适用于汽车 ADAS 应用的 TPS59632－Q1 2．5V 至 24V，三相／两相／单相降

压无驱动器控制器1 特性

- 符合面向汽车 应用的 AEC－Q100 标准
- 温度等级 1：$-40^{\circ} \mathrm{C}$ 至 $125^{\circ} \mathrm{C}$
- 人体放电模型 ESD 分类等级 H2
- 带电器件模型 ESD 分类等级 C3B
- 可选相位数：3，2或1
- 转换电压范围： 2.5 V 至 24 V （相位数，开关频率和最大输出电压限制适用）
- 7 位 DAC 电压范围： 0.50 V 至 1.52 V
- 支持预设引导，DAC 电压 0.800 V
- 精确，可调节的直流负载线（压降）或零斜率负载线
- D－CAP＋${ }^{\text {TM 控制，可实现快速瞬态响应 }}$
- 已获专利的 AutoBalance ${ }^{\text {TM 相位均衡技术 }}$
- 8 种开关频率设置（ 300 kHz 至 1 MHz ）
- 8 级独立的输出电压过冲衰减（OSR）和下冲衰减 （USR）
- 可选 8 级电流限制
- 负载电流监视器（模拟和数字）
- 可选 8 级电压压摆率
- 优化了轻负载和重负载条件下的效率
- $I^{2} C$ 接口适用于 VID 控制，相位管理和遥测（具有 8 个器件地址）
－采用 $5 \mathrm{~mm} \times 5 \mathrm{~mm}, ~ 32$ 引脚，间距为 0.5 mm 的 QFN 封装（具有电源板和可湿性侧面）

2 应用

- 高级驾驶辅助系统（ADAS）
- 条件式自动驱动控制器
- 汽车信息娱乐系统和仪表组

3 说明

TPS59632－Q1 器件是一款三相降压无驱动器控制器，具有许多高级功能，例如具有输出电压过冲衰减 （OSR）和下冲衰减（USR）功能的 D－CAP $+{ }^{\text {TM }}$ 控制架构，可实现极快的瞬态响应，超低的输出电容和高效率。该器件支持 $\mathrm{I}^{2} \mathrm{C}$ 接口，能够实现输出电压动态控制，可优化效率的相位管理以及电流监控器遥测。
TPS59603－Q1 MOSFET 栅极驱动器专用于与此控制器配合工作，以驱动同步降压转换器功率级
MOSFET。TPS59632－Q1 器件采用节省空间的 5 mm $\times 5 \mathrm{~mm}$ ，热增强型 32 引脚 QFN 封装（间距为 0.5 mm ），额定工作温度范围为 $-40^{\circ} \mathrm{C}$ 至 $125^{\circ} \mathrm{C}$ 。

器件信息 ${ }^{(1)}$		
器件型号	封装	封装尺寸（标称值）
TPS59632－Q1	$\operatorname{VQFN}(32)$	$5 \mathrm{~mm} \times 5 \mathrm{~mm}$

[^0]简化应用

目录

1 特性 1
2 应用 1
3 说明 1
4 修订历史记录 2
5 Pin Configuration and Functions 3
6 Specifications 5
6．1 Absolute Maximum Ratings 5
6．2 ESD Ratings 5
6．3 Recommended Operating Conditions 5
6．4 Thermal Information 5
6．5 Electrical Characteristics 6
6．6 Timing Requirements 9
6．7 Switching Characteristics 9
6．8 Typical Characteristics 11
7 Detailed Description 13
7．1 Overview 13
7．2 Functional Block Diagram 14
7．3 Feature Description 14
7．4 User Selections 25
$7.5 \mathrm{I}^{2} \mathrm{C}$ Interface Operation 25
$7.6 \mathrm{I}^{2} \mathrm{C}$ Register Maps 27
8 Applications and Implementation 29
8．1 Application Information 29
8．2 Typical Application 29
9 Power Supply Recommendations 38
10 Layout． 39
10．1 Layout Guidelines 39
10．2 Layout Example 39
10．3 Current Sensing Lines 40
10．4 Feedback Voltage Sensing Lines 40
10．5 PWM And SKIP Lines 40
10．6 Power Chain Symmetry 40
10．7 Component Location 40
10．8 Grounding Recommendations 41
10．9 Decoupling Recommendations 41
10．10 Conductor Widths． 41
11 器件和文档支持 42
11.1 文档支持 42
11.2 商标 42
11.3 静电放电警告 42
11．4 Glossary 42
12 机械，封装和可订购信息 43
13 Package Option Addendum 44
13．1 Packaging Information 44
13．2 Tape And Reel Information 45

4 修订历史记录

注：之前版本的页码可能与当前版本有所不同。

日期	修订版本	说明
2020 年 2 月	$*$	初始发行版

5 Pin Configuration and Functions

Pin Functions

| PIN | | I/O | |
| :--- | :---: | :---: | :--- | :--- |
| NAME | NO. | | DESCRIPTION |

Pin Functions (continued)

PIN		I/O	DESCRIPTION
NAME	NO.		
O-USR	9	1	Voltage divider to the VREG pin. Connect a resistor to GND to select the pulse-truncation level and OSR level. Voltage at O-USR selects the USR level.
PU	9	1	Provides pullup resistance to VREF through 10-k 2 resistor.
PAD	GND	-	Thermal pad; tie to the ground plane with multiple vias.
PGOOD	3	O	Power Good output; Open-drain. PGOOD can be configured to go low when the current reaches 70% of the OCP setting value.
PWM1	6	O	PWM controls for the external driver; 5-V logic level. Controller forces signal to the 3-state level when needed.
PWM2	5		
PWM3	4		
RAMP	11	I	Voltage divider to VREF. Connect a resistor to GND to set the ramp setting voltage. The RAMP setting can override the factory ramp setting.
NC	30	NC	No connect. Leave pins floating.
	32		
SCL	31	1	$1^{2} \mathrm{C}$ digital clock line.
SDA	1	I/O	$\mathrm{I}^{2} \mathrm{C}$ digital data line.
$\overline{\text { SKIP }}$	7	0	This pin is active high to operate synchronous buck MOSFETs in Forced Continuous Conduction Mode (FCCM) active low for skip mode operation. This pin must be connected to the corresponding pin of the drivers for this function.
SLEWA	15	1	The voltage sets the 3 LSBs of the $I^{2} \mathrm{C}$ address. The resistance to GND selects 1 of 8 slew rates. The startup slew rate (EN transitions high) is SLEWRATE / 2. The ADDRESS and SLEWRATE values are latched at start-up.
VINTF	14	1	Input voltage to power ${ }^{2} \mathrm{C}$ interface logic. Can be tied to VDD if 3.3-V logic signals are needed.
V5A	28	1	5 - V power input for analog circuits; connect through resistor to 5 - V plane and bypass to GND with $\geq 1-\mu \mathrm{F}$ ceramic capacitor
VBAT	16	1	10-k r resistor to VBAT provides VBAT information to the on-time circuits for both converters.
VDD	2	1	$3.3-\mathrm{V}$ digital power input; bypass to GND with $\geq 1-\mu \mathrm{F}$ capacitor.
VFB	24	1	Voltage sense line. Tie directly to $\mathrm{V}_{\text {OUT }}$ sense point of processor. Tie to $\mathrm{V}_{\text {OUT }}$ on PCB with a $10-\Omega$ resistor to provide feedback when the microprocessor is not populated. The resistance between VFB and GFB is >1 $\mathrm{M} \Omega$.
VREF	27	\bigcirc	1.7-V, $500-\mu \mathrm{A}$ reference. Bypass to GND with a $0.22-\mu \mathrm{F}$ ceramic capacitor.

6 Specifications

6.1 Absolute Maximum Ratings ${ }^{(1)}$

Over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Input voltage	V5A	-0.3	6.0	V
	VDD, O-USR, RAMP, OCP-I, VFB, CSP1, CSP2, CSP3, CSN1, CSN2, CSN3, VINTF, SDA, SCL, FREQ-P, SLEWA, EN, NC	-0.3	3.6	
	VBAT	-0.3	30	
	COMP	-0.3	3.6	
	GFB	-0.2	0.2	
Output voltage	PGOOD, IMON, VREF, DROOP	-0.3	3.6	V
	PWM3, PWM2, PWM1, $\overline{\text { SKIP }}$	-0.3	6.0	
Junction temperature range, T_{J}		-40	150	${ }^{\circ} \mathrm{C}$
Storage Temperature $\mathrm{T}_{\text {stg }}$		-55	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
$\mathrm{V}_{\text {(ESD) }}$	Electrostatic Discharge	Human body model (HBM), per AEC-Q100 Classification Level H2	± 2000	V
		Charged device model (CDM), per AEC-Q100 Classification Level C3B	± 750	

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Input voltage	V5A	-0.1	5.5	V
	VDD, O-USR, RAMP, OCP-I, VFB, CSP1, CSP2, CSP3, CSN1, CSN2, CSN3, VINTF, SDA, SCL, FREQ-P, SLEWA, EN, NC	-0.1	3.5	
	VBAT	-0.1	28	
	COMP	-0.1	3.5	
	GFB	-0.1	0.1	
Output voltage	PGOOD, IMON, VREF, DROOP	-0.1	3.5	V
	PWM3, PWM2, PWM1, SKIP	-0.1	5.5	
Operating junction temperature, T_{J}		-40	125	${ }^{\circ} \mathrm{C}$

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		TPS59632-Q1	UNITS
		RSM (VQFN)	
		32 PINS	
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	37.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJCtop }}$	Junction-to-case (top) thermal resistance	31.9	
$\mathrm{R}_{\text {日JB }}$	Junction-to-board thermal resistance	8.1	
ψ JT	Junction-to-top characterization parameter	0.4	
ψ JB	Junction-to-board characterization parameter	7.9	
$\mathrm{R}_{\theta \text { JCbot }}$	Junction-to-case (bottom) thermal resistance	2.2	

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report

6.5 Electrical Characteristics

Over recommended temperature range, $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{V} 5 \mathrm{~A}} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{VDD}} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GFB}}=\mathrm{GND}, \mathrm{V}_{\mathrm{VFB}}=\mathrm{V}_{\mathrm{OUT}}, 0.7<\mathrm{VFREQ}-$ $\mathrm{P} \leq \mathrm{V}_{\text {VREF }}$ (unless otherwise noted).

