the two-lane serialization option, the 12-bit ADC data are serialized and output over two LVDS pairs per channel. The output data rate is a 6x sample rate with a 3x bit clock and a 1x frame clock.

(1) The upper number is the data bit in MSB-first mode. The lower number in parenthesis is the data bit in LSB-first mode.

(2) The unshaded cells indicate sample N data. The shaded cells indicate sample N + 1 data.

图 44. LVDS Output Interface, Two-Lane, 6x Serialization, Byte-Wise and Bit-Wise Modes

(1) The upper number is the data bit in MSB-first mode. The lower number in parenthesis is the data bit in LSB-first mode.

(2) The unshaded cells indicate sample N data. The shaded cells indicate sample N + 1 data.

7.3.4 Bit Clock Programmability

The VSP5324-Q1 output interface is normally a DDR interface with the LCLK rising and falling edge transitions in the middle of alternate data windows. 😤 46 shows this default phase.

图 46. LCLK Default Phase (PHASE_DDR[1:0] = 10)

The LCLK phase can be programmed relative to the output frame clock and data using the PHASE_DDR[1:0] bits in 表 4. 图 47 shows the LCLK phase modes.

					-	-		U								
ADDRESS (HEX)	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
42	EN_REF_ VCM0	X ⁽¹⁾	х	х	х	х	х	х	х	PHASE_	_DDR[1:0]	х	EN_REF_ VCM1	х	х	х

(1) X = don't care.

图 47. LCLK Phase Programmability Modes

表 4. Clock Programmability

7.3.5 LVDS Output Data and Clock Buffers

8 48 shows the equivalent circuit of each LVDS output buffer. After reset, the buffer presents a 100- Ω output impedance to match the external 100- Ω termination.

The V_{ID} voltage is nominally 350 mV, resulting in an output swing of \pm 350 mV with 100- Ω external termination. The buffer output impedance behaves in the same way as a source-side series termination. By absorbing reflections from the receiver end, the buffer helps improve signal integrity.

图 48. LVDS Buffer Equivalent Circuit

7.4 Device Functional Modes

7.4.1 External Reference Mode Of Operation

The VSP5324-Q1 device supports an external reference mode of operation either by:

- Forcing the reference voltages on the REFT and REFB pins, or by
- Applying the reference voltage on the VCM pin.

This mode can be used to operate multiple VSP5324-Q1 chips with the same (externally applied) reference voltage.

7.4.1.1 Using the REF Pins

For normal operation, the device requires two reference voltages, REFT and REFB. By default, the device generates these two voltages internally. To enable the external reference mode, set the register bits as listed in $\overline{\mathbf{z}}$ 5. This procedure powers down the internal reference amplifier and the two reference voltages can be forced directly on the REFT and REFB pins as (V_(REFT) = 1.45 V ± 50 mV) and (V_(REFB) = 0.45 V ±50 mV).

Use to calculate the relationship between the ADC full-scale input voltage (V_{FS}) and the applied reference voltages.

$$V_{FS} = 2 \times (V_{(REFT)} - V_{(REFB)})$$

(1)

Device Functional Modes (接下页)

7.4.1.2 Using the VCM Pin

In this mode, an external reference voltage (VREFIN) can be applied to the VCM pin. Use公式 2 to calculate the relationship between the ADC full-scale input voltage and VREFIN.

 $V_{FS} = 2 \times VREFIN$

(2)

To enable this mode, set the register bits as listed in $\frac{1}{8}$ 5. This action changes the function of the VCM pin to an external reference input pin. The voltage applied on VCM must be 1.5 V ±50 mV.

表 5. External Reference Fun	nction
-----------------------------	--------

FUNCTION	EN_HIGH_ADDRS	EN_EXT_REF	EXT_REF_VCM
External reference using the REFT and REFB pins	1	1	00
External reference using the VCM pin	1	1	11

7.5 Programming

7.5.1 Serial Interface

The VSP5324-Q1 device has a set of internal registers that can be accessed by the serial interface formed by the \overline{CS} (serial interface enable), SCLK (serial interface clock), and SDATA (serial interface data) pins. When \overline{CS} is low the following occurs:

- The serial shift of bits into the device is enabled.
- Serial data (on the SDATA pin) are latched at every SCLK rising edge.
- The serial data are loaded into the register at every 24th SCLK rising edge.

If the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data can be loaded in multiples of 24-bit words within a single active CS pulse.

The first eight bits form the register address and the remaining 16 bits form the register data. The interface can function with SCLK frequencies from 15 MHz down to very low speeds (of few Hertz) and also with a non-50% SCLK duty cycle.

7.5.2 Register Initialization

After power-up, the internal registers must be initialized to the default values. This reset can be accomplished in one of two ways:

- 1. A hardware reset is applied by a low-going pulse on the RESET pin (widths greater than 10 ns), as shown in 图 3 and Serial Interface Timing Requirements.
- 2. A software reset is applied by using the serial interface and setting the RST bit (register 00h, bit D0) high. This setting initializes the internal registers to default values and then self-resets the RST bit low. In this case, the RESET pin is kept high (inactive).

See the Serial Interface Timing Requirements section and 图 3 for timing information.

7.5.3 Serial Register Readout

The device includes a mode where the contents of the internal registers can be readback on the SDOUT pin, as shown in <u>8</u> 49. This mode can useful as a diagnostic check to verify the serial interface communication between the external controller and ADC.

By default, after power-up and device reset, the SDOUT pin is high-impedance. When readout mode is enabled using the READOUT register bit, the SDOUT pin outputs the contents of the selected register serially in the following sequence:

- 1. The READOUT register bit must be set to 1 in order for the device to enter readout mode. This setting disables any further writes into the internal registers, except for the register at address 01h. Note that the READOUT bit is also located in this register. The device can exit readout mode by writing the READOUT bit to 0. Only the register contents of address 01h are unable to be read in register readout mode.
- 2. The read cycle is initiated by clocking the register address A[7:0] on the SDIN pin.

Programming (接下页)

- 3. The device serially outputs the contents (D[15:0]) of the selected register on the SDOUT pin.
- 4. The external controller latches the contents at the SCLK rising edge.
- 5. The READOUT register bit is set to 0 to exit serial readout mode, which enables all registers of the device to be written to. At this point, the SDOUT pin enters a high-impedance state.

b) Read contents of register 0Fh. This register is initialized with 0200h (previously, the device was in global power down).

图 49. Serial Readout Timing

After reset, the device default states include the following:

- The device is in normal operation mode with 12x serialization enabled for all channels.
- Output interface is one-lane, 12x serialization with a 6x bit clock and a 1x frame clock frequency.
- Data format is LSB-first and offset binary.
- Serial readout is disabled.
- The PD pin is configured as a global power-down pin.
- Digital gain is set to 0 dB.

