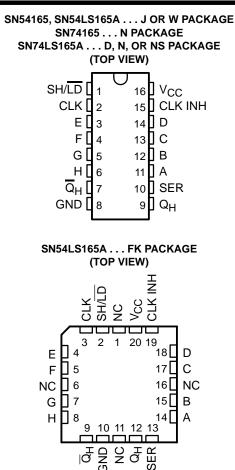
#### The SN54165 and SN74165 devices are obsolete and are no longer supplied.

- **Complementary Outputs**
- **Direct Overriding Load (Data) Inputs**
- **Gated Clock Inputs**
- Parallel-to-Serial Data Conversion

| TYPE    | TYPICAL MAXIMUM<br>CLOCK FREQUENCY | TYPICAL<br>POWER DISSIPATION |
|---------|------------------------------------|------------------------------|
| '165    | 26 MHz                             | 210 mW                       |
| 'LS165A | 35 MHz                             | 90 mW                        |


#### description

The '165 and 'LS165A are 8-bit serial shift registers that shift the data in the direction of QA toward Q<sub>H</sub> when clocked. Parallel-in access to each stage is made available by eight individual, direct data inputs that are enabled by a low level at the shift/load (SH/LD) input. These registers also feature gated clock (CLK) inputs and complementary outputs from the eighth bit. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

Clocking is accomplished through a two-input positive-NOR gate, permitting one input to be used as a clock-inhibit function. Holding either of the clock inputs high inhibits clocking, and holding either clock input low with SH/LD high enables the other clock input. Clock inhibit (CLK INH) should be changed to the high level only while CLK is high. Parallel loading is inhibited as long as SH/LD is high. Data at the parallel inputs are loaded directly into the register while SH/LD is low, independently of the levels of CLK, CLK INH, or serial (SER) inputs.

### SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002



NC - No internal connection

ð ž



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2002, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested less otherwise noted. On all other products. production processing does not necessarily include testing of all part

#### SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

# The SN54165 and SN74165 devices are obsolete and are no longer supplied.

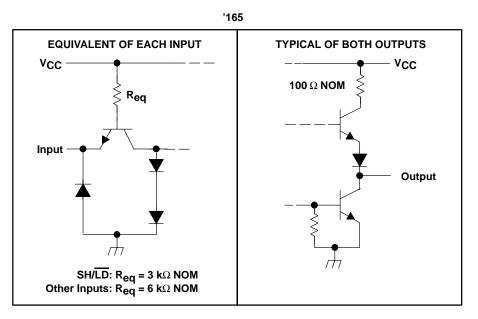
|                | -             |                   |                          |                     |  |
|----------------|---------------|-------------------|--------------------------|---------------------|--|
| TA             | PAC           | KAGE <sup>†</sup> | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING |  |
|                | PDIP – N      | Tube              | SN74LS165AN              | SN74LS165AN         |  |
| 0°C to 70°C    | SOIC – D Tube |                   | SN74LS165AD              | LS165A              |  |
| 0°C to 70°C    | 3010 - 0      | Tape and reel     | reel SN74LS165ADR        |                     |  |
|                | SOP – NS      | Tape and reel     | SN74LS165ANSR            | 74LS165A            |  |
|                | CDIP – J      | Tube              | SN54LS165AJ              | SN54LS165AJ         |  |
| 55°C to 125°C  | CDIP – J      | Tube              | SNJ54LS165AJ             | SNJ54LS165AJ        |  |
| –55°C to 125°C | CFP – W       | Tube              | SNJ54LS165AW             | SNJ54LS165AW        |  |
|                | LCCC – FK     | Tube              | SNJ54LS165AFK            | SNJ54LS165AFK       |  |

