

DRV777

ZHCSAN1-DECEMBER 2012

7 位集成电机和中继驱动器 查询样品: DRV777

特性

- 支持高达 20V 输出上拉电压 •
- -40°C 至 125°C 工作温度范围
- 支持宽范围的步进电机, DC 电机, 继电器和感应 线圈
- 0.4V (典型值) 的低输出 VOL, 此时
 - 在 5.0V 的逻辑输入上,每通道 140mA 的电流 吸收能力(1)
 - 当全部 7 个通道并联时, 1A 电流输出能力⁽¹⁾
- 与 1.8V, 3.3V 和 5.0V 微控制器和逻辑接口兼容
- 用于感应反冲保护的内部自振荡二极管
- 输入下拉电阻器可实现三态输入驱动器
- 用来消除嘈杂环境中寄生运行的输入电阻电容 (RC) 缓冲器
- 低输入和输出泄漏电流
- 易于使用的并行接口
- 静电放电 (ESD) 保护性能超过 JESD 22 规范要求 • - 2kV 人体模型 (HBM), 500V 充电器件模型 (CDM)
- 采用 16 引脚小外形尺寸集成电路 (SOIC) 和薄型小 外形尺寸 (TSSOP) 封装
- (1) 总电流吸收有可能受到内部结温、绝对最大电流水平等的限制-详细情况请参考电气规范部分。

应用范围

- 单极步进电机驱动器
- 继电器和感应负载驱动器
- 螺线管驱动器
- 照明灯和 LED 显示
- 逻辑电平转换器
- 常见低侧开关应用

16 OUT1 15 OUT2 INI2 14 OUT3 13 OUT4 12 OUT5 IN5 11 OUT6 10 OUT7

DRV777 TSSOP/SOI

9 COM

IN7

GND 8

说明

功能图

DRV777 电机驱动器特有 7 个低输出阻抗驱动器,此 驱动器能够大大降低片上功率耗散。 DRV777 支持 1.8V 至 5V CMOS 逻辑输入接口,从而使得此器件与 大范围的微控制器和其它逻辑接口兼容。 DRV777 特 有一个经改进的输入接口,此接口可以大大降低汲取自 外部驱动器的输入 DC 电流。 此器件特有一个输入 RC 缓冲器,此缓冲器能够极大地改进此器件在嘈杂运 行条件下的性能。 所有通道输入特有一个内部输入下 拉电阻器,从而可实现三态输入逻辑。 DRV777 还支 持其它逻辑输入电平,例如 TTL 和 1.8V: 详细信息请 见典型特性部分。

如功能图中所示,在共阴极配置中,DRV777 的每一 个输出都特有一个连接在 COM 引脚上的内部自振荡二 极管。

此器件通过将几条相邻的并联通道组合在一起来提供增 加电流吸收能力的灵活性。在通常情况下,当所有7 个通道并联时, DRV777 能够支持高达 1.0A 的负载电 流。 DRV777 采用 16 引脚 SOIC 和 16 引脚 TSSOP 封装。

表 1. DRV777 功能表⁽¹⁾

输入 (IN1-IN7)	输出 (OUT1-OUT7)				
L	H ⁺⁽²⁾				
Н	L				
Z	H ⁺⁽²⁾				
(1) L = 低电平(接地); H = 高	电平; Z = 高阻抗;				
(2) H ⁺ = 上拉电平					

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DRV777

(AS

ZHCSAN1-DECEMBER 2012

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION⁽¹⁾

TJ	PART NUMBER	PACK	TOP-SIDE MARKING	
40%C to 405%C	DRV777DR	16-Pin SOIC	Reel of 2500	DRV777
-40°C 10 125°C	DRV777PWR	16-Pin TSSOP	Reel of 2000	DRV777

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

DEVICE INFORMATION

Figure 1. DRV777 PINOUT

Figure 2. Channel Block Diagram

NAME	PIN N	UMBER	DESCRIPTION							
	16-SOIC	16-TSSOP	DESCRIPTION							
IN1 – IN7	1–7	1–7	Logic Input Pins IN1 through IN7							
GND	8	8	Ground Reference Pin							
COM	9	9	Internal Free-Wheeling Diode Common Cathode Pin							
OUT7 – OUT1	10–16	10–16	Channel Output Pins OUT7 through OUT1							

DRV777 PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Specified at $T_J = -40^{\circ}$ C to 125°C unless otherwise noted.