7.6 Register Maps

表 6. Serial Register Memory Map

ADDRESS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
00	X ⁽¹⁾	Х	х	х	Х	х	Х	х	Х	Х	х	х	х	х	Х	RST
01	х	x	x	x	х	x	х	х	x	x	x	EN_HIGH_ ADDRS	х	х	x	READOUT
02	Х	Х	EN_SYNC	Х	Х	Х	Х	Х	х	Х	Х	Х	х	Х	Х	Х
0A								RAMP_PAT_	RESET_VAL							
0F	х	x	x	x	х	PDN_PIN_ CFG	PDN_ COM PLETE	PDN_ PARTIAL	PDN_CH4	x	PDN_CH3	x	PDN_CH2	x	PDN_CH1	x
14	х	Х	Х	х	х	Х	х	х	LFNS_CH4	х	LFNS_CH3	х	х	LFNS_CH2	х	LFNS_CH1
1C	х	EN_ FRAME_ PAT				ADCLKOUT[11:0]									x	x
23						PRBS_SEED[15:0]										
24			PF	RBS_SEED[22:	16]			х	INVERT_ CH4	Х	INVERT_ CH3	х	х	INVERT_ CH2	х	INVERT_ CH1
25	HARD_ SYNC_TP	PRBS_ SEED_ FROM_ REG	x	PRBS_ TP_EN	х	x	x	TP_SOFT_ SYNC	х	EN_RAMP	DUAL_ CUSTOM_ PAT	SINGLE_ CUSTOM_ PAT	BITS_CUS	TOM2[13:12]	BITS_CUS	FOM1[13:12]
26		÷			BITS_CUS	STOM1[9:0]					Х	Х	Х	Х	Х	Х
27					BITS_CUS	STOM2[9:0]					Х	Х	Х	Х	Х	Х
28	EN_BIT ORDER	x	x	x	х	x	х	BIT_WISE			EN_WORDWISE_BY_CH[7:0]					
29	х	х	х	х	х	х	х	х	х	х	х	х	х	х	GLOBAL_ EN_FILTER	х
2A	х	Х	Х	Х		GAIN_0	CH2[3:0]		Х	Х	Х	х		GAIN_0	CH1[3:0]	
2B	х	Х	Х	х		GAIN_0	CH3[3:0]		х	х	х	х		GAIN_0	CH4[3:0]	
2E	х	HPF_EN_ CH1		HPF_CORN	ER _CH1[3:0]		FILTE	R1_COEFF_SI	ET[2:0]	FI	LTER1_RATE[2	2:0]	х	ODD_TAP1	х	USE_ FILTER1
30	х	HPF_EN_ CH2		HPF_CORN	ER _CH2[3:0] FILTE			R2_COEFF_SI	ET[2:0]	FILTER2_RATE[2:0]		2:0]	х	ODD_TAP2	х	USE_ FILTER2
33	х	HPF_EN_ CH3		HPF_CORNI	ER _CH3[3:0]		FILTE	R3_COEFF_SI	ET[2:0]	FI	LTER3_RATE[2	2:0]	х	ODD_TAP3	x	USE_ FILTER3
35	х	HPF_EN_ CH4		HPF_CORN	ER _CH4[3:0]		FILTE	ER4_COEFF_SI	ET[2:0]	FI	LTER4_RATE[2	2:0]	х	ODD_TAP4	х	USE_ FILTER4
38	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	DATA_F	RATE[1:0]

(1) X = don't care.

Register Maps (接下页)

ADDRESS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
42	EN_REF_ VCM0	х	х	х	х	х	х	х	х	PHASE_	_DDR[1:0]	х	EN_REF_ VCM1	х	х	х
45	x	х	x	х	x	х	х	х	х	х	х	х	х	х	PAT_SYNC	PAT_ DESKEW
46	ENABLE 46	х	FALL_SDR	х	EN_16BIT	EN_14BIT	EN_12BIT	х	х	х	х	EN_SDR	MSB_ FIRST	BTC_ MODE	x	EN_2LANE
50	ENABLE 50	х	Х	х	х	x x x x				MAP_CH12_TO_OUT1B[3:0]			MAP_CH12_TO_OUT1A[3:0]			
51	ENABLE 51	х	Х	х		MAP_CH12_T	O_OUT2B[3:0]			MAP_CH12_T	O_OUT2A[3:0]		Х	х	Х	х
53	ENABLE 53	х	х	х		MAP_CH34_T	O_OUT3B[3:0]		х	х	х	х	х	х	х	х
54	ENABLE 54	х	х	х	х	х	х	х	х	х	х	х		MAP_CH34_T	O_OUT3A[3:0]	
55	ENABLE 55	Х	Х	х	Х	Х	Х	Х	MAP_CH34_TO_OUT4A[3:0]					MAP_CH34_T	O_OUT4B[3:0]	
F0	EN_EXT_ REF	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х

表 6. Serial Register Memory Map (接下页)

www.ti.com.cn

7.6.1 Serial Registers

7.6.1.1 Register 00h (offset = 00h) [reset = 0]

This is a general register.

图 50. Register 00h								
D15	D14	D13	D12	D11	D10	D9	D8	
			2	X				
			W	/-0				
D7	D6	D5	D4	D3	D2	D1	D0	
			Х				RST	
			W-0				W-0	

表 7. Register 00h Field Descriptions

Bit	Field	Туре	Reset	Description
D15-D1	x	W	0	Don't care bits
D0	RST	W	0	Reset 0 = Normal operation (default) 1 = Self-clearing software reset (after reset, this bit is set to 0)

7.6.1.2 Register 01h (offset = 01h) [reset = 0]

This is a general register.

图 51. Register 01h

D15	D14	D13	D12	D11	D10	D9	D8
			Х				
			W-	0			
D7	D6	D5	D4	D3	D2	D1	D0
	Х		EN_HIGH_ADD RS		Х		READOUT
	W-0		W-0		W-0		W-0

表 8. Register 01h Field Descriptions

Bit	Field	Туре	Reset	Description
D15-D5	x	W	0	Don't care bits
D4	EN_HIGH_ADDRS	W	0	Register F0h access
				0 = Disables access to register F0h (default)
				1 = Enables access to register F0h
D3-D1	х	W	0	Don't care bits
D0	READOUT	W	0	Register mode readout
				0 = Normal operation (default)
				1 = Register mode readout

ZHCSH90A-JANUARY 2015-REVISED DECEMBER 2017

www.ti.com.cn

7.6.1.3 Register 02h (offset = 02h) [reset = 0]

This is a general register.

	图 52. Register 02h										
D15	D14	D13	D12	D11	D10	D9	D8				
2	X	EN_SYNC			Х						
RΛ	N-0	R/W-0	R/W-0								
D7	D6	D5	D4	D3	D2	D1	D0				
	X										
			R/\	N-0							

表 9. Register 02h Field Descriptions

Bit	Field	Туре	Reset	Description
D15-D14	x	R/W	0	Don't care bits
D13	EN_SYNC	R/W	0	SYNC enable ⁽¹⁾
				0 = Normal operation; SYNC feature disabled (default)
				1 = SYNC feature enabled to synchronize test patterns
D12-D0	x	R/W	0	Don't care bits

(1) This bit must be set to 1 when the software or hardware SYNC feature is used; see bits D15 and D8 in the *Register 25h (offset = 25h)* [reset = 0] section.

7.6.1.4 Register 0Ah (offset = 0Ah) [reset = 0]

This is a general register.

图 53. Register 0Ah

D15	D14	D13	D12	D11	D10	D9	D8				
	RAMP_PAT_RESET_VAL										
R/W-0											
D7 D6 D5 D4 D3 D2 D1 D0											
RAMP_PAT_RESET_VAL											
	R/W-0										

表 10. Register 0Ah Field Descriptions

Bit	Field	Туре	Reset	Description
D15-D0	RAMP_PAT_RESET_VAL	R/W	0	These bits determine the initial value of the ramp pattern after reset.

7.6.1.5 Register 0Fh (offset = 0Fh) [reset = 0]

This is a power-down mode register. All bits default to 0 after reset.

