Dual, 12-Bit Serial Input DIGITAL-TO-ANALOG CONVERTER

FEATURES

- LOW POWER: 3.7mW
- FAST SETTLING: 7 $\mu \mathrm{s}$ to 1 LSB
- 1mV LSB WITH 4.095V FULL-SCALE RANGE
- COMPLETE WITH REFERENCE
- 12-BIT LINEARITY AND MONOTONICITY OVER INDUSTRIAL TEMP RANGE
- 3-WIRE INTERFACE: Up to 20 MHz Clock
- SMALL PACKAGE: 8-Lead SOIC

APPLICATIONS

- PROCESS CONTROL
- DATA ACQUISITION SYSTEMS
- CLOSED-LOOP SERVO-CONTROL
- PC PERIPHERALS
- PORTABLE INSTRUMENTATION

DESCRIPTION

The DAC7612 is a dual, 12-bit digital-to-analog converter (DAC) with guaranteed 12 -bit monotonicity performance over the industrial temperature range. It requires a single +5 V supply and contains an input shift register, latch, 2.435 V reference, a dual DAC, and high speed rail-to-rail output amplifiers. For a fullscale step, each output will settle to 1 LSB within $7 \mu \mathrm{~s}$ while only consuming 3.7 mW .
The synchronous serial interface is compatible with a wide variety of DSPs and microcontrollers. Clock (CLK), Serial Data In (SDI), Chip Select ($\overline{\mathrm{CS}}$) and Load DACs ($\overline{\text { LOADDACS }}$) comprise the serial interface.
The DAC7612 is available in an 8 -lead SOIC package and is fully specified over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

[^0]
SPECIFICATIONS

At $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS	DAC7612U			DAC7612UB			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
RESOLUTION		12			*			Bits
ACCURACY Relative Accuracy ${ }^{(1)}$ Differential Nonlinearity Zero-Scale Error Zero Scale Match Full-Scale Voltage Full-Scale Match	Guaranteed Monotonic Code 000_{H} Code 000_{H} Code FFF ${ }_{H}$ Code FFF $_{H}$	$\begin{gathered} -2 \\ -1 \\ -1 \\ 4.079 \end{gathered}$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 / 2 \\ +1 \\ 1 / 2 \\ 4.095 \\ 1 / 2 \end{gathered}$	$\begin{gathered} +2 \\ +1 \\ +3 \\ 4.111 \end{gathered}$	$\begin{gathered} -1 \\ -1 \\ * \\ 4.087 \end{gathered}$	$\begin{gathered} \pm 1 / 4 \\ \pm 1 / 4 \\ * \\ 1 / 2 \\ 4.095 \\ 1 / 2 \end{gathered}$	$\begin{gathered} +1 \\ +1 \\ * \\ 2 \\ 4.103 \\ 2 \end{gathered}$	$\begin{gathered} \text { LSB } \\ V \\ \text { LSB } \end{gathered}$
ANALOG OUTPUT Output Current Load Regulation Capacitive Load Short-Circuit Current Short-Circuit Duration	Code 800_{H} $R_{\text {LOAD }} \geq 402 \Omega$, Code 800_{H} No Oscillation GND or V_{DD}	± 5	$\begin{gathered} \pm 7 \\ 1 \\ 500 \\ \pm 15 \end{gathered}$ Indefinite	3	*	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	*	$\begin{gathered} \mathrm{mA} \\ \mathrm{LSB} \\ \mathrm{pF} \\ \mathrm{~mA} \end{gathered}$
DIGITAL INPUT Data Format Data Coding Logic Family Logic Levels V_{IH} $\mathrm{V}_{\text {IL }}$ $I_{I H}$ IIL		$0.7 \cdot \mathrm{~V}_{\mathrm{DD}} \|$Serial Straight Binay CMOS		$\begin{gathered} 0.3 \cdot V_{\mathrm{DD}} \\ \pm 10 \\ \pm 10 \end{gathered}$	*	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \end{aligned}$ *	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$
DYNAMIC PERFORMANCE Settling Time ${ }^{(2)}$ (t_{s}) DAC Glitch Digital Feedthrough	To ± 1 LSB of Final Value		$\begin{gathered} 7 \\ 2.5 \\ 0.5 \end{gathered}$			$\begin{aligned} & * \\ & \text { * } \\ & \text { K } \end{aligned}$		$\mu \mathrm{s}$ nV -s nV -s
POWER SUPPLY $V_{D D}$ $I_{D D}$ Power Dissipation Power Supply Sensitivity	$\begin{gathered} \mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \text { No Load, at Code } 000_{\mathrm{H}} \\ \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \text {, No Load } \\ \Delta \mathrm{V}_{\mathrm{DD}}= \pm 5 \% \end{gathered}$	+4.75	$\begin{gathered} +5.0 \\ 0.75 \\ 3.5 \\ 0.0025 \end{gathered}$	$\begin{gathered} +5.25 \\ 1.5 \\ 7.5 \\ 0.002 \end{gathered}$	*	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~mW} \\ \% / \% \end{gathered}$
TEMPERATURE RANGE Specified Performance		-40		+85	*		*	${ }^{\circ} \mathrm{C}$

* Same specification as for DAC7612U.