			VALU	JE	
			VALUE MIN M/ -0.3 5 -0.3 0. 0. 0. 0. 0. -55 1	MAX	UNIT
V _{IN}	Pins IN1- IN7 to GND voltage		-0.3	5.5	V
V _{OUT}	Pins OUT1 – OUT7 to GND voltage		20	V	
V _{COM}	Pin COM to GND voltage		20	V	
	Max GND-pin continuous current (100°C < T_J		700	mA	
I _{GND}	Max GND-pin continuous current (T _J < +100°C		1.0	Α	
D	Total device newer discipation at T 95%	16 Pin - SOIC		0.86	W
PD	Total device power dissipation at $T_A = 85^{\circ}C$	16 Pin - TSSOP		0.68	W
	ESD Rating – HBM			2	kV
ESD	ESD Rating – CDM		500	V	
TJ	Operating virtual junction temperature	-55	150	°C	
T _{stg}	Storage temperature range		-55	150	°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to absolute-maximum-rated conditions for (1) extended periods may affect device reliability.

DISSIPATION RATINGS⁽¹⁾⁽²⁾

BOARD	PACKAGE	θ _{JC}	θ _{JA} ⁽³⁾	DERATING FACTOR ABOVE T _A = 25⁰C	T _A < 25°C	T _A = 70°C	T _A = 85°C	T _A = 105°C
High-K	16-Pin SOIC	46°C/W	75°C/W	13.33 mW/ºC	1.66 W	1.06 W	0.86 W	0.59 W
High-K	16-Pin TSSOP	49°C/W	95°C/W	10.44 mW/ºC	1.31 W	0.84 W	0.68 W	0.47 W

(1)

(2)

Maximum dissipation values for retaining device junction temperature of 150°C Refer to TI's design support web page at www.ti.com/thermal for improving device thermal performance Operating at the absolute T_{J-max} of 150°C can affect reliability– for higher reliability it is recommended to ensure $T_J < 125$ °C (3)

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER		MIN	TYP MAX	UNIT
V _{OUT}	Channel off-state output pull-up voltage		16	V	
V _{COM}	COM pin voltage		16	V	
I _{OUT(ON)}	Der shannel continuous sink current	VINx = 3.3V		100 ⁽¹⁾	0
	Per channel continuous sink current		140 ⁽¹⁾	ma	
TJ	Operating junction temperature	-40	125	°C	

(1) 1) Refer to ABSOLUTE MAXIMUM RATINGS for T_J dependent absolute maximum GND-pin current