图 54.	Register	0Fh
-------	----------	-----

D15	D14	D13	D12	D11	D10	D9	D8
		Х			PDN_PIN_CFG	PDN_ COMPLETE	PDN_PARTIAL
		R/W-0			R/W-0	R/W-0	R/W-0
D7	D6	D5	D4	D3	D2	D1	D0
PDN_CH4	Х	PDN_CH3	>	K	PDN_CH2	Х	PDN_CH1
R/W-0	R/W-0	R/W-0	R/V	V-0	R/W-0	R/W-0	R/W-0

表 11. Register 0Fh Field Descriptions

Bit	Field	Туре	Reset	Description
D15-D11	X	R/W	0	Don't care bits
D10	PDN_PIN_CFG	R/W	0	PD pin configuration 0 = PD pin configured for complete power-down mode 1 = PD pin configured for partial power-down mode
D9	PDN_ COMPLETE	R/W	0	Complete power-down 0 = Normal operation 1 = Register mode for complete power-down (slower recovery)
D8	PDN_PARTIAL	R/W	0	Partial power-down 0 = Normal operation 1 = Partial power-down mode (fast recovery from power- down)
D7	PDN_CH4	R/W	0	ADC power-down mode for channel 4 0 = Normal operation 1 = Partial power-down mode (fast recovery from power- down)
D6	X	R/W	0	Don't care bit
D5	PDN_CH3	R/W	0	ADC power-down mode for channel 3 0 = Normal operation 1 = ADC power-down mode for channel 3
D4-D3	Х	R/W	0	Don't care bits
D2	PDN_CH2	R/W	0	ADC power-down mode for channel 2 0 = Normal operation 1 = ADC power-down mode for channel 2
D1	Х	R/W	0	Don't care bit
D0	PDN_CH1	R/W	0	ADC power-down mode for channel 1 0 = Normal operation 1 = ADC power-down mode for channel 1

ZHCSH90A-JANUARY 2015-REVISED DECEMBER 2017

www.ti.com.cn

7.6.1.6 Register 14h (offset = 14h) [reset = 0]

This is a general register.

图 55. Register 14h									
D15	D14	D13	D12	D11	D10	D9	D8		
			X						
			R/V	/-0					
D7	D6	D5	D4	D3	D2	D1	D0		
LFNS_CH4	Х	LFNS_CH3	X		LFNS_CH2	Х	LFNS_CH1		
R/W-0	R/W-0	R/W-0	R/V	/-0	R/W-0	R/W-0	R/W-0		

表	12.	Register	14h	Field	Descriptions	5
---	-----	----------	-----	-------	--------------	---

Bit	Field	Туре	Reset	Description	
D15-D8	x	R/W	0	Don't care bits	
D7	LFNS_CH4	R/W	0	Noise-suppression mode selection for channel 4 0 = LFNS disabled (default) 1 = Low-frequency noise-suppression mode enable f channel 4	
D6	x	R/W	0	Don't care bit	
D5	LFNS_CH3	R/W	0	Noise-suppression mode selection for channel 3 0 = LFNS disabled (default) 1 = Low-frequency noise-suppression mode enable for channel 3	
D4-D3	x	R/W	0	Don't care bits	
D2	LFNS_CH2	R/W	0	Noise-suppression mode selection for channel 2 0 = LFNS disabled (default) 1 = Low-frequency noise-suppression mode enable for channel 2	
D1	x	R/W	0	Don't care bit	
D0	LFNS_CH1	R/W	0	Noise-suppression mode selection for channel 1 0 = LFNS disabled (default) 1 = Low-frequency noise-suppression mode enable for channel 1	

7.6.1.7 Register 1Ch (offset = 1Ch) [reset = 0]

This is a test pattern register. All bits default to 0 after reset.

图:	56.	Register	1Ch
----	-----	----------	-----

D15	D14	D13	D12	D11	D10	D9	D8
Х	EN_FRAME_P AT			ADCLKC	OUT[11:0]		
R/W-0	R/W-0		R/W-0				
D7	D6	D5	D4	D3	D2	D1	D0
ADCLKOUT[11:0]							x
						RΛ	N-0

表 13. Register 1Ch Field Descriptions

Bit	Field	Туре	Reset	Description
D15	x	R/W	0	Don't care bit
D14	EN_FRAME_PAT	R/W	0	Frame pattern enable
				0 = Normal frame clock operation
				1 = Enables the output frame clock to be programmed through a pattern
D13-D2	ADCLKOUT[11:0]	R/W	0	ADCLK pin frame clock pattern
				These bits determine the 12-bit pattern for the frame clock on the ADCLKP and ADCLKN pins.
D1-D0	X	R/W	0	Don't care bits

7.6.1.8 Register 23h (offset = 23h) [reset = 0]

This is a test pattern register.

图 57. Register 23h

D15	D14	D13	D12	D11	D10	D9	D8		
PRBS_SEED[15:0]									
R/W-0									
D7	D6	D5	D4	D3	D2	D1	D0		
PRBS_SEED[15:0]									
R/W-0									

表 14. Register 23h Field Descriptions

Bit	Field	Туре	Reset	Description
D15-D0	PRBS_SEED[15:0]	R/W	0	PRBS pattern seed value, lower bits These bits determine the PRBS pattern starting seed value of the lower 16 bits. (Default = 0)

ZHCSH90A – JANUARY 2015 – REVISED DECEMBER 2017

www.ti.com.cn

7.6.1.9 Register 24h (offset = 24h) [reset = 0]

This is a test pattern register. All bits default to 0 after reset.

图 58.	Register	24h
-------	----------	-----

D15	D14	D13	D12	D11	D10	D9	D8	
		PI	PRBS_SEED[22:16]					
			R/W-0	R/W-0				
D7	D6	D5	D4	D3	D2	D1	D0	
INVERT_CH4	Х	INVERT_CH3	Х		INVERT_CH2	Х	INVERT_CH1	
R/W-0	R/W-0	R/W-0	RM	/-0	R/W-0	R/W-0	R/W-0	

Bit	Field	Туре	Reset	Description		
D15-D9	PRBS_SEED[22:16]	R/W	0	PRBS pattern seed value, upper bits These bits determine the PRBS pattern starting seed value of the upper seven bits.		
D8	X	R/W	0	Don't care bit		
D7	INVERT_CH4	R/W	0	Don't care bit Analog input pin polarity for channel 4 0 = Normal configuration (default) 1 = Electrically swaps the analog input pin polarity 1 channel 4		
D6	Х	R/W	0	Don't care bit		
D5	INVERT_CH3	R/W	0	Analog input pin polarity for channel 3 0 = Normal configuration (default) 1 = Electrically swaps the analog input pin polarity for channel 3		
D4-D3	X	R/W	0	Don't care bits		
D2	INVERT_CH2	R/W	0	Analog input pin polarity for channel 2 0 = Normal configuration (default) 1 = Electrically swaps the analog input pin polarity for channel 2		
D1	Х	R/W	0	Don't care bit		
D0	INVERT_CH1	R/W	0	Analog input pin polarity for channel 1 0 = Normal configuration (default) 1 = Electrically swaps the analog input pin polarity for channel 1		

表 15. Register 24h Field Descriptions

7.6.1.10 Register 25h (offset = 25h) [reset = 0]

This is a test pattern register. All bits default to 0 after reset.