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY: CURRENTS, UVLO AND POWER-ON-RESET						
IV5-3P	V5A supply current, 3-phase	$\mathrm{V}_{\mathrm{VDAC}}<\mathrm{V}_{\mathrm{VFB}}<\left(\mathrm{V}_{\mathrm{VDAC}}+100 \mathrm{mV}\right), \mathrm{EN}=\mathrm{HI}^{\prime}$		3.6	6.0	mA
$I_{\text {VDD-3P }}$	VDD supply current, 3-phase	$\mathrm{V}_{\text {VDAC }}<\mathrm{V}_{\text {VFB }}<\left(\mathrm{V}_{\text {VDAC }}+100 \mathrm{mV}\right), \mathrm{EN}=$ 'HI'; digital buses idle		0.2	0.8	
$\mathrm{IV}_{\mathrm{V}-1 \mathrm{P}}$	V5A supply current, 1-phase	VDAC $<\mathrm{VFB}<\left(\mathrm{V}_{\text {VDAC }}+100 \mathrm{mV}\right) \mathrm{EN}=$ ' HI '		3.5	6.0	
$\mathrm{I}_{\text {VDD-1P }}$	VDD supply current, 1-phase	VDAC $<\mathrm{VFB}<\left(\mathrm{V}_{\text {VDAC }}+100 \mathrm{mV}\right), \mathrm{EN}=$ 'HI'; digital buses idle		0.2	0.8	
$\mathrm{I}_{\text {V5STBY }}$	V5A standby current	EN = 'LO'		125	200	$\mu \mathrm{A}$
$\mathrm{I}_{\text {VDDSTBY }}$	VDD standby current	$\mathrm{EN}=$ 'LO'		23	40	
$\mathrm{I}_{\text {IINTF }}$	VINTF supply current	All conditions; digital buses idle		1.7	5.0	
$\mathrm{V}_{\text {UVLOH }}$	V5A UVLO 'OK' threshold	$\mathrm{V}_{\mathrm{VFB}}<200 \mathrm{mV}$. Ramp up; $\mathrm{V}_{\mathrm{VDD}}>3 \mathrm{~V}$; EN = 'HI'; Switching begins.	4.2	4.4	4.52	V
$\mathrm{V}_{\text {UVLol }}$	V5A UVLO fault threshold	Ramp down; EN = 'HI'; $\mathrm{V}_{\mathrm{VDD}}>3 \mathrm{~V} ; \mathrm{V}_{\mathrm{VFB}}=100 \mathrm{mV}$. Switching stops	4.00	4.2	4.35	
$\mathrm{V}_{5 \text { POR }}$	V5A fault latch reset threshold	Ramp down. EN = 'HI'; $\mathrm{V}_{\text {VDD }}>3 \mathrm{~V}$. Can restart if V5A rises to $\mathrm{V}_{\mathrm{UVLOH}}$, and no other faults present.	1.2	1.9	2.5	
$\mathrm{V}_{\text {3UVLOH }}$	VDD UVLO 'OK' threshold	$\mathrm{V}_{\mathrm{VFB}}<200 \mathrm{mV}$. Ramp up; $\mathrm{V}_{\mathrm{V} 5 \mathrm{~A}}>4.5 \mathrm{~V}$; EN = 'HI'; Switching begins.	2.5	2.8	3.0	
V ${ }_{\text {UUVLOL }}$	Fault threshold	Ramp down; EN = 'HI'; V5A > 4.5 V ; VFB = 100 mV . Switching stops.	2.4	2.6	2.8	
$V_{3 P O R}$	VDD fault latch	Ramp down. EN = 'HI'; V5A > 4.5 V. Can restart if VDD goes up to $\mathrm{V}_{3 \text { UVLOH }}$, and no other faults present.	1.2	1.9	2.5	
$\mathrm{V}_{\text {IntFuVLOH }}$	VINTF UVLO OK	Ramp up; EN = 'HI'; V5A > 4.5 V; VFB $=100 \mathrm{mV}$.	1.4	1.5	1.6	
$\mathrm{V}_{\text {Intfuvlol }}$	VINTF UVLO falling	Ramp down; EN = 'HI'; V5A > 4.5 V; VFB = 100 mV .	1.3	1.4	1.5	

REFERENCES: VDAC, VREF, BOOT Voltage

$\mathrm{V}_{\text {VIDSTP }}$	VID step size	Change VIDO HI to LO to HI	10		mV
$\mathrm{V}_{\text {DAC1 }}$	VFB tolerance	$1.36 \mathrm{~V} \leq \mathrm{V}_{\mathrm{VFB}} \leq 1.52 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$	-9	9	
$\mathrm{V}_{\text {DAC2 }}$		$1.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{VFB}} \leq 1.35 \mathrm{~V}$; $\mathrm{l}_{\text {OUT }}=0 \mathrm{~A}$	-8	8	
$\mathrm{V}_{\text {DAC3 }}$		$0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{VFB}} \leq 0.99 \mathrm{~V}$; $\mathrm{l}_{\text {OUT }}=0 \mathrm{~A}$	-7	7	
$\mathrm{V}_{\text {VREF }}$	VREF output	VREF output $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{V} 5 \mathrm{~A}} \leq 5.5 \mathrm{~V}$, $\mathrm{I}_{\text {VREF }}=0 \mathrm{~A}$	1.661 .700	1.74	V
$\mathrm{V}_{\text {VREFSRC }}$	VREF output source	$0 \mathrm{~A} \leq \mathrm{I}_{\text {REF }} \leq 500 \mu \mathrm{~A}, \mathrm{HP}-2$	-4		mV
$\mathrm{V}_{\text {VREFSNK }}$	VREF output sink	$-500 \mathrm{~A} \leq \mathrm{I}_{\text {REF }} \leq 0 \mathrm{~A}, \mathrm{HP}-2$	3	4	
$\mathrm{V}_{\text {Vboot }}$	Internal VFB initial boot voltage	Initial DAC boot voltage	0.8		V
DIFFERENTIAL VOLTAGE SENSE: VFB AND GFB					
$\mathrm{R}_{\mathrm{VFB}}$	VFB/GFB Input resistance	Not in fault, disable, or UVLO, $\mathrm{V}_{\mathrm{VFB}}=\mathrm{V}_{\mathrm{DAC}}=1.5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{GFB}}=0 \mathrm{~V}$, measure from VFB to GFB	50		$\mathrm{M} \Omega$
$\mathrm{V}_{\text {DELGND }}$	GFB Differential	GND to GFB	± 100		mV

ERROR AMPLIFIER, CURRENT AMPLIFIER, CURRENT SHARE

$\mathrm{A}_{\mathrm{V} \text {-EA }}$	Error amplifier total voltage gain ${ }^{(1)}$	VFB to DROOP	80			dB
$\mathrm{I}_{\text {EA_SR }}$	Error amplifier source current	$\mathrm{I}_{\mathrm{DROOP}}, \mathrm{V}_{\mathrm{VFB}}=\mathrm{V}_{\mathrm{DAC}}+50 \mathrm{mV}, \mathrm{R}_{\mathrm{COMP}}=1 \mathrm{k} \Omega$	1			mA
$\mathrm{I}_{\text {EA_SK }}$	Error amplifier sink current	$\mathrm{I}_{\text {DROOP, }}, \mathrm{V}_{\mathrm{VFB}}=\mathrm{V}_{\mathrm{DAC}}-50 \mathrm{mV}, \mathrm{R}_{\text {COMP }}=1 \mathrm{k} \Omega$	-1			
$\mathrm{I}_{\text {CS }}$	CS pin input bias current	CSPx and CSNx	-500	0.2	500	nA
$\mathrm{A}_{\text {CSINT }}$	Internal current sense gain	Gain from CSPx - CSNx to PWM comparator, $\mathrm{R}_{\overline{\mathrm{SKIP}}}=$ Open	5.8	6.0	6.2	V/V
$\mathrm{I}_{\text {BAL_TOL }}$	Internal current share tolerance	$\begin{aligned} & \mathrm{V}_{\mathrm{DAC}}=1.70 \mathrm{~V}, \mathrm{~V}_{\mathrm{CSP} 1}-\mathrm{V}_{\mathrm{CSN} 1}=\mathrm{V}_{\mathrm{CSP} 2}-\mathrm{V}_{\mathrm{CSN} 2}= \\ & \mathrm{V}_{\mathrm{CSP} 3}-\mathrm{V}_{\mathrm{CSN} 3}=\mathrm{V}_{\text {OCPP_MIN }} \end{aligned}$	-3\%		+3\%	

[^1]
Electrical Characteristics (continued)

Over recommended temperature range, $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{V} 5 \mathrm{~A}} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{VDD}} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GFB}}=\mathrm{GND}, \mathrm{V}_{\mathrm{VFB}}=\mathrm{V}_{\mathrm{OUT}}, 0.7<\mathrm{VFREQ}-$ $P \leq V_{\text {VREF }}$ (unless otherwise noted).

PARAMETER		CONDITIONS	MIN TYP	MAX	UNIT
RAMP SETTINGS					
$\mathrm{V}_{\text {RAMP }}$	Compensation ramp amplitude	$\mathrm{R}_{\text {RAMP }}=20 \mathrm{k} \Omega+/-1 \%$	20		mV
		$\mathrm{R}_{\text {RAMP }}=30 \mathrm{k} \Omega+/-1 \%$	60		
		$\mathrm{R}_{\text {RAMP }}=39 \mathrm{k} \Omega+/-1 \%$	100		
		$\mathrm{R}_{\text {RAMP }} \geq 150 \mathrm{k} \Omega+/-1 \%$	40		
SLEW SETTINGS					
SL ${ }_{\text {SET }}$	Slew rate setting for VID change	$\mathrm{R}_{\text {SLEW }}=20 \mathrm{k} \Omega+/-1 \%$	6	10	$\mathrm{mV} / \mu \mathrm{s}$
		$\mathrm{R}_{\text {SLEW }}=24 \mathrm{k} \Omega+/-1 \%$	12	20	
		$\mathrm{R}_{\text {SLEW }}=30 \mathrm{k} \Omega+/-1 \%$	18	30	
		$\mathrm{R}_{\text {SLEW }}=39 \mathrm{k} \Omega+/-1 \%$	24	40	
SL ${ }_{\text {Start }}$	Slew rate setting for start-up ${ }^{(2)}$	EN goes high, $\mathrm{R}_{\text {SLEW }}=20 \mathrm{k} \Omega$	3	5	$\mathrm{mV} / \mu \mathrm{s}$
ADDRESS SETTINGS					
ADDR	Address setting 3 LSB of $\mathrm{I}^{2} \mathrm{C}$ Address (ADDR = $1000 x x x$)	$\mathrm{V}_{\text {SLEWA }} \leq 0.25 \mathrm{~V}$	000b		
		$0.35 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq 0.45 \mathrm{~V}$	001b		
		$0.55 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq 0.65 \mathrm{~V}$	010b		
		$0.75 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq 0.85 \mathrm{~V}$	011b		
		$0.95 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq 1.05 \mathrm{~V}$	100b		
		$1.15 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq 1.25 \mathrm{~V}$	101b		
		$1.35 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq 1.45 \mathrm{~V}$	110b		
		$1.55 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq \mathrm{V}_{\text {VREF }}$	111b		
OVERSHOOT REDUCTION (OSR) SETTINGS					
$\mathrm{V}_{\text {OSR }}$	Overshoot Reduction (OSR) Voltage set ${ }^{(3)}$	$\mathrm{R}_{\text {O-USR }}=20 \mathrm{k} \Omega+/-1 \%$	100		mV
		$\mathrm{R}_{\text {O-USR }}=24 \mathrm{k} \Omega+/-1 \%$	150		
		$\mathrm{R}_{\text {O-USR }}=30 \mathrm{k} \Omega+/-1 \%$	200		
		$\mathrm{R}_{\text {O-USR }}=39 \mathrm{k} \Omega+/-1 \%$	250		
		$\mathrm{R}_{\text {O-USR }}=56 \mathrm{k} \Omega+/-1 \%$	300		
		$\mathrm{R}_{\text {O-USR }}=75 \mathrm{k} \Omega+/-1 \%$	400		
		$\mathrm{R}_{\text {O-USR }}=100 \mathrm{k} \Omega+/-1 \%$	500		
		$\mathrm{R}_{\text {O-USR }}=150 \mathrm{k} \Omega+/-1 \%$	OFF		
UNDERSHOOT REDUCTION (USR) SETTINGS					
$\mathrm{V}_{\text {USR }}$	Undershoot Reduction (USR) Voltage set ${ }^{(4)}$	$\mathrm{V}_{\text {O-USR }}<0.25 \mathrm{~V}$	40		mV
		$0.35<\mathrm{V}_{\text {O-USR }}<0.45 \mathrm{~V}$	60		
		$0.55<\mathrm{V}_{\text {O-USR }}<0.65 \mathrm{~V}$	80		
		$0.75<\mathrm{V}_{\text {O-USR }}<0.85 \mathrm{~V}$	120		
		$0.95<\mathrm{V}_{\text {O-USR }}<1.05 \mathrm{~V}$	160		
		$1.15<\mathrm{V}_{\text {O-USR }}<1.25 \mathrm{~V}$	200		
		$1.35<\mathrm{V}_{\text {O-USR }}<1.45 \mathrm{~V}$	240		
		$1.55<\mathrm{V}_{\text {O-USR }}<\mathrm{V}_{\text {VREF }}$	OFF		
OVER CURRENT PROTECTION (OCP) SETTINGS					

[^2]
Electrical Characteristics (continued)

Over recommended temperature range, $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{V} 5 \mathrm{~A}} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{VDD}} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GFB}}=\mathrm{GND}, \mathrm{V}_{\mathrm{VFB}}=\mathrm{V}_{\mathrm{OUT}}, 0.7<\mathrm{VFREQ}-$ $\mathrm{P} \leq \mathrm{V}_{\text {VREF }}$ (unless otherwise noted).