NOTES: (1) This term is sometimes referred to as Linearity Error or Integral Nonlinearity (INL). (2) Specification does not apply to negative-going transitions where the final output voltage will be within 3 LSBs of ground. In this region, settling time may be double the value indicated.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

V_{DD} to GND	.. -0.3 V to 6 V
Digital Inputs to GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {OUt }}$ to GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power Dissipation	.. 325 mW
Thermal Resistance, θ_{JA}	. $150^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$\ldots .+150^{\circ} \mathrm{C}$
Operating Temperature Range	. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

NOTE: (1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

PIN DESCRIPTIONS

PIN	LABEL	DESCRIPTION
1	SDI	Serial Data Input. Data is clocked into the internal serial register on the rising edge of CLK.
2	CLK	Synchronous Clock for the Serial Data Input.
3	LOADDACS	Loads the internal DAC registers. All DAC registers are transparent latches and are transparent when LOADDACS is LOW (regardless of the state of CS or CLK).
4	$\overline{\mathrm{CS}}$	Chip Select. Active LOW.
5	$V_{\text {OUtB }}$	DAC B Output Voltage
6	GND	Ground
7	$V_{D D}$	Positive Power Supply
8	$V_{\text {OUTA }}$	DAC A Output Voltage

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	MINIMUM RELATIVE ACCURACY (LSB)	DIFFERENTIAL NONLINEARITY (LSB)	SPECIFICATION TEMPERATURE RANGE	PACKAGE	PACKAGE DRAWING NUMBER ${ }^{(1)}$	ORDERING NUMBER ${ }^{(2)}$	TRANSPORT MEDIA
$\begin{gathered} \text { DAC7612U } \\ " \\ \text { DAC7612UB } \\ \text { " } \end{gathered}$	± 2 $" 1$ ± 1 1	± 1 1 ± 1 1	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { " } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { SO-8 } \\ \text { " SO-8 } \end{gathered}$	$\begin{gathered} 182 \\ " \\ 182 \end{gathered}$	$\begin{gathered} \text { DAC7612U } \\ \text { DAC7612U/2K5 } \\ \text { DAC7612UB } \\ \text { DAC7612UB/2K5 } \end{gathered}$	Rails Tape and Reel Rails Tape and Reel

NOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "DAC7612U/2K5" will get a single 2500-piece Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book.

TIMING DIAGRAMS

LOGIC TRUTH TABLE

A1	A0	CLK	$\overline{\text { CS }}$	$\overline{\text { LOADDACS }}$	SERIAL SHIFT REGISTER	DAC REGISTER A	DAC REGISTER B
X	X	X	H	H	No Change	No Change	No Change
X	X	\uparrow	L	H	Shifts One Bit	No Change	No Change
L	X	X	$\mathrm{H}^{(1)}$	L	No Change	Loads Serial Data Word Loads Serial	Data Word H
L	X	H	L	No Change	Loads Serial Data Word No Change		
H	H	X	H	L	No Change	No Change	Loads Serial
Data Word							

NOTE: (1) A HIGH value is suggested in order to avoid to "false clock" from advancing the shift register and changing the DAC voltage.

DATA INPUT TABLE

B0	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
A1	A0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

TIMING SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$.

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t_{CH}	Clock Width HIGH	30			ns
t_{CL}	Clock Width LOW	30			ns
$\mathrm{t}_{\mathrm{LDW}}$	Load Pulse Width	20			ns
t_{DS}	Data Setup	15			ns
t_{DH}	Data Hold	15			ns
$\mathrm{t}_{\mathrm{LD} 1}$	Load Setup	15			ns
$\mathrm{t}_{\mathrm{LD} 2}$	Load Hold	10			ns
$\mathrm{t}_{\mathrm{CSS}}$	Select	30			ns
$\mathrm{t}_{\mathrm{CSH}}$	Deselect	20			ns

NOTE: All input control signals are specified with $t_{R}=t_{F}=5 \mathrm{~ns}(10 \%$ to 90% of +5 V) and timed from a voltage level of 2.5 V . These parameters are guaranteed by design and are not subject to production testing.

TYPICAL PERFORMANCE CURVES

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ}$, and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, unless otherwise specified.