图 59.	Register	25h
-------	----------	-----

D15	D14	D13	D12	D11	D10	D9	D8
HARD_SYNC_ TP	PRBS_SEED_ FROM_REG	PRBS_MODE_ 2	PRBS_TP_EN X			TP_SOFT_SYN C	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			R/W-0
D7	D6	D5	D4	D3	D2	D1	D0
Х	EN_RAMP	DUAL_CUSTO M_PAT	SINGLE_CUST OM_PAT	BITS_CUSTOM2[13:12]		BITS_CUS	TOM1[13:12]
R/W-0	R/W-0	R/W-0	R/W-0	R/	W-0	R/	W-0

	表	16.	Register	25h	Field	Descri	ptions
--	---	-----	----------	-----	-------	--------	--------

Bit	Field	Туре	Reset	Description
D15	HARD_SYNC_TP	R/W	0	Sync test pattern selection
				0 = Inactive
				1 = External SYNC feature enabled for syncing test
	-			patterns
D14	PRBS_SEED_FROM_REG	R/W	0	PRBS seed selection
				0 = Disabled
				1 = Selection of PRBS seed from registers 23h and 24h
				enabled
D13	PRBS_MODE_2	R/W	0	PRBS mode selection
				This bit sets the PRBS mode of the 9-bit LFSR (the 23-bit LFSR is default).
D12	PRBS_TP_EN	R/W	0	PRBS test pattern selection
				0 = PRBS test pattern disabled
				1 = PRBS test pattern enable bit
D11-D9	Х	R/W	0	Don't care bits
D8	TP_SOFT_SYNC	R/W	0	Test pattern software sync
				0 = No sync
				1 = Software sync bit for test patterns on all eight channels
D7	X	R/W	0	Don't care bit
D6	EN_RAMP	R/W	0	Ramp pattern enable
				0 = Normal operation
				1 = Enables a repeating full-scale ramp pattern on the
D5	DUAL CUSTOM PAT	R/W	0	
20			C C	Output toggles between two codes
				0 = Normal operation
				defined codes. Ensure that bits D4 and D6 are 0.
D4	SINGLE_CUSTOM_PAT	R/W	0	Output is defined code
				0 = Normal operation
				1 = Enables mode where the output is a constant specified
				code. Ensure that bits D5 and D6 are 0.
D3-D2	BITS_CUSTOM2[13:12]	R/W	0	MSB selection for dual patterns
				These bits determine two MSBs for the second code of the dual custom patterns.

STRUMENTS

EXAS

Bit	Field	Туре	Reset	Description
D1-D0	BITS_CUSTOM1[13:12]	R/W	0	MSB selection for single patterns These bits define two MSBs for the single custom pattern (and for the first code of the dual custom patterns).

表 16. Register 25h Field Descriptions (接下页)

7.6.1.11 Register 26h (offset = 26h) [reset = 0]

This is a test pattern register.

图 60. Register 26h

D15	D14	D13	D12	D11	D10	D9	D8		
		BITS_CUSTOM1[9:0]							
		R/W-0							
D7	D6	D5	D4	D3	D2	D1	D0		
BITS_CUS	STOM1[9:0]	X							
RA	N-0	R/W-0							

表 17. Register 26h Field Descriptions

Bit	Field	Туре	Reset	Description
D15-D6	BITS_CUSTOM1[9:0]	R/W	0	Lower single custom pattern bits These bits determine the 10 lower bits for the single custom pattern (and the first code of the dual custom pattern).
D5-D0	x	R/W	0	Don't care bits

7.6.1.12 Register 27h (offset = 27h) [reset = 0]

This is a test pattern register.

图 61. Register 27h

D15	D14	D13	D12	D11	D10	D9	D8		
		BITS_CUSTOM2[9:0]							
	R/W-0								
D7	D6	D5	D4	D3	D2	D1	D0		
BITS_CUS	STOM2[9:0]	X							
R/	W-0	R/W-0							

表 18. Register 27h Field Descriptions

Bit	Field	Туре	Reset	Description
D15-D6	BITS_CUSTOM2[9:0]	R/W	0	Lower dual custom pattern bits
				These bits determine the 10 lower bits for the second code of the dual custom pattern.
D5-D0	Х	R/W	0	Don't care bits

7.6.1.13 Register 28h (offset = 28h) [reset = 0]

This is an output interface mode register. All bits default to 0 after reset.

图 62. Register 28h								
D15	D14	D13	D12	D11	D10	D9	D8	
EN_BITORDER	X							
R/W-0	R/W-0							
D7	D6	D5	D4	D3	D2	D1	D0	
			EN_WORDWIS	SE_BY_CH[7:0]				
	R/W-0							

表 19. Register 28h Field Descriptions

Bit	Field	Туре	Reset	Description
D15	EN_BITORDER	R/W	0	Bit order enable ⁽¹⁾
				This bit enables the bit order output in two-lane mode.
				0 = Byte-wise
				1 = Word-wise
D14-D9	x	R/W	0	Don't care bit
D8	BIT_WISE	R/W	0	Bit- or byte-wise selection
				This bit selects between byte-wise and bit-wise format.
				0 = Byte-wise, the upper bits come are on one lane and the lower bits are on other lane
				1 = Bit-wise, the odd bits come out on one lane and the even bits come out on other lane
D7-D0	EN_WORDWISE_BY_CH[7:0]	R/W	0	Word-wise enable with channels 7 to 0
				0 = Data comes out in two-lane mode with the upper set of bits on one channel and the lower set of bits on the other channel
				1 = Output format is one sample on one LVDS lane with the next sample on the other LVDS lane

(1) This bit must set 1 to enable bits D[8:0].

7.6.1.14 Register 29h (offset = 29h) [reset = 0]

This is a digital filter mode register. All bits default to 0 after reset.

|--|

D15	D14	D13	D12	D11	D10	D9	D8	
Х								
R/W-0								
D7	D6	D5	D4	D3	D2	D1	D0	
)	X			GLOBAL_EN_F ILTER	Х	
		R/V	N-0			R/W-0	R/W-0	

表 20. Register 29h Field Descriptions

Bit	Field	Туре	Reset	Description
D15-D2	x	R/W	0	Don't care bits
D1	GLOBAL_EN_FILTER	R/W	0	Filter block enable 0 = Inactive
D0	Х	R/W	0	Don't care bit

版权 © 2015-2017, Texas Instruments Incorporated

ZHCSH90A-JANUARY 2015-REVISED DECEMBER 2017

www.ti.com.cn

7.6.1.15 Register 2Ah (offset = 2Ah) [reset = 0]

This is a digital gain mode register. All bits default to 0 after reset.

冬	64.	Reg	aister	2Ah
---	-----	-----	--------	-----

D15	D14	D13	D12	D11	D10	D9	D8		
	Х				GAIN_CH2[3:0]				
	R/W-0				R/W-0				
D7	D6	D5	D4	D3	D2	D1	D0		
	2	X		GAIN_CH1[3:0]					
	R/W-0				R/W-0				

衣 21. Register 2An Field Descriptions	表 21.	Register	2Ah	Field	Descriptions
---------------------------------------	-------	----------	-----	-------	--------------

Bit	Field	Туре	Reset	Description
D15-D12	x	R/W	0	Don't care bits
D11-D8	GAIN_CH2[3:0]	R/W	0	Channel 2 gain These bits set the programmable gain of channel 2
D7-D4	х	R/W	0	Don't care bits
D3-D0	GAIN_CH3[3:0]	R/W	0	Channel 1 gain These bits set the programmable gain of channel 1

7.6.1.16 Register 2Bh (offset = 2Bh) [reset = 0]

This is a digital gain mode register. All bits default to 0 after reset.

图 65. Register 2Bh

D15	D14	D13	D12	D11	D10	D9	D8	
	>	K		GAIN_CH3[3:0]				
R/W-0				R/W-0				
D7	D6	D5	D4	D3	D2	D1	D0	
	>	X GAIN_CH4[3:0]			GAIN_CH4[3:0]			
	R/V	V-0		R/W-0				

表 22. Register 2Bh Field Descriptions

Bit	Field	Туре	Reset	Description
D15-D12	х	R/W	0	Don't care bits
D11-D8	GAIN_CH3[3:0]	R/W	0	Channel 3 gain These bits set the programmable gain of channel 3
D7-D4	х	R/W	0	Don't care bits
D3-D0	GAIN_CH4[3:0]	R/W	0	Channel 4 gain These bits set the programmable gain of channel 4

7.6.1.17 Register 2Eh (offset = 2Eh) [reset = 0]

This is a digital filter mode register. All bits default to 0 after reset.