#### **ORDERING INFORMATION**

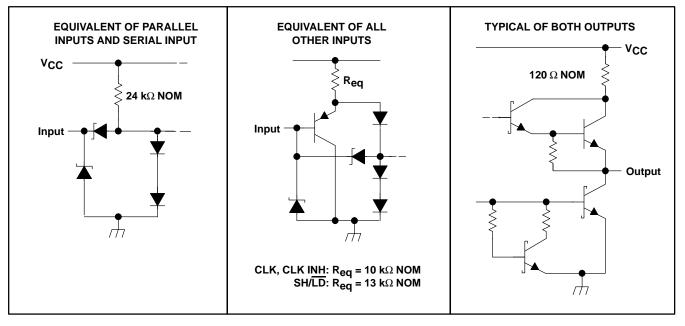
<sup>†</sup> Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

|       |         |            | TONC |                 |                 |                    |                 |
|-------|---------|------------|------|-----------------|-----------------|--------------------|-----------------|
|       |         | INPUT      | 6    |                 |                 | RNAL<br>PUTS       | OUTPUT          |
| SH/LD | CLK INH | CLK        | SER  | PARALLEL<br>A H | <u>Q</u> A      | $\overline{Q}_{B}$ | QH              |
| L     | Х       | Х          | Х    | ah              | а               | b                  | h               |
| Н     | L       | L          | Х    | Х               | Q <sub>A0</sub> | $Q_{B0}$           | Q <sub>H0</sub> |
| Н     | L       | $\uparrow$ | Н    | х               | н               | Q <sub>An</sub>    | Q <sub>Gn</sub> |
| Н     | L       | $\uparrow$ | L    | Х               | L               | Q <sub>An</sub>    | Q <sub>Gn</sub> |
| н     | Н       | Х          | Х    | Х               | QAO             | QBO                | Q <sub>H0</sub> |

#### FUNCTION TABLE



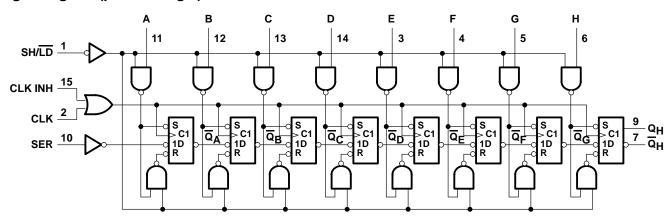

# The SN54165 and SN74165 devices are obsolete and are no longer supplied.


## SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

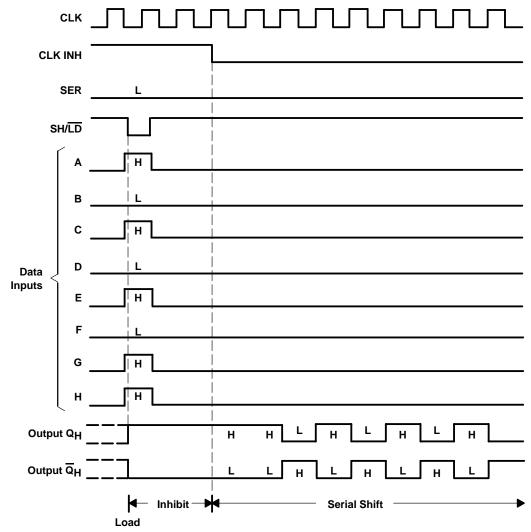
#### schematics of inputs and outputs











SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

#### logic diagram (positive logic)



Pin numbers shown are for D, J, N, NS, and W packages.







SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

#### absolute maximum ratings over operating free-air temperature (unless otherwise noted)<sup>†</sup>

| Supply voltage, V <sub>CC</sub> (see Note 1)            |                  |
|---------------------------------------------------------|------------------|
|                                                         | 5.5 V            |
| SN54LS165A, SN74LS165A                                  |                  |
| Interemitter voltage (see Note 2)                       | 5.5 V            |
| Package thermal impedance $\theta_{JA}$ (see Note 3): D | package          |
| N                                                       | package 67°C/W   |
|                                                         | S package 64°C/W |
| Storage temperature range, T <sub>stg</sub>             | –65°C to 150°C   |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. This rating applies for the '165 to the SH/LD input in conjunction with the CLK INH input.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

#### recommended operating conditions

|                       |                                          |     | SN54165 |      |      | SN74165 |      |      |
|-----------------------|------------------------------------------|-----|---------|------|------|---------|------|------|
|                       |                                          | MIN | NOM     | MAX  | MIN  | NOM     | MAX  | UNIT |
| VCC                   | Supply voltage                           | 4.5 | 5       | 5.5  | 4.75 | 5       | 5.25 | V    |
| ЮН                    | High-level output current                |     |         | -800 |      |         | -800 | μA   |
| IOL                   | Low-level output current                 |     |         | 16   |      |         | 16   | mA   |
| fclock                | Clock frequency                          | 0   |         | 20   | 0    |         | 20   | MHz  |
| <sup>t</sup> w(clock) | Width of clock input pulse               | 25  |         |      | 25   |         |      | ns   |
| <sup>t</sup> w(load)  | Width of load input pulse                | 15  |         |      | 15   |         |      | ns   |
| t <sub>su</sub>       | Clock-enable setup time (see Figure 1)   | 30  |         |      | 30   |         |      | ns   |
| t <sub>su</sub>       | Parallel input setup time (see Figure 1) | 10  |         |      | 10   |         |      | ns   |
| t <sub>su</sub>       | Serial input setup time (see Figure 1)   | 20  |         |      | 20   |         |      | ns   |
| t <sub>su</sub>       | Shift setup time (see Figure 1)          | 45  |         |      | 45   |         |      | ns   |
| t <sub>h</sub>        | Hold time at any input                   | 0   |         |      | 0    |         |      | ns   |
| TA                    | Operating free-air temperature           | -55 |         | 125  | 0    |         | 70   | °C   |



SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|     |                            |                         |                                      |                                                     |     | SN54165 | 5    |     | SN74165 | 5    |      |
|-----|----------------------------|-------------------------|--------------------------------------|-----------------------------------------------------|-----|---------|------|-----|---------|------|------|
|     | PARAMETER                  |                         | TEST CC                              | NDITIONS <sup>†</sup>                               | MIN | түр‡    | MAX  | MIN | түр‡    | MAX  | UNIT |
| VIH | High-level input voltage   |                         |                                      |                                                     | 2   |         |      | 2   |         |      | V    |
| VIL | Low-level input voltage    |                         |                                      |                                                     |     |         | 0.8  |     |         | 0.8  | V    |
| VIK | Input clamp voltage        |                         | $V_{CC} = MIN,$                      | lj = -12 mA                                         |     |         | -1.5 |     |         | -1.5 | V    |
| VOH | High-level output voltage  |                         | $V_{CC} = MIN,$<br>$V_{IL} = 0.8 V,$ | V <sub>IH</sub> = 2 V,<br>I <sub>OH</sub> = -800 μA | 2.4 | 3.4     |      | 2.4 | 3.4     |      | V    |
| VOL | Low-level output voltage   |                         | $V_{CC} = MIN,$<br>$V_{IL} = 0.8 V,$ | V <sub>IH</sub> = 2 V,<br>I <sub>OL</sub> = 16 mA   |     | 0.2     | 0.4  |     | 0.2     | 0.4  | V    |
| Ц   | Input current at maximun   | n input voltage         | V <sub>CC</sub> = MAX,               | VI = 5.5 V                                          |     |         | 1    |     |         | 1    | mA   |
| I   | Lligh lovel input ourrest  | SH/LD                   |                                      |                                                     |     |         | 80   |     |         | 80   | ۵    |
| lн  | High-level input current   | Other inputs            | $V_{CC} = MAX,$                      | v] = 2.4 v                                          |     |         | 40   |     |         | 40   | μA   |
| L., |                            | SH/LD                   |                                      | V. 0.4.V.                                           |     |         | -3.2 |     |         | -3.2 |      |
| ΊL  | Low-level input current    | Other input current     |                                      | V <sub>I</sub> = 0.4 V                              |     |         | -1.6 |     |         | -1.6 | mA   |
| los | Short-circuit output curre | circuit output current§ |                                      |                                                     | -20 |         | -55  | -18 |         | -55  | mA   |
| ICC | Supply current             |                         | V <sub>CC</sub> = MAX,               | See Note 4                                          |     | 42      | 63   |     | 42      | 63   | mA   |