Time ($2 \mathrm{~ms} / \mathrm{div}$)
Code $=$ FFF $_{\mathrm{H}}, \mathrm{BW}=1 \mathrm{MHz}$

TYPICAL PERFORMANCE CURVES (CONT)

 At $\mathrm{T}_{\mathrm{A}}=+25^{\circ}$, and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, unless otherwise specified.

Time (10 $\mu \mathrm{s} / \mathrm{div}$)

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ}$, and $V_{D D}=5 \mathrm{~V}$, unless otherwise specified.

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ}$, and $V_{D D}=5 \mathrm{~V}$, unless otherwise specified.

LINEARITY ERROR vs DIGITAL CODE
(DAC B at $+85^{\circ} \mathrm{C}$)

LINEARITY ERROR vs DIGITAL CODE
(DAC B at $+25^{\circ} \mathrm{C}$)

LINEARITY ERROR vs DIGITAL CODE

OPERATION

The DAC7612 is a dual, 12-bit digital-to-analog converter (DAC) complete with a serial-to-parallel shift register, DAC registers, laser-trimmed 12-bit DACs, on-board reference, and rail-to-rail output amplifiers. Figure 1 shows the basic operation of the DAC7612.

INTERFACE

Figure 1 shows the basic connection between a microcontroller and the DAC7612. The interface consists of a Serial Clock (CLK), Serial Data (SDI), and a Load DAC signal ($\overline{\text { LOADDACS }})$. In addition, a chip select $(\overline{\mathrm{CS}})$ input is available to enable serial communication when there are multiple serial devices. Loading either DAC A or DAC B is done by shifting 14 serial bits in via the SDI input. The first 2 bits represent the address of the DAC to be updated and the

$\|l\| l\|l\|$
DAC7612 Full-Scale Range $=4.095 \mathrm{~V}$ Least Significant Bit $=1 \mathrm{mV}$
DIGITAL INPUT CODE STRAIGHT OFFSETBINARY ANALOG OUTPUT (V) DESCRIPTION FFF $_{\mathrm{H}}$ +4.095 Full Scale 801_{H} +2.049 Midscale +1 LSB 800_{H} +2.048 Midscale $7 \mathrm{FF}_{\mathrm{H}}$ +2.047 Midscale -1 LSB 000_{H} 0 Zero Scale

TABLE I. Digital Input Code and Corresponding Ideal Analog Output.
next 12 bits are the code (MSB-first) sent to the DAC. The data format is Straight Binary and is loaded MSB-first into the shift registers after loading the address bits. Table I shows the relationship between input code and output voltage.
The digital data into the DAC7612 is double-buffered. This means that new data can be entered into the chosen DAC without disturbing the old data and the analog output of the converter. At some point after the data has been entered into the serial shift register, this data can be transferred into the DAC registers. This transfer is accomplished with a HIGH to LOW transition of the LOADDACS pin. The $\overline{\text { LOADDACS }}$ pin makes the DAC registers transparent. If new data is shifted into the shift register while LOADDACS is LOW, the DAC output voltages will change as each new bit is entered. To prevent this, $\overline{\text { LOADDACS must be returned }}$ HIGH prior to shifting in new serial data.

DIGITAL-TO-ANALOG CONVERTER

The internal DAC section is a 12-bit voltage output device that swings between ground and the internal reference voltage. The DAC is realized by a laser-trimmed R-2R ladder network which is switched by N-channel MOSFETs. Each DAC output is internally connected to a rail-to-rail output operational amplifier.

OUTPUT AMPLIFIER

A precision, low-power amplifier buffers the output of each DAC section and provides additional gain to achieve a 0 V to 4.095 V range. Each amplifier has low offset voltage, low

FIGURE 1. Basic Operation of the DAC7612.
noise, and a set gain of $1.682 \mathrm{~V} / \mathrm{V}(4.095 / 2.435)$. See Figure 2 for an equivalent circuit schematic of the analog portion of the DAC7612.

The output amplifier has a 7μ s typical settling time to ± 1 LSB of the final value. Note that there are differences in the settling time for negative-going signals versus positivegoing signals.
The rail-to-rail output stage of the amplifier provides the fullscale range of 0 V to 4.095 V while operating on a supply voltage as low as 4.75 V . In addition to its ability to drive resistive loads, the amplifier will remain stable while driving capacitive loads of up to 500 pF . See Figure 3 for an equivalent circuit schematic of the amplifier's output driver and the Typical Performance Curves section for more information regarding settling time, load driving capability, and output noise.

POWER SUPPLY

A BiCMOS process and careful design of the bipolar and CMOS sections of the DAC7612 result in a very low power device. Bipolar transistors are used where tight matching and low noise are needed to achieve analog accuracy, and CMOS transistors are used for logic, switching functions and for other low power stages.