图 66.	Register	2Eh
-------	----------	-----

D15	D14	D13	D12	D11	D10	D9	D8
Х	HPF_EN_CH1		HPF_CORN	FILTER1_C	OEFF_SET[2:0]		
R/W-0	R/W-0		R/	R/W-0			
D7	D6	D5	D4	D3	D2	D1	D0
FILTER1_COE FF_SET[2:0]	F	ILTER1_RATE[2	:0]	Х	ODD_TAP1	Х	USE_FILTER1
R/W-0		R/W-0		R/W-0	R/W-0	R/W-0	R/W-0

表 23. Register 2Eh Field Descriptions

Bit	Field	Туре	Reset	Description
D15	x	R/W	0	Don't care bit
D14	HPF_EN_CH1	R/W	0	Channel 1 HPF filter enable
				0 = Disabled
				1 = HPF filter enable for channel 1
D13-D10	HPF_CORNER _CH1[3:0]	R/W	0	HPF corner for channel 1
				These bits set the HPF corner in values from 2k to 10k.
D9-D7	FILTER1_COEFF_SET[2:0]	R/W	0	Filter 1 coefficient set
				These bits select the stored coefficient set for filter 1.
D6-D4	FILTER1_RATE[2:0]	R/W	0	Filter 1 decimation factor
				These bits set the decimation factor for filter 2.
D3	Х	R/W	0	Don't care bit
D2	ODD_TAP1	R/W	0	Filter 1 odd tap
				This bit uses odd tap filter 1.
D1	Х	R/W	0	Don't care bit
D0	USE_FILTER1	R/W	0	Channel 1 filter
				0 = Disabled
				1 = Enables filter for channel 1

ZHCSH90A – JANUARY 2015 – REVISED DECEMBER 2017

www.ti.com.cn

7.6.1.18 Register 30h (offset = 30h) [reset = 0]

This is a digital filter mode register. All bits default to 0 after reset.

图	67.	Register	30h
---	-----	----------	-----

D15	D14	D13	D12	D11	D10	D9	D8
Х	HPF_EN_CH2		HPF_CORN	ER _CH2[3:0]		FILTER2_C	OEFF_SET[2:0]
R/W-0	R/W-0	R/W-0				F	R/W-0
D7	D6	D5	D4	D3	D2	D1	D0
FILTER2_COE FF_SET[2:0]	F	ILTER2_RATE[2:0]	Х	ODD_TAP2	Х	USE_FILTER2
R/W-0		R/W-0		R/W-0	R/W-0	R/W-0	R/W-0

表 24. Register 30h Field Descriptions

Bit	Field	Туре	Reset	Description
D15	x	R/W	0	Don't care bit
D14	HPF_EN_CH2	R/W	0	Channel 2 HPF filter enable
				0 = Disabled
				1 = HPF filter enable for channel 2
D13-D10	HPF_CORNER _CH2[3:0]	R/W	0	HPF corner for channel 2
				These bits set the HPF corner in values from 2k to 10k.
D9-D7	FILTER2_COEFF_SET[2:0]	R/W	0	Filter 2 coefficient set
				These bits select the stored coefficient set for filter 2.
D6-D4	FILTER2_RATE[2:0]	R/W	0	Filter 2 decimation factor
				These bits set the decimation factor for filter 2.
D3	Х	R/W	0	Don't care bit
D2	ODD_TAP2	R/W	0	Filter 2 odd tap
				This bit uses odd tap filter 2.
D1	Х	R/W	0	Don't care bit
D0	USE_FILTER2	R/W	0	Channel 2 filter
				0 = Disabled
				1 = Enables filter for channel 2

7.6.1.19 Register 33h (offset = 33h) [reset = 0]

This is a digital filter mode register. All bits default to 0 after reset.

图 68.	Register	33h
-------	----------	-----

D15	D14	D13	D12	D11	D10	D9	D8	
Х	HPF_EN_CH3		HPF_CORNER _CH3[3:0] FILTER3_C0					
R/W-0	R/W-0		R/	R/	W-0			
D7	D6	D5	D4	D3	D2	D1	D0	
FILTER3_COE FF_SET[2:0]	FILTER3_RATE[2:0]			Х	ODD_TAP3		USE_FILTER3	
R/W-0		R/W-0			R/W-0	R/	W-0	

表 25. Register 33h Field Descriptions

Bit	Field	Туре	Reset	Description
D15	x	R/W	0	Don't care bit
D14	HPF_EN_CH3	R/W	0	Channel 3 HPF filter enable
				0 = Disabled
				1 = HPF filter enable for channel 3
D13-D10	HPF_CORNER _CH3[3:0]	R/W	0	HPF corner for channel 3
				These bits set the HPF corner in values from 2k to 10k.
D9-D7	FILTER3_COEFF_SET[2:0]	R/W	0	Filter 3 coefficient set
				These bits select the stored coefficient set for filter 3.
D6-D4	FILTER3_RATE[2:0]	R/W	0	Filter 3 decimation factor
				These bits set the decimation factor for filter 3.
D3	Х	R/W	0	Don't care bit
D2	ODD_TAP3	R/W	0	Filter 3 odd tap
				This bit uses odd tap filter 3.
D1	x	R/W	0	Don't care bit
D0	USE_FILTER3	R/W	0	Channel 3 filter
				0 = Disabled
				1 = Enables filter for channel 3

ZHCSH90A – JANUARY 2015 – REVISED DECEMBER 2017

www.ti.com.cn

7.6.1.20 Register 35h (offset = 35h) [reset = 0]

This is a digital filter mode register. All bits default to 0 after reset.

图 69.	Register	35h
-------	----------	-----

D15	D14	D13	D12	D11	D10	D9	D8
Х	HPF_EN_CH4		HPF_CORNE	FILTER4_C	DEFF_SET[2:0]		
R/W-0	R/W-0		R/	R	/W-0		
D7	D6	D5	D4	D3	D2	D1	D0
FILTER4_COE FF_SET[2:0]	FILTER4_RATE[2:0]			Х	ODD_TAP4	Х	USE_FILTER4
R/W-0		R/W-0		R/W-0	R/W-0	R/W-0	R/W-0

表 26. Register 35h Field Descriptions

Bit	Field	Туре	Reset	Description
D15	x	R/W	0	Don't care bit
D14	HPF_EN_CH4	R/W	0	Channel 4 HPF filter enable
				0 = Disabled
				1 = HPF filter enable for channel 4
D13-D10	HPF_CORNER _CH4[3:0]	R/W	0	HPF corner for channel 4
				These bits set the HPF corner in values from 2k to 10k.
D9-D7	FILTER4_COEFF_SET[2:0]	R/W	0	Filter 4 coefficient set
				These bits select the stored coefficient set for filter 4.
D6-D4	FILTER4_RATE[2:0]	R/W	0	Filter 4 decimation factor
				These bits set the decimation factor for filter 4.
D3	Х	R/W	0	Don't care bit
D2	ODD_TAP4	R/W	0	Filter 4 odd tap
				This bit uses odd tap filter 4.
D1	Х	R/W	0	Don't care bit
D0	USE_FILTER4	R/W	0	Channel 4 filter
				0 = Disabled
				1 = Enables filter for channel 4

7.6.1.21 Register 38h (offset = 38h) [reset = 0x0000]

This is an output interface mode register.

图 70. Register 38h

D15	D14	D13	D12	D11	D10	D9	D8	
			2	x				
R/W-								
D7	D6	D5	D4	D3	D2	D1	D0	
			DATA_R	ATE[1:0]				
R/W-						R/	N-	

表 27. Register 38h Field Descriptions

Bit	Field	Туре	Reset	Description
D15-D2	x	R/W	0	Don't care bits
D1-D0	DATA_RATE[1:0]	R/W	0	Clock rate selection These bits select the output frame clock rate (Default $= 0$)

7.6.1.22 Register 42h (offset = 42h) [reset = 0]

This is an output interface mode register.