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {OCP }}$	OCP voltage (valley current limit at CSPx - CSNx)	$\mathrm{R}_{\text {OCP-I }}=20 \mathrm{k} \Omega+/-1 \%$	5.0	7.0	9.0	mV
		$\mathrm{R}_{\text {OCP- }}=24 \mathrm{k} \Omega+/-1 \%$	7.0	10.0	13.0	
		$\mathrm{R}_{\text {OCP-I }}=30 \mathrm{k} \Omega+/-1 \%$	10.0	14.0	18.0	
		$\mathrm{R}_{\text {OCP-I }}=39 \mathrm{k} \Omega+/-1 \%$	15.0	19.0	23.0	
		$\mathrm{R}_{\text {OCP- }}=56 \mathrm{k} \Omega+/-1 \%$	21.0	25.0	29.0	
		$\mathrm{R}_{\text {OCP-I }}=75 \mathrm{k} \Omega+/-1 \%$	28.0	32.0	36.0	
		$\mathrm{R}_{\text {OCP-I }}=100 \mathrm{k} \Omega+/-1 \%$	36.0	40.0	44.0	
		$\mathrm{R}_{\text {OCP-I }}=150 \mathrm{k} \Omega+/-1 \%$	45.0	49.0	53.0	

Electrical Characteristics (continued)

Over recommended temperature range, $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{V} 5 \mathrm{~A}} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{VDD}} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GFB}}=\mathrm{GND}, \mathrm{V}_{\mathrm{VFB}}=\mathrm{V}_{\mathrm{OUT}}, 0.7<\mathrm{VFREQ}-$ $\mathrm{P} \leq \mathrm{V}_{\text {VREF }}$ (unless otherwise noted).

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
CURRENT MONITOR (IMON)						
VAL ${ }_{\text {ADC }}$	IMON ADC output	$\Sigma \Delta \mathrm{CS}=0 \mathrm{mV}, \mathrm{A}_{\text {IMON }}=3.867$	00h	00h	03h	
		$\Sigma \Delta \mathrm{CS}=4.5 \mathrm{mV}, \mathrm{A}_{\text {IMON }}=3.867$	12h	19h	20h	
		$\Sigma \Delta \mathrm{CS}=22 \mathrm{mV}, \mathrm{A}_{\text {IMON }}=3.867$	79h	80h	87h	
		$\Sigma \Delta \mathrm{CS}=44 \mathrm{mV}, \mathrm{A}_{\text {IMON }}=3.867$	FAh	FFh	FFh	
$\mathrm{LR}_{\text {IMON }}$	IMON linear range	Each phase, CSPx - CSNx	50			mV
PROTECTION: OVP, UVP, PGOOD						
$\mathrm{V}_{\text {OVPH }}$	Fixed OVP voltage	$\mathrm{V}_{\text {CSN } 1}>\mathrm{V}_{\text {OVPH }}$ for $1 \mu \mathrm{~s}$	1.60	1.70	1.80	V
$\mathrm{R}_{\text {SFTSTP }}$	Soft-stop transistor resistance	Connected to CSN1		100	200	Ω
$\mathrm{V}_{\text {PGDH }}$	PGOOD high threshold	Measured at the VFB pin with respect to VID code, device latches OFF	185		245	mV
$\mathrm{V}_{\text {PGDL }}$	PGOOD low threshold	Measured at the VFB pin with respect to VID code, device latches OFF	-348		-280	mV
PWM AND STIP OUTPUTS: I/O VOLTAGE AND CURRENT						
$\mathrm{V}_{\text {P-S_L }}$	PWMx / SKIP - Low	$\mathrm{I}_{\text {LOAD }}= \pm 1 \mathrm{~mA}$		0.15	0.3	
$\mathrm{V}_{\text {P-S_H }}$	PWMx / SKIP - High	$\mathrm{I}_{\text {LOAD }}= \pm 1 \mathrm{~mA}$	4.2			V
$\mathrm{V}_{\text {PW-SKLK }}$	PWMx / SKIP 3-state	$\mathrm{I}_{\text {LOAD }}= \pm 100 \mu \mathrm{~A}$	1.6	1.7	1.8	
LOGIC INTERFACE: VOLTAGE AND CURRENT						
$\mathrm{R}_{\text {VRTTL }}$	Pulldown resistance	SDA, $\mathrm{V}=0.31 \mathrm{~V}$	4		15	O
$\mathrm{R}_{\text {VRPG }}$		PGOOD, V $=0.31 \mathrm{~V}$		36	50	
$\mathrm{I}_{\text {VRTtLK }}$	Logic leakage current	SDA, SCL $=1.8 \mathrm{~V}, \mathrm{PGOOD}=3.3 \mathrm{~V}$	-2	0.2	2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL,I2C }}$	Low-level input voltage	SCL, SDA, VINTF = 1.8 V			0.6	V
$\mathrm{V}_{\mathrm{IH}, 12 \mathrm{C}}$	High-level input voltage		1.2			
$\mathrm{V}_{\text {IL,EN }}$	EN Low-level input voltage				0.5	V
$\mathrm{V}_{\mathrm{IH}, \mathrm{EN}}$	EN High-level input voltage		1.3			
$\mathrm{I}_{\text {ENH }}$	I/O leakage, EN	Leakage current, $\mathrm{V}_{\mathrm{EN}}=1.8 \mathrm{~V}$		24	40	$\mu \mathrm{A}$
VBAT INPUT RESISTANCE						
$\mathrm{R}_{\text {VBAT }}$	VBAT resistance	$\mathrm{EN}=\mathrm{HI}$		550		$\mathrm{k} \Omega$
		EN = LOW		50		$\mathrm{M} \Omega$

6.6 Timing Requirements

The device, TPS59632Q1, requires the ENABLE signal on Pin 8 to go from low to high only after the V5A (5-V supply), the VDD (3.3-V supply) and the VBAT rails have gone high.

6.7 Switching Characteristics

Over recommended temperature range, $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{V} 5 \mathrm{~A}} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{VDD}} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GFB}}=\mathrm{GND}, \mathrm{V}_{\mathrm{VFB}}=\mathrm{V}_{\mathrm{CORE}}$ (unless otherwise noted).

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
TIMERS: START-UP, PWM ON-TIME AND I/O TIMING						
$\mathrm{t}_{\text {Start-Cb }}$	Cold boot time	$\mathrm{V}_{\text {BOOT }}>0 \mathrm{~V}, \mathrm{EN}=$ high, time from UVLO to VOUT ramp, $\mathrm{C}_{\text {REF }}=0.33 \mu \mathrm{~F}$			1.2	ms
$\mathrm{t}_{\text {StBY-E }}$	STBY exit time	Time from EN assertion until PGOOD goes high. $\mathrm{V}_{\mathrm{VID}}=1.28 \mathrm{~V}, \mathrm{R}_{\mathrm{SLEW}}=39 \mathrm{k} \Omega$			250	$\mu \mathrm{S}$
$t_{\text {PGdDGLTO }}$	PGOOD deglitch time	Time from VFB out of 250 mV VDAC boundary to PGOOD low.		1		
$t_{\text {PGDDGLTU }}$	PGOOD deglitch time	Time from VFB out of -300 mV VDAC boundary to PGOOD low.		31		$\mu \mathrm{s}$

Switching Characteristics (continued)

Over recommended temperature range, $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{V} 5 \mathrm{~A}} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{VDD}} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GFB}}=\mathrm{GND}, \mathrm{V}_{\mathrm{VFB}}=\mathrm{V}_{\text {CORE }}$ (unless otherwise noted).

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
t_{ON}	PWM ON-time	$\begin{aligned} & \mathrm{R}_{\mathrm{F}}=24 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{BAT}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{VFB}}=1 \mathrm{~V}(400 \\ & \mathrm{kHz}) \end{aligned}$		230		ns
		$\begin{aligned} & \mathrm{R}_{\mathrm{F}}=39 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{BAT}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{VFB}}=1 \mathrm{~V}(600 \\ & \mathrm{kHz}) \end{aligned}$		164		
		$\begin{aligned} & \mathrm{R}_{\mathrm{F}}=75 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{BAT}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{VFB}}=1 \mathrm{~V}(800 \\ & \mathrm{kHz}) \end{aligned}$		140		
		$\begin{aligned} & \mathrm{R}_{\mathrm{F}}=150 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{BAT}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{VFB}}=1 \mathrm{~V}(1 \\ & \mathrm{MHz}) \end{aligned}$		122		
toff_MIN	Controller minimum OFF time	Fixed value	20			ns
ton_MIN	Controller minimum ON time	$\mathrm{R}_{\mathrm{CF}}=150 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{BAT}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{VFB}}=0 \mathrm{~V}$	20			
tvccvid	VID change to VFB change ${ }^{(1)}$	ACK of VID change command to start of voltage ramp			1	$\mu \mathrm{s}$
$\mathrm{t}_{\text {PG2 }}$	PGOOD low after enable goes low	Low-state time after EN goes low.	225	250	275	$\mu \mathrm{s}$
PWM OUTPUTS: I/O VOLTAGE AND CURRENT						
tp-S_H-L	PWMx H-L transition time	10 to 90%, both edges		7	20	ns
tp-S_TRI	PWMx 3-state transition	10 or 90% to 3-state level, both edges		5	20	

(1) Specified by design. Not production tested.

6.8 Typical Characteristics

Figure 1. 3-phase start up behavior showing EN input and PGOOD output. Input Voltage $=5 \mathrm{~V}$, Load current $=10 \mathrm{~A}$.

Figure 2. 3-phase start up behavior showing switching at startup. Input Voltage $=5 \mathrm{~V}$, Load current $=10 \mathrm{~A}$.

Figure 4. 3-phase switching ripple at Input Voltage $=5 \mathrm{~V}$, Load current $=50 \mathrm{~A}$, Switching Frequency $=800 \mathrm{kHz}$. Single mode.

Typical Characteristics (continued)

Figure 7. Load transient with a droop of $0.6 \mathrm{~m} \Omega$ load-line slope. Load transient $=0 A$ to 36A. Persistence mode

Figure 8. Load transient with a droop of $0.6 \mathrm{~m} \Omega$ load-line slope. Load transient $=14 \mathrm{~A}$ to 50A. Persistence mode

7 Detailed Description

7.1 Overview

The TPS59632-Q1 device is a DCAP+ mode adaptive on-time controller. The DAC outputs a reference in accordance with the 8 -bit VID code, as defined in Table 3. This DAC sets the output voltage.
In adaptive on-time converters, the controller varies the on-time as a function of input and output voltage to maintain a nearly constant frequency during steady-state conditions. With conventional voltage-mode constant on-time converters, each cycle begins when the output voltage crosses to a fixed reference level. However, in the TPS59632-Q1 device, the cycle begins when the current feedback reaches an error voltage level, which corresponds to the amplified difference between the DAC voltage and the feedback output voltage. In the case of 2-phase or 3 -phase operation, the device sums the current feedback from all the phases at the output of the internal current-sense amplifiers.
This approach has two advantages:

- The amplifier DC gain sets an accurate linear load-line slope, which is required for CPU core applications.
- The device filters the error voltage input to the PWM comparator to improve the noise performance.