ZHCSAN1-DECEMBER 2012

ELECTRICAL CHARACTERISTICS

Specified over the recommended junction temperature range $T_{J} = -40^{\circ}C$ to 125°C and over recommended operating conditions unless otherwise noted. Typical values are at $T_1 = 25^{\circ}$ C.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUTS IN1 TH	IROUGH IN7 PARAMETERS		-			
V _{I(ON)}	IN1-IN7 logic high input voltage	$V_{pull-up} = 3.3 \text{ V}, \text{ R}_{pull-up} = 1 \text{ k}\Omega, \text{ I}_{OUTX} = 3.2 \text{ mA}$	1.65			V
V _{I(OFF)}	IN1–IN7 logic low input voltage	$V_{pull-up} = 3.3 V, R_{pull-up} = 1 k\Omega,$ $(I_{OUTX} < 20 \mu A)$		0.4	0.6	V
I _{I(ON)}	IN1–IN7 ON state input current	$V_{pull-up} = 3.3 \text{ V}, \text{ VIN}_{x} = 3.3 \text{ V}$		12	25	uA
I _{I(OFF)}	IN1–IN7 OFF state input leakage	$V_{pull-up} = 3.3 \text{ V}, \text{ VIN}_{x} = 0 \text{ V}$			250	nA
OUTPUTS OUT	1 THROUGH OUT7 PARAMETERS	·	·			
N		V _{INX} = 3.3 V, I _{OUTX} = 100 mA		0.36	0.49	N/
V _{OL}	OUT1-OUT7 low-level output voltage	V _{INX} = 5.0 V, I _{OUTX} = 140 mA		0.40		v
	OUT1–OUT7 ON-state continuous	V _{INX} = 3.3 V, V _{OUTX} = 0.4 V	80 100			
IOUT(ON)	current ⁽¹⁾ ⁽²⁾ at V _{OUTX} = 0.4V	$V_{INX} = 5.0 \text{ V}, V_{OUTX} = 0.4 \text{ V}$	95	140		IIIA
I _{OUT(OFF)(ICEX)}	OUT1-OUT7 OFF-state leakage current	$V_{INX} = 0 V, V_{OUTX} = V_{COM} = 16 V$		0.5		μΑ
SWITCHING PA	ARAMETERS ⁽³⁾⁽⁴⁾					
t _{PHL}	OUT1-OUT7 logic high propagation delay	$V_{INX} = 3.3V, V_{pull-up} = 12 V, R_{pull-up} = 1 k\Omega$		50	70	ns
t _{PLH}	OUT1-OUT7 logic low propagation delay	$V_{INX} = 3.3V, V_{pull-up} = 12 V, R_{pull-up} = 1 k\Omega$		121	140	ns
t _{CHANNEL}	Channel to Channel delay	Over recommended operating conditions and with same test conditions on channels.		15	50	ns
R _{PD}	IN1-IN7 input pull-down Resistance		210k	300k	390k	Ω
ζ	IN1-IN7 Input filter time constant			9		ns
C _{OUT}	OUT1-OUT7 output capacitance	V _{INX} = 3.3 V, V _{OUTX} = 0.4 V		15		pF
FREE-WHEELI	NG DIODE PARAMETERS ⁽⁵⁾⁽⁴⁾					
VF	Forward voltage drop	$I_{F-peak} = 140 \text{ mA}, \text{ VF} = V_{OUTx} - V_{COM}$		1.2		V
I _{F-peak}	Diode peak forward current			140		mA

(1) The typical continuous current rating is limited by V_{OL}= 0.4V. Whereas, absolute maximum operating continuous current may be limited by the Thermal Performance parameters listed in the Dissipation Rating Table and other Reliability parameters listed in the Recommended Operating Conditions Table.

(2)

Refer to the Absolute Maximum Ratings Table for T_J dependent absolute maximum GND-pin current. Rise and Fall propagation delays, t_{PHL} and t_{PLH} , are measured between 50% values of the input and the corresponding output signal (3) amplitude transition.

(4)

Guaranteed by design only. Validated during qualification. Not measured in production testing. Not rated for continuous current operation – for higher reliability use an external freewheeling diode for inductive loads resulting in more (5) than specified maximum free-wheeling. diode peak current across various temperature conditions

APPLICATION INFORMATION

TTL and other Logic Inputs

DRV777 input interface is specified for standard 1.8V, 3V and 5V CMOS logic interface. Refer to Figure 8 and Figure 9 to establish VOL and the corresponding typical load current levels for various input voltage ranges. Application Information section shows an implementation to drive 1.8V relays using DRV777.