图 71. Register 42h									
D15	D14	D13	D12	D11	D10	D9	D8		
EN_REF_VCM 0				Х					
R/W-0				R/W-0					
D7	D6	D5	D4	D3	D2	D1	D0		
Х	PHASE_	DDR[1:0]	х	EN_REF_VCM 1		Х			
R/W-0	RA	N-0	R/W-0	R/W-0		R/W-0			

表 28. Register 42h Field Descriptions

Bit	Field	Туре	Reset	Description
D15	EN_REF_VCM0	R/W	0	To enable the external reference mode, the EN_EXT_REF register bit (register F0h) must be set to 1.
				00 = In external reference mode, apply the reference on the REFT, REFB pins
				01, 10 = Don't use
				11 = In external reference mode, apply the reference on the VCM pin
D14-D7	x	R/W	0	Don't care bits
D6-D5	PHASE_DDR[1:0]	R/W	0	These bits control the LCLK output phase relative to data. (Default = 10)
D4	x	R/W	0	Don't care bit
D3	EN_REF_VCM1	R/W	0	To enable the external reference mode, the EN_EXT_REF register bit (register F0h) must be set to 1.
				00 = In external reference mode, apply the reference on the REFT, REFB pins
				01, 10 = Don't use
				11 = In external reference mode, apply the reference on the VCM pin
D2-D0	X	R/W	0	Don't care bits

ZHCSH90A – JANUARY 2015 – REVISED DECEMBER 2017

7.6.1.23 Register 45h (offset = 45h) [reset = 0]

This is a test pattern register. All bits default to 0 after reset.

图 72. Register 45h

D15	D14	D13	D12	D11	D10	D9	D8	
X								
R/W-0								
D7	D6	D5	D4	D3	D2	D1	D0	
		PAT_SYNC	PAT_DESKEW					
		R/	W-0			R/W-0	R/W-0	

表 29. Register 45h Field Descriptions

Bit	Field	Туре	Reset	Description
D15-D2	x	R/W	0	Don't care bits
D1	PAT_SYNC	R/W	0	Sync pattern enable
				0 = Inactive
				1 = Sync pattern mode enabled; ensure that D0 is 0
D0	PAT_DESKEW	R/W	0	Deskew pattern enable
				0 = Inactive
				1 = Deskew pattern mode enabled; ensure that D1 is 0

7.6.1.24 Register 46h (offset = 46h) [reset = 0]

This is an output interface mode register. All bits default to 0 after reset.

图 73. Register 46h

D15	D14	D13	D12	D11	D10	D9	D8
ENABLE 46	Х	FALL_SDR	Х	EN_16BIT	EN_14BIT	EN_12BIT	Х
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
D7	D6	D5	D4	D3	D2	D1	D0
	Х		EN_SDR	MSB_FIRST	BTC_MODE	Х	EN_2LANE
	R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

表 30. Register 46h Field Descriptions

Bit	Field	Туре	Reset	Description
D15	ENABLE 46	R/W	0	Enable register 46 ⁽¹⁾
				This bit enables register 46.
D14	х	R/W	0	Don't care bit
D13	FALL_SDR	R/W	0	SDR output mode
				0 = At data window edge
				1 = The LCLK rising or falling edge control comes in the middle of the data window when operating in SDR output mode
D12	х	R/W	0	Don't care bit
D11	EN_16BIT	R/W	0	16-bit mode enable
				0 = Inactive
				1 = 16-bit serialization mode enabled; ensure bits D[10:9] are 0

www.ti.com.cn

Bit	Field	Туре	Reset	Description
D10	EN_14BIT	R/W	0	14-bit mode enable
				0 = Inactive
				1 = 14-bit serialization mode enabled; ensure bits D11 and D9 are 0
D9	EN_12BIT	R/W	0	12-bit mode enable
				0 = Inactive
				1 = 12-bit serialization mode enabled; ensure bits D[11:10] are 0
D8-D5	x	R/W	0	Don't care bits
D4	EN_SDR	R/W	0	Bit clock selection
				0 = DDR bit clock
				1 = SDR bit clock
D3	MSB_FIRST	R/W	0	MSB first selection
				0 = LSB first
				1 = MSB first
D2	BTC_MODE	R/W	0	Binary mode selection
				0 = Binary offset (ADC data output format)
				1 = Binary twos complement (ADC data output format)
D1	x	R/W	0	Don't care bit
D0	EN_2LANE	R/W	0	LVDS output lane selection
				0 = One-lane LVDS output
				1 = Two-lane LVDS output

表 30. Register 46h Field Descriptions (接下页)

7.6.1.25 Register 50h (offset = 50h) [reset = 0]

This is a programmable LVDS mapping mode register. All bits default to 0 after reset.

图 74. Register 50h

D15	D14	D13	D12	D11	D10	D9	D8
ENABLE 50				Х			
R/W-0				R/W-0			
D7	D6	D5	D4	D3	D2	D1	D0
	MAP_CH12_T	O_OUT1B[3:0]			MAP_CH12_TC	D_OUT1A[3:0]	
	R/V	V-0			R/W	/-0	

表 31. Register 50h Field Descriptions

Bit	Field	Туре	Reset	Description
D15	ENABLE 50	R/W	0	Enable for register 50h ⁽¹⁾
				This bit enables register 50h.
D14-D8	х	R/W	0	Don't care bits
D7-D4	MAP_CH12_TO_OUT1B[3:0]	R/W	0	OUT1B pin to channel mapping
				These bits select the OUT1B pin pair to channel data mapping.
D3-D0	MAP_CH12_TO_OUT1A[3:0]	R/W	0	OUT1A pin to channel mapping
				These bits select the OUT1A pin pair to channel data mapping.

(1) This bit must be set to 1 to enable bits D[7:0].

ZHCSH90A – JANUARY 2015 – REVISED DECEMBER 2017

www.ti.com.cn

7.6.1.26 Register 51h (offset = 51h) [reset = 0]

This is a programmable LVDS mapping mode register. All bits default to 0 after reset.

			图 75. Reg	gister 51h				
D15	D14	D13	D12	D11	D10	D9	D8	
ENABLE 51		Х			MAP_CH12_T	O_OUT2B[3:0]		
R/W-0		R/W-0		R/W-0				
D7	D6	D5	D4	D3	D2	D1	D0	
	MAP_CH12_T	O_OUT2A[3:0]			×	(
	RΛ	N-0	R/V	V-0				

表 32. Register 51h Field Descriptions

Bit	Field	Туре	Reset	Description
D15	ENABLE 51	R/W	0	Enable for register 51h ⁽¹⁾
				This bit enables register 51h.
D14-D12	x	R/W	0	Don't care bits
D11-D8	MAP_CH12_TO_OUT2B[3:0]	R/W	0	OUT2B pin to channel mapping
				These bits select the OUT2B pin pair to channel data mapping.
D7-D4	MAP_CH12_TO_OUT2A[3:0]	R/W	0	OUT2A pin to channel mapping
				These bits select the OUT2A pin pair to channel data mapping.
D3-D0	x	R/W	0	Don't care bits

(1) This bit must be set to 1 to enable bits D[7:0].

7.6.1.27 Register 53h (offset = 53h) [reset = 0]

This is a programmable LVDS mapping mode register. All bits default to 0 after reset.