In addition, the difference between the DAC-to-output voltage and the current feedback goes through an integrator to give an approximately linear load-line slope even at light loads where the inductor current is in discontinuous conduction mode (DCM).
During a steady-state condition, the phases of the TPS59632-Q1 device switch 180° phase-displacement for 2phase mode and 120° phase-displacement for 3 -phase mode. The phase displacement is maintained both by the architecture and current ripple. The architecture does not allow the high-side gate drive outputs of more than one phase to be ON in any condition except transients. The current ripple forces the pulses to be spaced equally. The controller forces current-sharing adjusting the ON time of each phase. Current balancing requires no user intervention, compensation, or extra components.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 PWM Operation

The functional block diagram and Figure 9 shows how the converter operates in CCM.

Feature Description (continued)

Figure 9. D-Cap+ Mode Basic Waveforms
Starting with the condition that the high-side FETs are off and the low-side FETs are on, the summed current feedback ($I_{\text {sum }}$) is higher than the error amplifier output ($\mathrm{V}_{\text {DROOP }}$). I $\mathrm{I}_{\text {SUM }}$ falls until it hits $\mathrm{V}_{\text {DROOP }}$, which contains a component of the output ripple voltage. The PWM comparator senses where the two waveforms cross and triggers the on-time generator, which generates the internal SW_CLK signal. Each SW_CLK signal corresponds to one switching ON pulse for one phase.

During single-phase operation, every SW_CLK signal generates a switching pulse on the same phase. Also, I I Sum voltage corresponds to a single-phase inductor current only.
During multi-phase operation, the controller distributes the SW_CLK signal to each of the phases in a cycle. Using the summed inductor current and cyclically distributing the ON pulses to each phase automatically gives the required interleaving of $360 / \mathrm{n}$, where n is the number of phases.

7.3.2 Current Sensing

The TPS59632-Q1 provides independent channels of current feedback for every phase, to increase the system accuracy and reduce the dependence of circuit performance on layout compared to an externally summed architecture. The design can use inductor DCR sensing to yield the best efficiency or resistor current sensing to yield the most accuracy across wide temperature ranges. As inductor DCR sensing is not suitable for automotive applications due to wide variation in current sensing across temperature, resistor sensing is recommended. This sense resistor must be connected in series with the inductor and requires Kelvin sensing terminals for improved current sense accuracy.
The pins CSP1, CSN1, CSP2, CSN2, CSP3, and CSN3 are the inductor current sensing pins for the each of the three phases of the converter.

7.3.3 Load-line (Droop)

The TPS59632-Q1 features programmable droop enabling significant reduction of output capacitors. Figure 10 shows the output voltage droop with increasing load current.

Feature Description (continued)

Figure 10. Load-Line Slope
$V_{\text {DROOP }}=R_{L L} \times I_{C C}=\frac{R_{C S}(\text { eff })}{} \times A_{C S} \times I_{C C}$.
where

- $\mathrm{R}_{\mathrm{CS}(\text { eff })}$ is the effective current sense resistance, when using either a sense resistor or inductor DCR
- $A_{C S}$ is the gain of the current sense amplifier
- I_{CC} is the load current
- $A_{\text {DRoop }}$ is the DROOP gain (see Equation 2)
$A_{\text {DROOP }}=1+\left(\frac{R_{\text {DROOP }}}{R_{\text {COMP }}}\right)$
where
- resistor, $\mathrm{R}_{\mathrm{DROOP}}$ is connected between the DROOP pin and the COMP pin
- resistor $\mathrm{R}_{\text {comp }}$ is connected between the COMP pin and the VREF pin

This load-line aids in the transient performance as discussed in the following section.

7.3.4 Load Transients

When the load increases suddenly, the output voltage immediately drops. This voltage drop is reflected as a rising voltage on the DROOP pin. This rising voltage forces the PWM to pulse sooner and more frequently, which causes the inductor current to rapidly increase. As the inductor current reaches the new load current, a steadystate operating condition is reached and the PWM switching resumes the steady-state frequency. Similarly, when the load releases suddenly, the output voltage rises. This rise is reflected as a falling voltage on the DROOP pin. This rising voltage forces a delay in the PWM pulses until the inductor current reaches the new load current, when the switching resumes and steady-state switching continues.
For simplicity, neither Figure 11 or Figure 12 show the ripple on the output $\mathrm{V}_{\text {CORE }}$ nor the DROOP waveform.

Feature Description (continued)

Figure 11. Operation During Load Transient (Insertion)

Figure 12. Operation During Load Transient (Release)

7.3.5 Overshoot Reduction (OSR)

The problem of overshoot in synchronous buck converters results from the output inductor having a small voltage ($\mathrm{V}_{\text {Out }}$) with which to respond to a transient load release.
With overshoot reduction feature enabled, when the output voltage increases beyond a value that corresponds to a voltage difference between the ISUM voltage and the DROOP pin voltage exceeding the specified OSR voltage (as specified in the Electrical Characteristics table), at the instant that the low-side drivers are turned OFF. When the low-side driver is turned OFF, the energy in the inductor is partially dissipated by the body diodes. As the overshoot reduces, the low-side drivers are turned ON again. Figure 13 shows overshoot reduction by turning off the low-side MOSFET during load transient release.

Figure 13. Overshoot Reduction

Feature Description (continued)

7.3.6 Undershoot Reduction (USR)

When the transient load increase becomes quite large, it is difficult to meet the energy demanded by the load especially at lower input voltages. Then it is necessary to quickly increase the energy in the inductors during the transient load increase. This increase is achieved by enabling pulse overlapping. In order to maintain the interleaving of the multi-phase configuration while maintaining pulse-overlapping during load-insertion, the undershoot reduction (USR) mode is entered only when necessary. This device enters this mode is when the difference between DROOP voltage and ISUM voltage exceeds the USR voltage level specified in the Electrical Characteristics table.
Figure 14 shows the undershoot reduction operation. This feature allows for the use of reduced output capacitance while continuing to meet the specification. The device achieves undershoot reduction by overlapping of pulses on all the phases.

Figure 14. Undershoot Reduction
When the transient condition is completed, the interleaving of the phases is resumed.
It should be noted that single-phase mode there is no USR mode of operation.

7.3.7 Autobalance Current Sharing

The basic mechanism for current sharing is to sense the average phase current, then adjust the pulse width of each phase to equalize the current in each phase.
The PWM comparator (not shown) starts a pulse when the feedback voltage equals the reference voltage. The VBAT voltage charges $\mathrm{C}_{\mathrm{t}(\text { (on) }}$ through the resistor $\mathrm{R}_{\mathrm{t}(\mathrm{on})}$. The pulse is terminated when the voltage at capacitor $\mathrm{C}_{\mathrm{t}(\mathrm{on})}$ matches the on-time (t_{ON}) reference, usually the DAC voltage ($\mathrm{V}_{\mathrm{DAC}}$).
A current sharing circuit is shown in Figure 15. For example, assume that the 5 - $\mu \mathrm{s}$-averaged value of $\mathrm{I}=\mathrm{I} 2=\mathrm{I} 3$. In this case, the PWM modulator terminates at $\mathrm{V}_{\mathrm{DAC}}$, and the typical pulse width is delivered to the system. If instead, $I 1>l_{\mathrm{AVG}}$, then an offset is subtracted from $\mathrm{V}_{\mathrm{DAC}}$, and the pulse width for phase one is shortened, reducing the current in phase one to compensate. If $\mathrm{II}<\mathrm{I}_{\mathrm{AVG}}$, then a longer pulse is produced, again compensating on a pulse-by-pulse basis.

Feature Description (continued)

Figure 15. Autobalance Current Sharing

7.3.8 PWM And SKIP Signals

The PWM and $\overline{\text { SKIP }}$ signals are outputs of the controller and serve as input to the MOSFET gate driver or DrMOS-type devices. Both signals are 5-V logic signals. The PWM signals are logic high to allow the high-side drive of the external gate driver to turn ON. The PWM signal must be low for the low-side drive of the external gate driver to turn ON. To drive both the signals are OFF, the PWM is set to tri-state. The SKIP signal is active low to set all the phases in Continuous Conduction Mode (CCM) of operation. If SKIP signal is high then the external gate driver turns OFF the Low-side drive to operate in the boundary of CCM and Discontinuous Conduction Mode (DCM).

7.3.9 Bias Power (V5A, VDD, And VINTF) UVLO

The TPS59632-Q1 device continuously monitors the voltage on the V5A, VDD, and VINTF pin to ensure a value high enough to bias the device properly and provide sufficient gate drive potential to maintain high efficiency. The converter starts with approximately 4.4 V and has a nominal 200 mV of hysteresis. Once the 5VA,VDD, or VINTF goes below the $\mathrm{V}_{\text {UVLOL }}$, the corresponding voltage must fall below $\mathrm{V}_{\text {POR }}(1.5 \mathrm{~V})$ to reset the device.
The input ($\mathrm{V}_{\mathrm{BAT}}$) does not include a UVLO function, so the circuit runs with power inputs as low as approximately $3 \times V_{\text {OUt }}$.

7.3.10 Start-Up Sequence

The TPS59632-Q1 device initializes when all of the supplies rise above the UVLO thresholds. This function is also know as a cold boot. The device then reads all of the various settings (such as frequency and overcurrent protection). This process takes less than 1.2 ms . During this time, the VSR initializes to the BOOT voltage. The output voltage rises to the VSR level when the EN pin (enable) goes high. Once the BOOT sequence completes, PGOOD is HIGH and the $I^{2} \mathrm{C}$ interface can be used to change the voltage select register (VSR). The current VSR value is held when EN goes low and returns to a high state This function is also known as a warm boot.

Feature Description (continued)

7.3.11 Power Good Operation

PGOOD is an open-drain output pin that is designed to be pulled-up with an external resistor to a voltage 3.6 V or less. Normal PGOOD operation (exclusive of activation of any faults) is shown in Figure 16. On initial powerup PGOOD happens within 6μ s of the DAC reaching its target value. When EN is brought low, PGOOD is also brought low for $250 \mu \mathrm{~s}$, then is allowed to float. The TPS59632-Q1 device pulls down the PGOOD signal when the EN signal subsequently goes high and returns high again within $6 \mu \mathrm{~s}$ of the end of the DAC ramp. The delay period between EN going high and PGOOD going low in this case is less than $1 \mu \mathrm{~s}$. Figure 16 shows the power good operation at initial start-up and with falling and rising EN.
For applications where it is undesirable to have PGOOD high when EN is low, an alternate method of pulling up the open-drain PGOOD signal is possible. In this method, the PGOOD is pulled up to EN logic signal. This ensures that the PGOOD is low when EN goes low.