If power consumption is critical, it is important to keep the logic levels on the digital inputs (SDI, CLK, $\overline{\mathrm{CS}}$, $\overline{\text { LOADDACS }}$) as close as possible to either V_{DD} or ground. This will keep the CMOS inputs (see "Supply Current vs Logic Input Voltages" in the Typical Performance Curves) from shunting current between V_{DD} and ground.

The DAC7612 power supply should be bypassed as shown in Figure 1. The bypass capacitors should be placed as close to the device as possible, with the $0.1 \mu \mathrm{~F}$ capacitor taking priority in this regard. The "Power Supply Rejection vs Frequency" graph in the Typical Performance Curves section shows the PSRR performance of the DAC7612. This should be taken into account when using switching power supplies or DC/DC converters.
In addition to offering guaranteed performance with V_{DD} in the 4.75 V to 5.25 V range, the DAC7612 will operate with reduced performance down to 4.5 V . Operation between 4.5 V and 4.75 V will result in longer settling time, reduced performance, and current sourcing capability. Consult the "V $\mathrm{VD}_{\mathrm{DD}}$ vs Load Current" graph in the Typical Performance Curves section for more information.

FIGURE 2. Simplified Schematic of Analog Portion.

FIGURE 3. Simplified Driver Section of Output Amplifier.

APPLICATIONS

POWER AND GROUNDING

The DAC7612 can be used in a wide variety of situationsfrom low power, battery operated systems to large-scale industrial process control systems. In addition, some applications require better performance than others, or are particularly sensitive to one or two specific parameters. This diversity makes it difficult to define definite rules to follow concerning the power supply, bypassing, and grounding. The following discussion must be considered in relation to the desired performance and needs of the particular system.
A precision analog component requires careful layout, adequate bypassing, and a clean, well-regulated power supply. As the DAC7612 is a single-supply, +5 V component, it will often be used in conjunction with digital logic, microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the higher the switching speed, the more difficult it will be to achieve good performance.
Because the DAC7612 has a single ground pin, all return currents, including digital and analog return currents, must flow through this pin. The GND pin is also the ground
reference point for the internal bandgap reference. Ideally, GND would be connected directly to an analog ground plane. This plane would be separate from the ground connection for the digital components until they are connected at the power entry point of the system (see Figure 4).
The power applied to V_{DD} should be well regulated and lownoise. Switching power supplies and DC/DC converters will often have high-frequency glitches or spikes riding on the output voltage. In addition, digital components can create similar high frequency spikes as their internal logic switches states. This noise can easily couple into the DAC output voltage through various paths between V_{DD} and $\mathrm{V}_{\text {OUT }}$.
As with the GND connection, V_{DD} should be connected to $a+5 \mathrm{~V}$ power supply plane or trace that is separate from the connection for digital logic until they are connected at the power entry point. In addition, the $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors shown in Figure 4 are strongly recommended and should be installed as close to V_{DD} and ground as possible. In some situations, additional bypassing may be required such as a $100 \mu \mathrm{~F}$ electrolytic capacitor or even a "Pi" filter made up of inductors and capacitors-all designed to essentially lowpass filter the +5 V supply, removing the high frequency noise (see Figure 4).

FIGURE 4. Suggested Power and Ground Connections for a DAC7612 Sharing a +5 V Supply with a Digital System.

Texas
InsTruments

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
DAC7612U	ACTIVE	SOIC	D	8	75	RoHS \& Green	Call TI	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { DAC } \\ & 7612 \mathrm{U} \end{aligned}$	Samples
DAC7612U/2K5	ACTIVE	SOIC	D	8	2500	RoHS \& Green	Call TI	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { DAC } \\ & 7612 \mathrm{U} \end{aligned}$	Samples
DAC7612UB	ACTIVE	SOIC	D	8	75	RoHS \& Green	Call TI	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \hline \text { DAC } \\ & 7612 \mathrm{U} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	Samples
DAC7612UB/2K5	ACTIVE	SOIC	D	8	2500	RoHS \& Green	Call TI	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { DAC } \\ & 7612 \mathrm{U} \\ & \text { B } \end{aligned}$	Samples
DAC7612UG4	ACTIVE	SOIC	D	8	75	RoHS \& Green	Call TI	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { DAC } \\ & 7612 \mathrm{U} \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. Tl may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

Reel Width (W1)
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { B0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{KO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$	Pin1 Quadrant
DAC7612U/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
DAC7612UB/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DAC7612U/2K5	SOIC	D	8	2500	356.0	356.0	35.0
DAC7612UB/2K5	SOIC	D	8	2500	356.0	356.0	35.0

TUBE

- B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T $(\boldsymbol{\mu m})$	B (mm)
DAC7612U	D	SOIC	8	75	506.6	8	3940	4.32
DAC7612UB	D	SOIC	8	75	506.6	8	3940	4.32
DAC7612UG4	D	SOIC	8	75	506.6	8	3940	4.32

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

[^0]: International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