图 76. Register 53h

D15	D14	D13	D12	D11	D10	D9	D8
ENABLE 53		Х			MAP_CH34_T0	D_OUT3B[3:0]	
R/W-0		R/W-0 R/W-0					
D7	D6	D5	D4	D3	D2	D1	D0
			Х	(
			R/W	V-0			

表 33. Register 53h Field Descriptions

Bit	Field	Туре	Reset	Description
D15	ENABLE 53	R/W	0	Enable register 53h ⁽¹⁾
				This bit enables register 53h.
D14-D12	х	R/W	0	Don't care bits
D11-D8	MAP_CH34_TO_OUT3B[3:0]	R/W	0	OUT3B pin to channel mapping These bits select the OUT3B pin pair to channel data mapping.
D7-D0	Х	R/W	0	Don't care bits

(1) This bit must be set to 1 to enable bits D[7:0].

7.6.1.28 Register 54h (offset =) [reset = 0]

This is a programmable LVDS mapping mode register. All bits default to 0 after reset.

D15	D14	D13	D12	D11	D10	D9	D8		
ENABLE 54				Х					
R/W-0				R/W-0					
D7	D6	D5	D4	D3	D2	D1	D0		
	>	K		MAP_Ch34_to_OUT3A[3:0]					
	RA	N-0		R/W-0					

图 77. Register 54h

表 34	. Register	54h	Field	Descriptions
------	------------	-----	-------	--------------

Bit	Field	Туре	Reset	Description
D15	ENABLE 54	R/W	0	Enable register 54h ⁽¹⁾
				This bit enables register 54h.
D14-D4	x	R/W	0	Don't care bits
D3-D0	MAP_Ch34_to_OUT3A[3:0]	R/W	0	OUT3A pin to channel mapping These bits select the OUT3A pin pair to channel data mapping.

(1) This bit must be set to 1 to enable bits D[7:0].

7.6.1.29 Register 55h (offset = 55h) [reset = 0]

This is a programmable LVDS mapping mode register. All bits default to 0 after reset.

图 78. Register 55h

D15	D14	D13	D12	D11	D10	D9	D8		
ENABLE 55				Х					
R/W-0				R/W-0					
D7	D6	D5	D4	D3	D2	D1	D0		
	MAP_CH34_T	O_OUT4A[3:0]		MAP_CH34_TO_OUT4B[3:0]					
R/W-0 R/W-0									

表 35. Register 55h Field Descriptions

Bit	Field	Туре	Reset	Description
D15	ENABLE 55	R/W	0	Enable register 55h ⁽¹⁾
				This bit enables register 55h.
D14-D8	x	R/W	0	Don't care bits
D7-D4	MAP_CH34_TO_OUT4A[3:0]	R/W	0	OUT4A pin to channel mapping
				These bits select the OUT4A pin pair to channel data mapping.
D3-D0	MAP_CH34_TO_OUT4B[3:0]	R/W	0	OUT4B pin to channel mapping
				These bits select the OUT4B pin pair to channel data mapping.

(1) This bit must be set to 1 to enable bits D[7:0].

VSP5324-Q1

ZHCSH90A-JANUARY 2015-REVISED DECEMBER 2017

Texas Instruments

www.ti.com.cn

7.6.1.30 Register F0h (offset = F0h) [reset = 0]

This is a general register.

注

The EN_HIGH_ADDRS bit (register 01h, bit D4) must be set to 1 in order to access this register.

图 79. Register F0h

D15	D14	D13	D12	D11	D10	D9	D8			
EN_EXT_REF				Х						
R/W-0				R/W-0						
D7	D6	D5	D4	D3	D2	D1	D0			
	X									
			RA	N-0						

表 36. Register F0h Field Descriptions

Bit	Field	Туре	Reset	Description
D15	EN_EXT_REF	R/W	0	Reference mode selection 0 = Internal reference mode enabled (default) 1 = External reference mode enabled. The voltage reference can be applied on either the REFP and REFB pins or the VCM pin.
D7-D0	Х	R/W	0	Don't care bits

8 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The VSP5324-Q1 device is a low power 12-bit, 4-channel ADC customized for time-of-flight applications. The device accepts four single-ended or differential analog inputs and can be configured to output the digitized data on 4 or 8 LVDS lanes as per the requirements of the external host receiver. The sampling clock can be fed to the device using a single-ended or a differential signal. High-speed sampling rates of up to 80 MSPS can be used to speed up the sensor readout and therefore use longer sensor exposure times without taking a hit on the frame-rate. The device is controlled using a simple 4-wire SPI. Power constrained systems can additionally make use of the power-down pin (PD) to take the device quickly in and out of low-power mode. The device uses an internal reference and internal common-mode voltage by default and has a provision for the use of external reference and external common-mode voltage inputs.

8.2 Typical Application

图 80. Application Schematic

8.2.1 Design Requirements

For optimum performance, the analog inputs must be driven differentially. If the inputs are driven in a singleended manner, capacitors must be placed on the INx_M signals and close to the INx_M pins. An optional 5- Ω to 15- Ω resistor in series with each input pin can be kept to damp out ringing caused by package parasitics. The drive circuit may have to be designed to minimize the impact of kick-back noise generated by sampling switches opening and closing inside the ADC, as well as ensuring low insertion loss over the desired frequency range and matched impedance to the source.

8.2.2 Detailed Design Procedure

8.2.2.1 Drive Circuit Requirements

For optimum performance, the analog inputs must be driven differentially, as shown in 🛿 81. This architecture improves the common-mode noise immunity and even-order harmonic rejection. A 5- Ω to 15- Ω resistor in series with each input pin is recommended to damp out ringing caused by package parasitic. The drive circuit shows an R-C filter across the analog input pins. The purpose of the filter is to absorb glitches caused by the sampling capacitors opening and closing.

Typical Application (接下页)

图 81. Analog Input Drive Circuit

8.2.2.2 Clock Input

The VSP5324-Q1 device can function with either single-ended or differential clock inputs. The device can automatically detect if a single-ended or differential clock is applied. To operate with a single-ended input clock, CLKP must be driven by a CMOS clock with CLKM tied to GND. 🕅 82 and 🕅 83 show the typical single-ended and differential clock termination schemes (respectively).

图 83. Differential Clock Driving Circuit

Typical Application (接下页)

8.2.3 Application Curves

9 Power Supply Recommendations

Using an LDO supply with minimal noise on the AVDD supply is recommended. The LVDD supply can be connected to an LDO or a DC-DC converter. A capacitor with a value of 100 nF per supply pin is recommended in addition to a 1-µF common decoupling capacitor per rail.

10 Layout

10.1 Layout Guidelines

10.1.1 General Guidelines

The following list includes general layout guidelines. Refer to 图 86 as needed.

- Route the clock input as a differential pair when a differential clock input is used.
- When single ended inputs are used, place 100-nF capacitors close to the pins on the INx_M inputs to ensure that the reference rail is stable. When differential inputs are used, the inputs must be routed as differential pairs.
- Route the LVDS clock and data output pairs with 100-Ω differential impedance and length matched as per the sampling frequency.

10.1.2 Grounding

A single ground plane is sufficient to provide good performance, provided that the analog, digital, and clock sections of the board are cleanly partitioned.

10.1.3 Supply Decoupling

Minimal external decoupling can be used without loss in performance because the VSP5324-Q1 device already includes internal decoupling. Note that decoupling capacitors can help filter external power-supply noise, thus the optimum number of capacitors depends on the actual application. The decoupling capacitors should be placed very close to the converter supply pins.

www.ti.com.cn

Layout Guidelines (接下页)

10.1.4 Exposed Pad

In addition to providing a path for heat dissipation, the pad is also electrically connected to the digital ground internally. Therefore, soldering the exposed pad to the ground plane is necessary to achieve the best thermal and electrical performance. For detailed information, see application notes *QFN Layout Guidelines* and *QFN/SON PCB Attachment*.

10.2 Layout Example

The layout in this example uses four single-ended inputs and four LVDS-data outputs. The components that require special layout attention are shown and are listed in the *General Guidelines* section. For the two-lane output option, eight LVDS data pairs are used.