Figure 16. Power Good Operation

7.3.12 Analog Current Monitor, IMON, And Corresponding Digital Output Current

The TPS59632-Q1 device includes a current monitor function. The current monitor supplies an analog voltage, proportional to the load current, on the IMON pin.
The current monitor function is related to the OCP selection resistors. The $\mathrm{R}_{\mathrm{OCP}}$ is the resistor between the OCPI pin and GND and $\mathrm{R}_{\mathrm{CIMON}}$ is the resistor between the IMON pin to the OCP-I pin that sets the current monitor gain. Equation 3 shows the calculation for the current monitor gain.

$$
V_{I M O N}=10 \times 1+\frac{\left(R_{\text {IMON }}\right)}{\left(R_{O C P}\right)} \times \sum V_{C S n} \xrightarrow{\text { yields }} V
$$

where

- $\Sigma \mathrm{V}_{\mathrm{CS}}$ is the sum of the DC voltages at the inputs to the current sense amplifiers

To ensure stable current monitor operation, and at the same time, provide a fast dynamic response, connect a $4.7-\mathrm{nF}$ to $10-\mathrm{nF}$ capacitor from the IMON pin to GND. Connecting higher capacitance will reduce the response time accordingly.
The analog current monitor should be set so that at the maximum processor current ($\left.\mathrm{I}_{\mathrm{CC}(\text { max })}\right)$ the IMON voltage should be 1.7 V . This setting corresponds to a digital output current value of ' FF ' in the telemetry register 03 H through I2C. For any other IMON voltage output in the range of 0 to 1.7 V , the digital output varies linearly.

7.3.13 Fault Behavior

TPS59632-Q1 device has a complete suite of fault detection and protection functions, including input undervoltage lockout on all power inputs, over voltage and over current limiting, and output under voltage detection. The protection limits are given in the tables above. The converter suspends switching when the limits are exceeded and PGOOD goes low. In this state, the fault register 14 h can be read. To exit fault protection mode, the bias power (V5A, VDD and VINTF) must be cycled as described in Bias Power (V5A, VDD, And VINTF) UVLO.

Feature Description (continued)

7.3.14 Output Under Voltage Protection (UVP)

Output undervoltage protection works in conjunction with the current protection described in the Over Current Protection (OCP) section. If $\mathrm{V}_{\text {Out }}$ drops below the low PGOOD voltage threshold, then the PWM is tri-stated. The device stays off until the V5A, VDD or VINTF power is cycled and EN goes high.

7.3.15 Output Over Voltage Protection (OVP)

An OVP condition is detected when the output voltage is greater than the PGDH voltage, and greater than VDAC. $\mathrm{V}_{\text {OUT }}>+\mathrm{V}_{\text {PGDH }}$ greater than VDAC. In this case, the controller device sets PGOOD inactive, and keeps all the PWM signals low so as to keep the low-side driver ON at the converter. The converter remains in this state until the controller device is reset by cycling V5A, VDD or VINTF. This is the first level of OVP. This first level of OVP is inactive during VID transitions. There is a second OVP level fixed at $\mathrm{V}_{\text {OvpH }}$ which is always active. If the fixed OVP condition is detected, the PGOOD is forced inactive and the PWM signals are kept low and the operation is similar to the first level of OVP detection

7.3.16 Over Current Protection (OCP)

The TPS59632-Q1 device uses a inductor valley current limiting scheme, so the ripple current must be considered. The DC current value at OCP is the OCP limit value plus half of the ripple current. Current limiting occurs on a phase-by-phase and pulse-by-pulse basis. Generally, the current is sensed using the sense resistor in series with the inductor for automotive applications giving a voltage between the CSPx and CSNx pins. If this sensed voltage is above the OCP limit, the converter delays the next ON pulse until that voltage difference drops below the OCP limit.
In OCP mode, the voltage drops until the UVP limit is reached. When UVP limit is reached the operation follows as described in the Output Under Voltage Protection (UVP).

7.3.17 Over Current Warning

$1^{2} \mathrm{C}$ programming enables this function. The TPS59632-Q1 device pulls down the voltage on the PGOOD pin whenever the valley current reaches 70% of the OCP value (or higher). PGOOD resumes normal function when the value falls below 65% of the OCP value.

7.3.18 Input Voltage Limits

The minimum input voltage is limited by the number of input phases, the switching frequency and the output voltage. The minimum input voltage increases with required maximum output voltage and switching frequency. See Table 1 for limits in 3-phase operating mode and Table 2 for limits in 2-phase operating mode. In 1-phase mode, the operation is limited by controller's capability to 2.5 V for all output voltages and switching frequency.

Table 1. Minimum Input Voltage ($\mathrm{V}_{\mathrm{IN}, \mathrm{miN}}$) Limits Versus Switching Frequency ($F_{\text {sw }}$) and Maximum Output Voltage ($V_{\text {out, max }}$) in 3-phase operation

$\mathbf{V}_{\text {OUT,MAX }}(\mathbf{V})$	$\mathbf{F}_{\mathbf{S W}}(\mathbf{k H z})$	$\mathbf{V}_{\mathbf{I N}, \mathbf{M I N}}(\mathbf{V})$
0.8	800	3.6
	1000	4.0
0.9	800	4.0
	1000	4.5
	.0	800
4.5		
	1000	5.0

Table 2. Minimum Input Voltage ($\mathrm{V}_{\mathrm{IN}, \text { miN }}$) Limits Versus Switching Frequency ($F_{\text {sw }}$) and Maximum Output Voltage ($V_{\text {OUt, max }}$) in 2-phase operation

$\mathbf{V}_{\text {OUT,MAX }}(\mathbf{V})$	F SW $(\mathbf{k H z})$	$\mathbf{V}_{\mathbf{I N}, \mathbf{M I N}}(\mathbf{V})$
0.8	1000	2.5
0.9	1000	2.5
1.0	1000	2.8

7.3.19 VID Table

The Table 3 shows the VID table for all the programmable DAC voltage levels.

Table 3. TPS59632-Q1 VID Table

VID6	VID5	VID4	VID3	VID2	VID1	VIDO	HEX	VOLTAGE
0	0	1	1	0	0	1	19	0.5000
0	0	1	1	0	1	0	1A	0.5100
0	0	1	1	0	1	1	1B	0.5200
0	0	1	1	1	0	0	1 C	0.5300
0	0	1	1	1	0	1	1D	0.5400
0	0	1	1	1	1	0	1E	0.5500
0	0	1	1	1	1	1	1F	0.5600
0	1	0	0	0	0	0	20	0.5700
0	1	0	0	0	0	1	21	0.5800
0	1	0	0	0	1	0	22	0.5900
0	1	0	0	0	1	1	23	0.6000
0	1	0	0	1	0	0	24	0.6100
0	1	0	0	1	0	1	25	0.6200
0	1	0	0	1	1	0	26	0.6300
0	1	0	0	1	1	1	27	0.6400
0	1	0	1	0	0	0	28	0.6500
0	1	0	1	0	0	1	29	0.6600
0	1	0	1	0	1	0	2A	0.6700
0	1	0	1	0	1	1	2B	0.6800
0	1	0	1	1	0	0	2 C	0.6900
0	1	0	1	1	0	1	2D	0.7000
0	1	0	1	1	1	0	2E	0.7100
0	1	0	1	1	1	1	2 F	0.7200
0	1	1	0	0	0	0	30	0.7300
0	1	1	0	0	0	1	31	0.7400
0	1	1	0	0	1	0	32	0.7500
0	1	1	0	0	1	1	33	0.7600
0	1	1	0	1	0	0	34	0.7700
0	1	1	0	1	0	1	35	0.7800
0	1	1	0	1	1	0	36	0.7900
0	1	1	0	1	1	1	37	0.8000
0	1	1	1	0	0	0	38	0.8100
0	1	1	1	0	0	1	39	0.8200
0	1	1	1	0	1	0	3A	0.8300
0	1	1	1	0	1	1	3B	0.8400
0	1	1	1	1	0	0	3C	0.8500
0	1	1	1	1	0	1	3D	0.8600
0	1	1	1	1	1	0	3E	0.8700
0	1	1	1	1	1	1	3 F	0.8800
1	0	0	0	0	0	0	40	0.8900
1	0	0	0	0	0	1	41	0.9000
1	0	0	0	0	1	0	42	0.9100
1	0	0	0	0	1	1	43	0.9200
1	0	0	0	1	0	0	44	0.9300
1	0	0	0	1	0	1	45	0.9400
1	0	0	0	1	1	0	46	0.9500
1	0	0	0	1	1	1	47	0.9600

Table 3. TPS59632-Q1 VID Table (continued)

VID6	VID5	VID4	VID3	VID2	VID1	VIDO	HEX	VOLTAGE
1	0	0	1	0	0	0	48	0.9700
1	0	0	1	0	0	1	49	0.9800
1	0	0	1	0	1	0	4A	0.9900
1	0	0	1	0	1	1	4B	1.0000
1	0	0	1	1	0	0	4 C	1.0100
1	0	0	1	1	0	1	4D	1.0200
1	0	0	1	1	1	0	4E	1.0300
1	0	0	1	1	1	1	4F	1.0400
1	0	1	0	0	0	0	50	1.0500
1	0	1	0	0	0	1	51	1.0600
1	0	1	0	0	1	0	52	1.0700
1	0	1	0	0	1	1	53	1.0800
1	0	1	0	1	0	0	54	1.0900
1	0	1	0	1	0	1	55	1.1000
1	0	1	0	1	1	0	56	1.1100
1	0	1	0	1	1	1	57	1.1200
1	0	1	1	0	0	0	58	1.1300
1	0	1	1	0	0	1	59	1.1400
1	0	1	1	0	1	0	5A	1.1500
1	0	1	1	0	1	1	5B	1.1600
1	0	1	1	1	0	0	5C	1.1700
1	0	1	1	1	0	1	5D	1.1800
1	0	1	1	1	1	0	5E	1.1900
1	0	1	1	1	1	1	5F	1.2000
1	1	0	0	0	0	0	60	1.2100
1	1	0	0	0	0	1	61	1.2200
1	1	0	0	0	1	0	62	1.2300
1	1	0	0	0	1	1	63	1.2400
1	1	0	0	1	0	0	64	1.2500
1	1	0	0	1	0	1	65	1.2600
1	1	0	0	1	1	0	66	1.2700
1	1	0	0	1	1	1	67	1.2800
1	1	0	1	0	0	0	68	1.2900
1	1	0	1	0	0	1	69	1.3000
1	1	0	1	0	1	0	6A	1.3100
1	1	0	1	0	1	1	6B	1.3200
1	1	0	1	1	0	0	6C	1.3300
1	1	0	1	1	0	1	6D	1.3400
1	1	0	1	1	1	0	6E	1.3500
1	1	0	1	1	1	1	6F	1.3600
1	1	1	0	0	0	0	70	1.3700
1	1	1	0	0	0	1	71	1.3800
1	1	1	0	0	1	0	72	1.3900
1	1	1	0	0	1	1	73	1.4000
1	1	1	0	1	0	0	74	1.4100
1	1	1	0	1	0	1	75	1.4200
1	1	1	0	1	1	0	76	1.4300

Table 3. TPS59632-Q1 VID Table (continued)

VID6	VID5	VID4	VID3	VID2	VID1	VID0	HEX	VOLTAGE
1	1	1	0	1	1	1	77	1.4400
1	1	1	1	0	0	0	78	1.4500
1	1	1	1	0	0	1	79	1.4600
1	1	1	1	0	1	0	$7 A$	1.4700
1	1	1	1	0	1	1	$7 B$	1.4800
1	1	1	1	1	0	0	$7 C$	1.4900
1	1	1	1	1	0	1	$7 D$	1.5000
1	1	1	1	1	1	0	$7 E$	1.5100
1	1	1	1	1	1	1	$7 F$	1.5200

7.4 User Selections

After the V5A, VDD, and VINTF voltages are applied to the controller and all these voltage levels are above their respective UVLO levels, the following information is latched and cannot be changed during operation. The defines the values of the selections.