Input RC Snubber

DRV777 features an input RC snubber that helps prevent spurious switching in noisy environment. Connect an external $1k\Omega$ to $5k\Omega$ resistor in series with the input to further enhance DRV777's noise tolerance.

High-impedance Input Drivers

DRV777 features a $300k\Omega$ input pull-down resistor. The presence of this resistor allows the input drivers to be tristated. When a high-impedance driver is connected to a channel input the DRV777 detects the channel input as a low level input and remains in the OFF position. The input RC snubber helps improve noise tolerance when input drivers are in the high-impedance state.

On-chip Power Dissipation

Use the below equation to calculate DRV777 on-chip power dissipation P_D:

$$P_{_{D}} = \sum_{_{i=1}}^{^{N}} V_{_{OLi}} \times I_{_{Li}}$$

Where: N is the number of channels active together. V_{OL} is the OUT_i pin voltage for the load current I_L.

(1)

(2)

Thermal Reliability

It is recommended to limit DRV777 IC's die junction temperature to less than 125°C. The IC junction temperature is directly proportional to the on-chip power dissipation. Use the following equation to calculate the maximum allowable on-chip power dissipation for a target IC junction temperature:

$$\mathsf{PD}_{(\mathsf{MAX})} = \begin{pmatrix} \mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}} \end{pmatrix} / \theta_{\mathsf{JA}}$$

Where:

 $T_{J(MAX)}$ is the target maximum junction temperature.

T_A is the operating ambient temperature.

 θ_{JA} is the package junction to ambient thermal resistance.

Improving Package Thermal Performance

The package θ_{JA} value under standard conditions on a High-K board is listed in the DISSIPATION RATINGS. θ_{JA} value depends on the PC board layout. An external heat sink and/or a cooling mechanism, like a cold air fan, can help reduce θ_{JA} and thus improve device thermal capabilities. Refer to TI's design support web page at www.ti.com/thermal for a general guidance on improving device thermal performance.

ZHCSAN1-DECEMBER 2012

Application Examples

One Amp Unipolar DC Motor Driver

An implementation of DRV777 for driving a uniploar DC motor is shown in Figure 3. With all of the channels tied together and the input being driven at 5V, the driver can sink 1A of current. With a VOL of 0.4V this creates a driver with 400m Ω . The input snubber circuitry is great for PWM applications that need high noise immunity. These two features make DRV777 an ideal choice for power efficient high duty cycle motor driving applications.

Figure 3. DRV777 as a DC Motor Driver

Unipolar Stepper Motor Driver

Figure 4 shows an implementation of DRV777 for driving a uniploar stepper motor. The unconnected input channels can be used for other functions. When an input pin is left open the internal $300k\Omega$ pull down resistor pulls the respective input pin to GND potential. For higher noise immunity use an external short across an unconnected input and GND pins.

Figure 4. DRV777 as a Stepper Motor Driver

ZHCSAN1-DECEMBER 2012

Multi-Purpose Sink Driver

When configured as per Figure 5 DRV777 can be used as a multi-purpose driver. The output channels can be tied together to sink more current. DRV777 can easily drive motors, relays & LEDs with little power dissipation. The COM pin must be tied to the supply of whichever inductive load is to be protected by the free-wheeling diode.

Figure 5. DRV777 Multi-Purpose Sink Driver Application

1.8V Relay Driver

To drive lower voltage relays, like 1.8V, connect two or more adjacent channels in parallel as shown in Figure 6. Connecting several channels in parallel lowers the channel output resistance and thus minimizes VOL for a fixed current. DRV777 can be used for driving 3V, 5V and 12V relays with similar implementation.

Figure 6. DRV777 Driving 1.8V Relays

NSTRUMENTS

EXAS

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
DRV777DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	DRV777	Samples
DRV777PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	DRV777	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

10-Dec-2020

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW0016A

PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

PW0016A

EXAMPLE BOARD LAYOUT

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

Ⅱ 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、 验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用 所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI所提供产品均受TI的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司