图 86. VSP5324-Q1 Layout Example

www.ti.com.cn

11 器件和文档支持

- 11.1 器件支持
- 11.1.1 器件命名规则
- 模拟带宽 基频功率相对低频值下降 3dB 时的模拟输入频率。
- **孔径延迟** 输入采样时钟上升沿与发生采样的实际时间之间的延迟时间。该延迟在各通道中会有所不同。最大差 值被定义为孔径延迟差异(通道间)。

孔径不确定性(抖动) 采样之间孔径延迟时间的变化。

- 时钟脉宽和占空比 时钟占信号空比是时钟信号保持逻辑高电平的时间(时钟脉宽)与一个时钟信号周期的比率。 占空比通常以百分比的形式表示。理想差分正弦波时钟的占空比为 50%。
- 最大转换速率 行指定操作时所采用的最大采样率。除非另有说明,所有参数测试均以该采样率执行。
- 最小转换速率 ADC 正常工作时的最小采样率。
- 微分非线性 (DNL) 理想 ADC 对模拟输入值进行编码转换时以 1 LSB 为步长。DNL 是指任意单个步长与这一理想 值之间的偏差(以 LSB 为计量单位)。
- 积分非线性 (INL) INL 是 ADC 传递函数与其最小二乘法曲线拟合所确定的最佳拟合曲线的偏差(以 LSB 为计量单位)。
- 增益误差
 增益误差是指 ADC 实际输入满量程范围与其理想值的偏差。增益误差以理想输入满量程范围的百分 比形式表示,由两部分组成:基准不精确导致的误差和通道导致的误差。两种误差均以独立形式标 注,分别为 E_{G(REF)} 和 E_{G(CHAN)}。对于一阶近似值,总增益误差为 (E_{tot} ~ E_{G(REF)} + E_{G(CHAN)})。例如,如果 E_{tot} = ±0.5%,则满量程输入范围为 [(1 0.5 / 100) × f_{S(ideal)}] 至 [(1 + 0.5 / 100) × f_{S(ideal)}]。
- **偏移误差** 偏移误差是指 ADC 实际平均空闲通道输出编码与理想平均空闲通道输出编码之间的差值(以 LSB 数 表示)。该数量通常转换为毫伏。
- 温度漂移 温度漂移系数(相对于增益误差和偏移误差)指定了参数从 T_{MIN} 到 T_{MAX} 每摄氏度的变化量。此系数 由参数在 T_{MIN} 至 T_{MAX} 范围内的最大变化量除以 T_{MAX} T_{MIN} 的差值计算得出。
- 信噪比 (SNR) SNR 是指基频功率 (P_s) 与噪底功率 (P_N) 的比值,后者不包括直流功率和前 9 个谐波的功率。当基频的绝对功率用作基准时,SNR 以 dBc(相对于载波的分贝数)为单位;当基频功率被外推至转换器满量程范围时,SNR 以 dBFS(相对于满量程的分贝数)为单位。

$$SNR = 10 \text{ Log}^{10} \frac{P_{\text{s}}}{P_{\text{N}}}$$

(3)

信噪比和失真 (SINAD) SINAD 是指基频功率 (P_S) 与所有其他频谱成分(包括噪声 (P_N) 和失真 (P_(HD)),但不包括 直流)功率的比值。当基频的绝对功率用作基准时,SINAD 以 dBc(相对于载波的分贝数)为单位; 当基频功率被外推至转换器满量程范围时,SINAD 以 dBFS(相对于满量程的分贝数)为单位。

SINAD = 10 Log¹⁰
$$\frac{P_s}{P_N + P_{(HD)}}$$

(4)

www.ti.com.cn

INSTRUMENTS

TEXAS

器件支持 (接下页)

有效位数 (ENOB) ENOB 测量的是转换器相对于理论限值(基于量化噪声)的性能。

 $ENOB = \frac{SINAD - 1.76}{6.02}$

总谐波失真 (THD) THD 是指基频功率 (P_s) 与前 9 个谐波的功率 (P_(HD)) 的比值。THD 通常以 dBc 为单位(相对 于载波的分贝数)。

$$THD = 10 \text{ Log}^{10} \frac{P_s}{P_N}$$

(6)

(5)

- 无杂散动态范围 (SFDR) 基频功率与最高的其他频谱成分(毛刺或谐波)功率的比值。SFDR 通常以 dBc 为单位 (相对于载波的分贝数)。
- 双频互调失真 (IMD3) IMD3 是基频 (f1 和 f2 频率处) 功率与最差频谱成分 (2 f1 f2 或 2 f2 f1 频率处) 功率的比值。当基频的绝对功率用作基准时, IMD3 以 dBc (相对于载波的分贝数) 为单位; 当基频功率被外推至转换器满量程范围时, IMD3 以 dBFS (相对于满量程的分贝数) 为单位。
- 直流电源抑制比 (DC PSRR) DC PSSR 是偏移误差变化量与模拟电源电压变化量的比值。DC PSRR 通常以 mV/V 为单位进行表示。
- 交流电源抑制比 (AC PSRR) AC PSRR 测量的是 ADC 对电源电压变化的抑制能力。如果 ΔV_(AVDD) 表示电源电压 的变化, ΔV_o 表示 ADC 输出代码的相应变化(以输入为基准),则:

 $PSRR = 20 \ Log^{10} \frac{\Delta V_{O}}{\Delta V_{(AVDD)}} \quad (Expressed \ in \ dBc)$

(7)

- 电压过载恢复 使过载的模拟输入端的误差恢复至 1% 以下所需的时钟周期数。该技术参数的测试方法是分别施加具有 6dB 正过载和负过载的正弦波信号。然后记录下过载后前几个采样(相对于期望值)的偏差。
- 共模抑制比 (CMRR) CMRR 测量的是 ADC 对模拟输入共模变化的抑制能力。如果 ΔV_{IC} 为输入引脚的共模电压变化值, ΔV_O 为 ADC 输出代码的相应变化(以输入为基准),则:

CMRR = 20 Log¹⁰
$$\frac{\Delta V_o}{\Delta V_{IC}}$$
 (Expressed in dBc)

(8)

申扰(仅限于多通道 ADC) 申扰测量的是目标通道与其相邻通道之间的内部信号耦合。申扰分两种情况:一种是 与紧邻通道(近端通道)之间的耦合,另一种是与跨封装通道(远端通道)之间的耦合。通常采用对 邻近通道施加满量程信号的方式来测量串扰。串扰是指耦合信号功率(在目标通道的输出端测得)与 邻近通道输入端所施加信号功率的比值。串扰通常以 dBc 为单位进行表示。

11.2 文档支持

11.2.1 相关文档

请参阅如下相关文档:

- 《QFN 布局指南》
- 《QFN/SON PCB 连接》

11.3 接收文档更新通知

如需接收文档更新通知,请导航至 Tl.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.4 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 **71 参考设计支持** 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

11.5 商标

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.6 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更, 恕不另行通知和修 订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
VSP5324TRGCRQ1	ACTIVE	VQFN	RGC	64	2000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 105	VSP5324T	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadran
VSP5324TRGCRQ1	VQFN	RGC	64	2000	330.0	16.4	9.3	9.3	1.5	12.0	16.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

12-Feb-2019

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
VSP5324TRGCRQ1	VQFN	RGC	64	2000	350.0	350.0	43.0

RGC 64

9 x 9, 0.5 mm pitch

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

RGC0064A

PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUADFLAT PACK- NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

RGC0064A

EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUADFLAT PACK- NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

RGC0064A

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUADFLAT PACK- NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

Ⅱ 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、 验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用 所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI所提供产品均受TI的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司