- Operating Frequency. The resistor from FREQ-P pin to GND sets the switching frequency. See the Detailed Design Procedure for the resistor settings corresponding to each frequency selection. Note that the operating frequency is a quasi-fixed frequency in the sense that the ON time is fixed based on the input voltage (at the VBAT pin) and output voltage (set by VID). The OFF time varies based on various factors such as load and power-stage components.
- Overcurrent Protection (OCP) Level. The resistor from OCP-I to GND sets the OCP level of the CPU channel. See the Detailed Design Procedure for the resistor settings corresponding to each OCP level.
- IMON Gain. The resistors from IMON to OCP-I and OCP-I to GND set the DC load current monitor (IMON) gain.
- Slew Rate. The SetVID fast slew rate is set by the resistor from SLEWA pin to GND. See the Detailed Design Procedure for the resistor settings corresponding to each slew rate setting.
- Base Address. The voltage on SLEWA pin sets the device base address.
- Ramp Selection. The resistor from RAMP to GND sets the ramp compensation level. See the Detailed Design Procedure for the resistor settings corresponding to each ramp level.
- Overshoot Reduction (OSR) Level. The resistor from O-USR to GND sets the OSR level. Detailed Design Procedure provides all the possible selections for OSR.
- Undershoot Reduction Level (USR) The voltage on O-USR pin sets the USR level. Detailed Design Procedure provides all the possible selections for USR.
- Active Phases. Normally, the controller is configured to operate in 3-phase mode. To enable 2-phase mode, tie the CSP3 pin to a 3.3-V supply and the CSN3 pin to GND. To enable 1 -phase mode, tie the CSP2 and CSP3 pins to a $3.3-\mathrm{V}$ supply and tie the CSN2 and CSN3 pins to GND.

7.5 $I^{2} \mathrm{C}$ Interface Operation

The TPS59632-Q1 device includes a slave $1^{2} \mathrm{C}$ interface accessed via the SCL (serial clock) and SDA (serial data) pins. The interface sets the base VID value, receives IMON telemetry, and controls functions described in this section. It operates with $\mathrm{EN}=$ low, with the bias supplies in regulation. It is compliant with $\mathrm{I}^{2} \mathrm{C}$ specification UM10204, Revision 3.0; characteristics are detailed as following:

- Addressing
- 7-bit addressing; address range is $1000 x x x$ (binary)
- Last three bits are determined by the voltage on SLEWA pin at start-up
- Byte read and byte write protocols only (see the following figures)
- Frequency
- 100 kHz
- 400 kHz
- 1 MHz
- 3.4 MHz

$I^{2} \mathrm{C}$ Interface Operation (continued)

- Logic inputs are $1.8-\mathrm{V}$ logic levels (3.3-V tolerant)

The TPS59632-Q1 device can be configured for eight different device addresses by setting a voltage on the SLEWA pin. Configure a resistor divider on SLEWA from VREF to GND. Once the slew rate resistor is selected, the resistor from the VREF pin to the SLEWA pin can be chosen based on the required device address. For a device address of 40 h, the VREF to SLEWA resistor can be left open.

7.5.1 Key For Protocol Examples

UDG-13045

7.5.2 Protocol Examples

The good byte read transaction the controller ACKs and the master terminates with a NAK/stop

S	Slave Address	W	A	Reg Address	A	S	Slave Address	R	A	Reg data	A	P

Figure 17. Good Byte Read Transaction
The controller NAKs a read with an invalid register address.

UDG-13047
Figure 18. NAK Invalid Register Address
A good byte write is illustrated in Figure 19.

UDG-13048
Figure 19. Good Byte Write
The controller NAKs a write with an invalid register address.

UDG-13049
Figure 20. Invalid NAK Register Address
The controller will NAK a write for the condition of invalid data.

UDG-13050
Figure 21. Invalid NAK Register Data

7.6 $I^{2} \mathrm{C}$ Register Maps

The $I^{2} \mathrm{C}$ interface shall support $400 \mathrm{kHz}, 1 \mathrm{MHz}$, and $3.4-\mathrm{MHz}$ clock frequencies. The $\mathrm{I}^{2} \mathrm{C}$ interface shall be accessible even when EN is low. The following registers are accessible via $I^{2} C$.

7.6.1 Voltage Select Register (VSR) (Address = 00h)

- Type: read and write
- Power-up value: BOOT[6:0]
- EN rising (after power-up): prior programmed value
- See Table 3 for exact values
- A command to set VSR < 19h (minimum VID) generates an NAK and the VBR remains at the prior value

$\mathbf{b 7}$	$\mathbf{b 6}$	$\mathbf{b 5}$	$\mathbf{b 4}$	$\mathbf{b 3}$	b2	b1	b0
-	VID6	-	-	-	-	-	VID0

7.6.2 IMON Register (Address = 03h)

- Type: read only
- Power-up value: 00h
- EN rising (after power-up):00h

b7	$\mathbf{b 6}$	$\mathbf{b 5}$	$\mathbf{b 4}$	$\mathbf{b 3}$	b2	b1	b0
MSB	-	-	-	-	-	-	LSB

7.6.3 VMAX Register (Address = 04h)

- Type: read or write (see the following bit definitions)
- Power-up value: 7Fh
- EN rising (after power-up): last written value

b7	b6	b5	b4	b3	b2	b1	b0
Lock	MSB	-	-	-	-	-	LSB

Bit definitions:
Table 4.

BIT	NAME	DEFINITION
$0-6$	VMAX	Maximum VID setting
7	Lock	Access protection of the VMAX register 0: No protection, R/W access to bits 0-6 1: Access is read only; reset after UVLO event.

7.6.4 Power State Register (Address = 06h)

- Type: read and write
- Power-up value: 00h
- EN rising (after power-up): 00h

$\mathbf{b 7}$	$\mathbf{b 6}$	$\mathbf{b 5}$	$\mathbf{b 4}$	$\mathbf{b 3}$	$\mathbf{b 2}$	$\mathbf{b 1}$	b0
-	-	-	-	-	-	MSB	LSB

Bit definitions:

VALUE	
b1 $=0, \mathrm{b0}$ $=0$	Multi-phase CCM
$\mathrm{b} 1=0, \mathrm{~b} 0$ $=1$	Single-phase CCM

VALUE	DEFINITION
b1 $=1, \mathrm{bO}$ $=0$	Single-phase DCM

7.6.5 Slew Register (Address = 07h

- Type: read and write (see below)
- Power-up value: defined by SLEWA pin at power-up
- EN rising (after power-up): last written value
- Write only a single 1 for the minimum SLEW rate desired for voltage changes. The start-up slew rate is half of the normal voltage change slew rate.

$\mathbf{b 7}$	$\mathbf{b 6}$	$\mathbf{b 5}$	$\mathbf{b 4}$	$\mathbf{b 3}$	b2	b1	b0
$48 \mathrm{mV} / \mu \mathrm{s}$	$42 \mathrm{mV} / \mu \mathrm{s}$	$36 \mathrm{mV} / \mu \mathrm{s}$	$30 \mathrm{mV} / \mu \mathrm{s}$	$24 \mathrm{mV} / \mu \mathrm{s}$	$18 \mathrm{mV} / \mu \mathrm{s}$	$12 \mathrm{mV} / \mu \mathrm{s}$	$6 \mathrm{mV} / \mu \mathrm{s}$

7.6.6 Lot Code Registers (Address $\mathbf{= 1 0 - 1 3 h}$)

- Type: 8 bits, read only
- Power-up value: programmed at factory

7.6.7 Fault Register (Address $=\mathbf{1 4}$)

- Type: 8 bits; read only
- Power-up value: 00h

$\mathbf{b 7}$	$\mathbf{b 6}$	$\mathbf{b 5}$	$\mathbf{b 4}$	$\mathbf{b 3}$	b2	b1	b0
-	-	-	-	Device thermal shutdown	OVP	UVP	OCP

TPS59632-Q1
www.ti.com.cn

8 Applications and Implementation

8.1 Application Information

The TPS59632Q1 device has a very simple design procedure. A Microsoft Excel ${ }^{\circledR}$-based component value calculation tool is available. Please contact your local TI representative to get a copy of the spreadsheet.

8.2 Typical Application

8.2.1 3-Phase D-CAP+ ${ }^{\text {TM }}$, Step-Down Application

Figure 22. 3-Phase D-CAP $+^{T M}$, Step-Down Application with Power Stages

8.2.1.1 Design Requirements

Design example specifications:

- Number of phases, $\mathrm{N}_{\mathrm{ph}}: 3$
- Conversion Input voltage, V_{IN} range: $5 \mathrm{~V}+/-10 \%$
- Converter Output Voltage $\mathrm{V}_{\text {OUt }}=0.875+/-3 \% \mathrm{~V}$ (including DC and AC)
- Load Current, $\mathrm{I}_{\mathrm{CC}(\max)}=50 \mathrm{~A}$
- Voltage Rise time (at start-up) $>100 \mu \mathrm{~s}$
- Load Transient step = 36A
- Load Transient Slew rate = 36A/ $\mu \mathrm{s}$

Typical Application (continued)

- Effective Switching Frequency > 2.0 MHz

8.2.1.2 Detailed Design Procedure

8.2.1.2.1 Step 1: Select Switching Frequency

The switching frequency is selected by a resistor $\left(R_{F}\right)$ between the FREQ_P pin and GND. The frequency is approximate and expected to vary based on load and input voltage.

Table 5. TPS59632-Q1 Device Frequency Selection Table

SELECTION RESISTOR ($\mathbf{R}_{\mathbf{F}}$) VALLUE $(\mathbf{k} \mathbf{\Omega})$	OPERATING FREQUENCY $\left(\mathbf{f}_{\mathbf{S w}}\right) \mathbf{(\mathbf { k H z })}$
20	300
24	400
30	500
39	600
56	700
75	800
100	900
150	1000

For this design, choose a switching frequency of 800 kHz so that the effective switching frequency in 3-phase operation $=2.4 \mathrm{MHz}$. So, $R_{F}=75 \mathrm{k} \Omega$.

NOTE

The voltage on the FREQ-P pin MUST be set higher than 0.7 V for proper operation of the device, TPS59632Q1. This can easily be achieved by connecting a resistor of the same value as R_{F} from FREQ-P to VREF (1.7 V).

As per the note above, in this design, a resistor of value $75 \mathrm{k} \Omega$ is connected from FREQ-P to VREF.

8.2.1.2.2 Step 2: Set The Slew Rate

A resistor to GND ($\mathrm{R}_{\text {SLEwA }}$) on SLEWA pin sets the slew rate. For a minimum start-up time of $100 \mu \mathrm{~s}$, the maximum allowed slew rate would be VOUT/100 $\mu \mathrm{s}$. This would mean a maximum start-up slew rate of 8.8 $\mathrm{mV} / \mu \mathrm{s}$. Hence, from Table 6 the maximum start-up slew rate setting of $5 \mathrm{mV} / \mu \mathrm{s}$ is chosen. It should be noted that the slew rate corresponding to start-up rate is half of the slew rate during voltage changes due to VID changes as specified in the EC table. The table below provides the minimum and maximum start-up slew rate for each resistor selection. The resistor selection chosen for this design is $\mathrm{R}_{\text {SLEWA }}=20 \mathrm{k} \Omega$.

Table 6. Slew Rate Versus Selection Resistor

SELECTION RESISTOR $\mathbf{R}_{\text {SLEWA }}(\mathbf{k} \boldsymbol{\Omega})$	MINIMUM START-UP SLEW RATE $(\mathbf{m V} / \boldsymbol{\mu s})$	MAXIMUM START-UP SLEW RATE $(\mathbf{m V} / \boldsymbol{\mu s})$
20	3	5
24	6	10
30	9	15
39	12	20

8.2.1.2.3 Step 3: Set The ${ }^{2}$ C Address

The voltage on the SLEWA pin also sets the $I^{2} \mathrm{C}$ address for the device. For an I2C address of 40 , the SLEWA pin should only have a resistor, RSLEW to GND and the SLEW pin to VREF pin should be left open. For other $1^{2} \mathrm{C}$ addresses, a resistor must be connected between the SLEWA pin and the VREF pin (1.7 V). This resistor can be calculated to set the corresponding voltage for the required address listed in Table 7.

Table 7. $1^{2} \mathrm{C}$ Address Selection

SLEWA VOLTAGE	$\mathrm{I}^{2} \mathrm{C}$ ADDRESS
$\mathrm{V}_{\text {SLEWA }} \leq 0.30 \mathrm{~V}$	0
$0.35 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq 0.45 \mathrm{~V}$	1
$0.55 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq 0.65 \mathrm{~V}$	2
$0.75 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq 0.85 \mathrm{~V}$	3
$0.95 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq 1.05 \mathrm{~V}$	4
$1.15 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq 1.25 \mathrm{~V}$	5
$1.35 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq 1.45 \mathrm{~V}$	6
$1.55 \mathrm{~V} \leq \mathrm{V}_{\text {SLEWA }} \leq 1.65 \mathrm{~V}$	7

8.2.1.2.4 Step 4: Determine Inductor Value And Choose Inductor

Applications with smaller inductor values have better transient performance but also have higher voltage ripple and lower efficiency. Applications with higher inductor values have the opposite characteristics. Choice of inductance is a trade off between transient, ripple, size, efficiency, cost and availability.
For this design, we chose an inductance value of $0.1 \mu \mathrm{H}$. The chosen inductor should have the following characteristics:

- As flat as an inductance versus current curve as possible.
- Either high saturation or soft saturation. A saturation current of at least the per phase maximum current of $\mathrm{I}_{\mathrm{CC}(\text { max })} / \mathrm{N}_{\mathrm{ph}}+\mathrm{I}_{\text {ripple }} / 2$
- Low DCR for high efficiency.

8.2.1.2.5 Step 5: Current Sensing Resistance

The TPS59632 device supports both resistor sensing and inductor DCR sensing. However, inductor DCR sensing is not suitable for automotive applications due to wide variation in current sensing across temperature. The sense resistance, R_{S} must be chosen large enough to give sufficient current signal to the controller and small enough to keep the power dissipation low. Choosing max power dissipation to about 0.5 W per phase, we get $R_{S}=1 \mathrm{~m} \Omega$.

8.2.1.2.6 Step 6: Select Over Current Protection (OCP) Setting

The OCP level is chosen such that it is 30% above the maximum load current, $\mathrm{I}_{\mathrm{CC}(\max)}$. In the equation, here R_{CS} is the current sense resistor.Equation 4. $I_{\text {valley }}$ is the load current less half the ripple.
$\mathrm{I}_{\text {VALLEY }} \times \mathrm{R}_{\mathrm{CS} \text { (eff) }}=\mathrm{V}_{\mathrm{CS}(\mathrm{ocp})}$
Set the OCP threshold level just greater than the calculated I IVALLEY for the required OCP level. Equation 4. In this design, the minimum required OCP is 65 A . Therefore, an OCP selection resistor of 56 k is chosen to meet the requirement.
Table 8 shows the minimum OCP level for all the selection resistors.
Table 8. OCP Selection ${ }^{(1)}$

SELECTION RESISTOR $\mathbf{R}_{\mathbf{O C P}}(\mathbf{k} \boldsymbol{\Omega})$	Minimum $\mathbf{V}_{\mathbf{C S}(\mathbf{O C P})}$ $(\mathbf{m V})$
20	3
24	7
30	11
39	15
56	21
75	28
100	36
150	45

(1) If a corresponding match is not found, then select the next higher setting.

8.2.1.2.7 Step 7: Current Monitor (IMON) Setting

Set the analog current monitor so that at $\mathrm{I}_{\mathrm{CC}(\text { max })}$ the IMON pin voltage is 1.7 V . This corresponds to a digital $\mathrm{I}_{\text {OUT }}$ value of ' FF ' in $\mathrm{I}^{2} \mathrm{C}$ register 03 H . The voltage on the IMON pin is shown in Equation 5.

$$
\begin{equation*}
1.7=10 \times\left(1+\frac{\mathrm{R}_{\mathrm{IMON}}}{\mathrm{R}_{\mathrm{OCP}}}\right) \times \mathrm{R}_{\mathrm{CS}(\mathrm{eff})} \times \mathrm{I}_{\mathrm{CC}(\max)} \tag{5}
\end{equation*}
$$

where, $\mathrm{I}_{\mathrm{CC}(\text { max })}$ is $50 \mathrm{~A} ; \mathrm{R}_{\mathrm{CS} \text { (eff) }}$ is $1.0 \mathrm{~m} \Omega$ and $\mathrm{R}_{\mathrm{OCP}}$ is $56 \mathrm{k} \Omega$
Solving, $R_{I M O N}=133 \mathrm{k} \Omega$. $R_{\text {IMON }}$ is connected from IMON pin to OCP-I pin.

8.2.1.2.8 Step 8: Set the Load-Line Slope

Setting a load line slope is effective in significantly reducing the output capacitors. Therefore, although the design requirement does not call for a load-line, we use the output voltage tolerance specification to determine an appropriate load-line. Figure 23 shows how we first determine the load-line window.

Figure 23. Determination of Nominal DC Load-line window
This nominal DC load-line window is now used to set the load-line slope across the range of load current from 0 to $\mathrm{I}_{\mathrm{cc}, \max }$ as shown in Figure 24.

Figure 24. Determination of the Slope of the Load-line
The load-line slope $R_{L L}$ is first determined as shown in Figure 24 using the equation in Equation 6. In the device, TPS59632-Q1, the load-line is determined by the current sense resistance, R_{CS}, the current sense amplifier gain, A_{CS}, and the gain of the droop amplifier ($\mathrm{A}_{\mathrm{DROOP}}$) as shown in Equation 7.

$$
\begin{align*}
R_{L L} & =\frac{V a-V b}{I_{c c \max }} \tag{6}\\
R_{L L} & =\frac{R_{C S, e f f} \times A_{C S}}{A_{D R O O P}} \tag{7}
\end{align*}
$$

The gain of the droop amplifier, ($A_{\text {DROop }}$ can therefore be determined by Equation 7. This gain is set by the external resistors $R_{\text {DROOP }}$ (between the DROOP pin and the COMP pin) and resistor $\mathrm{R}_{\text {CoMP }}$ (between the COMP pin and the VREF pin) as shown in Equation 8 . We fix the value of $\mathrm{R}_{\text {DROop }}$ to $19.6 \mathrm{k} \Omega$, and thereby $\mathrm{R}_{\text {comp }}$ is calculated to $1.87 \mathrm{k} \Omega$.

$$
\begin{equation*}
\mathrm{A}_{\mathrm{DROOP}}=\left(1+\left(\frac{\mathrm{R}_{\mathrm{DROOP}}}{\mathrm{R}_{\mathrm{COMP}}}\right)\right) \tag{8}
\end{equation*}
$$

8.2.1.2.9 Step 9: Voltage Feedback Resistor Calculation

In the device TPS59632-Q1, the internal DAC voltage is set to 0.80 V . To adjust the output voltage above or below this voltage we need to use feedback resistor divider setting. Since we are sensing the voltage using differential remote sense we adopt the circuit shown in Figure 25 to increase the voltage above 0.80 V and the and circuit shown in Figure 26 to decrease the voltage below 0.80 V .

Figure 25. Feedback resistor divider circuit to increase the output voltage above internal DAC voltage
In this design, we need to calculate the feedback resistor values, R1 and R2, to increase the voltage above the DAC, the equation shown in Equation 9 is used. Here, $\mathrm{V}_{\mathrm{DAC}}=0.80 \mathrm{~V}$, and Va from load-line setting is determined as 0.890 V . R 2 is set to $10 \mathrm{k} \Omega$ and R 1 is calculated to 562 .

$$
\begin{equation*}
V a \frac{R 2}{R 2+2 R 1}=V_{D A C} \tag{9}
\end{equation*}
$$

From Output
To Controller

Figure 26. Feedback resistor divider circuit to decrease the output voltage above internal DAC voltage
To calculate the feedback resistor values, R1 and R2, to decrease the voltage below the DAC, the equation shown in Equation 10 is used. Here, $\mathrm{V}_{\mathrm{DAC}}=0.80 \mathrm{~V}$, and Va from load-line setting for the specific application. Vref is the TPS59632-Q1 reference voltage at Pin 27 (VREF) which is nominally 1.7 V . Using this, and setting R2 to $10 \mathrm{k} \Omega$, R1 can be determined.

$$
\begin{equation*}
\frac{V r e f-V D A C}{R 2}=\frac{V D A C-V a}{R 1} \tag{10}
\end{equation*}
$$

8.2.1.2.10 Step 10: Ramp Compensation Selection

The Ramp compensation is selected to minimize the jitter. Higher ramp gives lower jitter but can worsen the transient response. The ramp compensation selection is a trade off between transient response and jitter.
Table 9 shows the available ramp selections.
Table 9. Ramp Compensation Selection

SELECTION RESISTOR $\mathbf{R}_{\text {RAMP }}(\mathbf{k} \boldsymbol{\Omega})$	RAMP COMPENSATION VOLTAGE $\mathbf{(m V})$
20	20
30	60
39	100
150	40

8.2.1.2.11 Step 11 Overshoot Reduction (OSR) selection

The OSR level selection is based on the load-transient performance and amount of actual output capacitance to get the best performance with least output capacitance. The suggested method is to begin with OSR OFF and perform the load transient test based on a calculated amount of output capacitance. If the overshoot is higher then specified voltage limits, the OSR can be enabled by lowering the OSR threshold level. If the overshoot is acceptable with OSR OFF, then e reduction in output capacitance can be made and then an appropriate OSR level can be selected to meet the load transient specification. While reducing the output capacitance, other considerations like output ripple, undershoot, stability, and so on needs to be considered simultaneously.

Table 10 shows the available OSR selections.
Table 10. OSR Selection

SELECTION RESISTOR $\mathbf{R}_{\text {OSR }}(\mathbf{k} \mathbf{\Omega})$	OSR THRESHOLD LEVEL $\mathbf{(m V)}$
20	100
24	150
30	200
39	250
56	300
75	400
100	500
150	OFF

8.2.1.2.12 Step 12: Undershoot Reduction (USR) selection

Once the the R $\mathrm{R}_{\text {ORR }}$ value is fixed, then the USR level can be set by the voltage on the O-USR pin. The resistor $\mathrm{R}_{\text {USR }}$ (between the O-USR pin and the VREF pin) sets the voltage.

Table 11. USR Selection

LEVEL	$\begin{aligned} & \mathrm{V}_{\text {O-USR }} \text { SELECTION } \\ & \text { VOLTAGE (V) } \end{aligned}$		$V_{\text {USR }}$ UNDERSHOOT REDUCTION LEVEL (mV)
	MIN	MAX	
1		0.25	60
2	0.35	0.45	90
3	0.55	0.65	120
4	0.75	0.85	180

Table 11. USR Selection (continued)

LEVEL	$\begin{aligned} & \text { Vo-USR SELECTION } \\ & \text { VOLTAGE (V) } \end{aligned}$		V USRUNDERSHOOTREDUCTION LEVEL(mV)
	MIN	MAX	
5	0.95	1.05	240
6	1.15	1.25	420
7	1.35	1.45	480
8	1.55	$\mathrm{V}_{\text {VREF }}$	540

The USR level is also selected similar to the OSR setting. First, begin with least undershoot reduction and lower the level until pulse-overlap between two phases happens sufficiently to meet the load insertion transient requirement. The USR level can be approximately estimated by multiplying one-third of the droop voltage for the specified load transient with the $A_{\text {DROop }}$ determined in Step 8: Set the Load-Line Slope. The actual level needs to be tuned based on measurement. In this design, OSR is set to OFF and USR is set to $90-\mathrm{mV}$ level. Therefore $R_{\text {OSR }}=150 \mathrm{k}$ and $\mathrm{R}_{\text {USR }}=487 \mathrm{k}$.

8.2.1.2.13 Step 13: Loop Compensation

The controller device TPS59632-Q1 does not require any additional loop compensation for stability as the loadline setting droop amplifier gain automatically stabilizes the DCAP+ control loop. However, to further increase the response time to fast load transients, an additional resistor ($3 \mathrm{k} \Omega$) in series with a capacitor (560 pF) is placed from COMP to VREF. Frequency response is measured to ensure the stability while meeting the transient requirements. Some key results for this design are given in Application Performance Plots.
www.ti.com.cn

8.2.1.3 Application Performance Plots

Figure 27. Output Voltage vs Output Current

Figure 28. Efficiency and Power Loss Vs. Load Current

Figure 29. Control-loop Gain-Phase measurement Vs. frequency

9 Power Supply Recommendations

This device is designed to operate from a supply voltage at the V5A pin ($5-\mathrm{V}$ power input for analog circuits) from 4.5 V to 5.5 V and a supply voltage at the VDD pin (3.3-V digital power input) from 3.1 V to 3.5 V , and a supply voltage at VINTF from 1.7 V to 3.5 V . Use only a well-regulated supply. The VBAT input must be connected to the conversion input voltage and must not exceed 28 V. Proper bypassing of the V5A, VDD, and VINTF input supplies is critical for noise performance, as is PCB layout and grounding scheme. See the recommendations in the Layout section.

10 Layout

10.1 Layout Guidelines

- Confirm the pinout of the controller on schematic against the pinout of the data sheet.
- Have a component value calculator tool ready to check component values.
- Carefully check the choice of inductor and sense resistor.
- Carefully check the choice of output capacitors.
- Because the voltage and current feedback signals are fully differential, double check their polarity.
- CSP1/CSN1
- CSP2/CSN2
- CSP3/CSN3
- VOUT_SENSE to VFB / GND_SENSE to GFB
- Make sure the pull up on the SDA, SCL lines are correct. Check if there is a bypass capacitor close to the device on the pull up VINTF rail to GND of the device.
- TI strongly recommends that the device GND be separate from the system and Power GND.

NOTE

Make sure to separate noisy driver interface lines. This is a critical layout rule.
The driver (TPS59603-Q1) is outside of the device. All gate-drive and switch-node traces must be local to the inductor and MOSFETs.

10.2 Layout Example

Figure 30. Example Layout

10.3 Current Sensing Lines

Given the physical layout of most systems, the current feedback (CSPx and CSNx) may have to pass near the power chain. Clean current feedback is required for good load-line, current sharing, and current limiting performance of the TPS59632-Q1 device, so take the following precautions:

- Ensure all vias in the CSPx and CSNx traces are isolated from all other signals.
- TI recommends dotted signal traces be run in internal planes.
- If possible, change the name of the CSNx trace if possible to prevent automatic ties to the $\mathrm{V}_{\text {CORE }}$ plane.
- Run CSPx and CSNx as a differential pair in a quiet layer to the device.
- Isolate the lines from noisy signals by a voltage or ground plane.
- Make a Kelvin connection to the pads of the resistor used for current sensing.
- Place any noise filtering capacitors directly under or near the TPS59632-Q1 device and connect to the CS pins with the shortest trace length possible.

10.4 Feedback Voltage Sensing Lines

The voltage feedback coming from the CPU socket must be routed as a differential pair all the way to the VFB and GFB pins of the TPS59632-Q1 device. Care should be taken to avoid routing over switch-node and gatedrive traces.

10.5 PWM And SKIP Lines

The PWM and $\overline{\text { SKIP }}$ lines should be routed from the TPS59632-Q1 device to the MOSFET gate driver without crossing any switch-node or the gate drive signals.

10.6 Power Chain Symmetry

The TPS59632-Q1 device does not require special care in the layout of the power chain components because independent isolated current feedback is provided. Lay out the phases in a symmetrical manner, if possible. The rule is: the current feedback from each phase needs to be clean of noise and have the same effective currentsense resistance.

10.7 Component Location

Place components as close to the device in the following order:

1. CS pin noise filtering components
2. COMP pin and DROOP pin compensation components
3. Decoupling capacitors for VREF, VDD, V5A
4. Decoupling cap for VINTF rail, which is pullup voltage for the digital lines. This decoupling should be placed near the device to have good signal integrity.
5. OCP-I resistors, FREQ-P resistors, SLEWA resistors, RAMP resistors, and O-USR resistors

TPS59632-Q1

10.8 Grounding Recommendations

The TPS59632-Q1 device has an analog ground and a thermal pad. The usual procedure for connecting these is:

- Keep the analog GND of the device and the power GND of the power circuit separate. The device analog GND and the power circuit power GND can be connected at one single quiet point in the layout.
- The thermal pad does not have an electrical connection to device. But, the thermal pad must be connected to pin 29 GND of the device to give good ground shielding. Do not connect this to system GND.
- Tie the thermal pad to a ground island with at least 4 vias. All the analog components can connect to this analog ground island.
- The analog ground can be connected to any quiet spot on the system ground. A quiet spot is defined as a spot where no power supply switching currents are likely to flow. Use a single point connection from analog ground to the system ground.
- Make sure the bottom FET source connection and the input decoupling capacitors have plenty of vias.

10.9 Decoupling Recommendations

- Decouple V5A and VDD to GND with a ceramic capacitor (with a value of at least $1 \mu \mathrm{~F}$).
- Decouple VINTF to GND with a capacitor (with a value of at least $0.1 \mu \mathrm{~F}$) to GND.

10.10 Conductor Widths

- Maximize the widths of power, ground, and drive signal connections.
- For conductors in the power path, be sure there is adequate trace width for the amount of current flowing through the traces.
- Make sure there are sufficient vias for connections between layers. Use 1 via minimum per ampere of current.

11 器件和文档支持

11.1 文档支持

《适用于汽车 应用 高频 CPU 内核电源的 TPS59603－Q1 同步降压 FET 驱动器》数据表

11.2 商标

D－CAP＋，AutoBalance，D－CAP＋are trademarks of Texas Instruments．
Excel is a registered trademark of Microsoft Corporation．
All other trademarks are the property of their respective owners．
11.3 静电放电警告

ESD 可能会损坏该集成电路。德州仪器（TI）建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序，可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级，大至整个器件故障。 精密的集成电路可能更容易受到损坏，这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11．4 Glossary

SLYZ022－TI Glossary．
This glossary lists and explains terms，acronyms，and definitions．

12 机械，封装和可订购信息
以下页面包含机械，封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更，恕不另行通知，且不会对此文档进行修订。如需获取此数据表的浏览器版本，请查阅左侧的导航栏。

13 Package Option Addendum

13.1 Packaging Information

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking ${ }^{(4)(5)}$
TPS59632QRHBRQ1	PREVIEW	QFN	RHB	32	3000	GREEN (RoHS and no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TPS59632Q
TPS59632QRHBTQ1	PREVIEW	QFN	RHB	32	250	GREEN (RoHS and no $\mathrm{Sb} / \mathrm{Br})$	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TPS59632Q

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined
Pb -Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
(5) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belie on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

13.2 Tape And Reel Information

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	ReelWidth W1 (mm)	$\underset{(\mathrm{mm})}{\mathrm{AO}}$	$\begin{gathered} \text { B0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{KO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
TPS59632QRHBRQ1	QFN	RHB	32	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
TPS56632QRHBTQ1	QFN	RHB	32	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

TPS59632-Q1
ZHCSKXO -FEBRUARY 2020
www.ti.com.cn

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS59632QRHBRQ1	QFN	RHB	32	3000	367.0	367.0	35.0
TPS59632QRHBTQ1	QFN	RHB	32	250	210.0	185.0	35.0

重要声明和免责声明

TI 均以＂原样＂提供技术性及可靠性数据（包括数据表），设计资源（包括参考设计），应用或其他设计建议，网络工具，安全信息和其他资源，不保证其中不含任何瑕疪，且不做任何明示或暗示的担保，包括但不限于对适销性，适合某特定用途或不侵犯任何第三方知识产权的暗示担保。
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任：（1）针对您的应用选择合适的TI产品；（2）设计，验证并测试您的应用；（3）确保您的应用满足相应标准以及任何其他安全，安保或其他要求。所述资源如有变更，恕不另行通知。TI 对您使用所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源，也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔，赔偿，成本，损失及债务等，TI对此概不负责，并且您须赔偿由此对TI 及其代表造成的损害。
TI 所提供产品均受TI 的销售条款（http：／／www．ti．com．cn／zh－cn／legal／termsofsale．html）以及ti．com．cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址：上海市浦东新区世纪大道 1568 号中建大厦 32 楼，邮政编码： 200122
Copyright © 2020 德州仪器半导体技术（上海）有限公司

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TPS59632QRHBRQ1	ACTIVE	VQFN	RHB	32	3000	RoHS \& Green	SN	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \hline \text { TPS } \\ & 59632 \end{aligned}$	Samples
TPS59632QRHBTQ1	ACTIVE	VQFN	RHB	32	250	RoHS \& Green	SN	Level-2-260C-1 YEAR	-40 to 125	$\begin{aligned} & \hline \text { TPS } \\ & 59632 \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of $<=1000$ ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000$ ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271)
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI 均以＂原样＂提供技术性及可靠性数据（包括数据表），设计资源（包括参考设计），应用或其他设计建议，网络工具，安全信息和其他资源，不保证其中不含任何瑕疪，且不做任何明示或暗示的担保，包括但不限于对适销性，适合某特定用途或不侵犯任何第三方知识产权的暗示担保。
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任：（1）针对您的应用选择合适的TI 产品；（2）设计，验证并测试您的应用；（3）确保您的应用满足相应标准以及任何其他安全，安保或其他要求。所述资源如有变更，恕不另行通知。TI 对您使用所述资源的授权仅限于开发资源所涉及 TI 产品的相关应用。除此之外不得复制或展示所述资源，也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔，赔偿，成本，损失及债务等，TI对此概不负责，并且您须赔偿由此对TI 及其代表造成的损害。
TI 所提供产品均受TI的销售条款（http：／／www．ti．com．cn／zh－cn／legal／termsofsale．html）以及ti．com．cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改 TI 针对 TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址：上海市浦东新区世纪大道 1568 号中建大厦 32 楼，邮政编码： 200122
Copyright © 2020 德州仪器半导体技术（上海）有限公司

[^0]: （1）如需了解所有可用封装，请参阅数据表末尾的可订购产品附录。

[^1]: (1) Specified by design. Not production tested.

[^2]: (2) Specified by design. Not production tested.
 (3) Specified by design. Not production tested.
 (4) Specified by design. Not production tested.