NOTE 4: With the outputs open, CLK INH and CLK at 4.5 V, and a clock pulse applied to SH/LD, I<sub>CC</sub> is measured first with the parallel inputs at 4.5 V, then with the parallel inputs grounded.

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions.

<sup>‡</sup> All typical values are at  $V_{CC} = 5 V$ ,  $T_A = 25^{\circ}C$ .

§ Not more than one output should be shorted at a time.

### SN54165 and SN74165 switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$ (see Figure 1)

| PARAMETER¶       | FROM<br>(INPUT) | TO<br>(OUTPUT) | TEST CONDITIONS                                            | MIN | ТҮР | МАХ | UNIT |
|------------------|-----------------|----------------|------------------------------------------------------------|-----|-----|-----|------|
| fmax             |                 |                |                                                            | 20  | 26  |     | MHz  |
| <sup>t</sup> PLH | LD              | Any            | $C_{1} = 15 \text{ pE } P_{1} = 400 \text{ O}$             |     | 21  | 31  | ns   |
| <sup>t</sup> PHL | LD              | Any            | $C_L = 15 \text{ pF}, R_L = 400 \Omega$                    |     | 27  | 40  | 115  |
| <sup>t</sup> PLH | CLK             | Any            | C <sub>L</sub> = 15 pF, R <sub>L</sub> = 400 Ω             |     | 16  | 24  | ns   |
| <sup>t</sup> PHL | OLK             | Any            | $C_{L} = 15  \text{pr},  \text{K}_{L} = 400  \text{s}_{2}$ |     | 21  | 31  | 115  |
| <sup>t</sup> PLH | н               | 0              | C <sub>L</sub> = 15 pF, R <sub>L</sub> = 400 Ω             |     | 11  | 17  | ns   |
| <sup>t</sup> PHL |                 | QH             | $C_{L} = 15  \text{pr},  \text{K}_{L} = 400  \text{s}_{2}$ |     | 24  | 36  | 115  |
| <sup>t</sup> PLH | н               | <u>.</u>       | $C_{1} = 15 \text{ pE } P_{1} = 400 \text{ O}$             |     | 18  | 27  |      |
| <sup>t</sup> PHL |                 | QH             | $C_L = 15 \text{ pF}, R_L = 400 \Omega$                    |     | 18  | 27  | ns   |

fmax = maximum clock frequency, tpLH = propagation delay time, low-to-high-level output, tpHL = propagation delay time, high-to-low-level output



# The SN54165 and SN74165 devices are obsolete and are no longer supplied.

## SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

#### recommended operating conditions

|                       |                                            |            | SN  | 54LS16 | 5A   | SN   | 74LS165 | 5A   |      |
|-----------------------|--------------------------------------------|------------|-----|--------|------|------|---------|------|------|
|                       |                                            |            | MIN | NOM    | MAX  | MIN  | NOM     | MAX  | UNIT |
| VCC                   | Supply voltage                             |            | 4.5 | 5      | 5.5  | 4.75 | 5       | 5.25 | V    |
| VIH                   | High-level input voltage                   |            | 2   |        |      | 2    |         |      | V    |
| VIL                   | Low-level input voltage                    |            |     |        | 0.7  |      |         | 0.8  | V    |
| ЮН                    | High-level output current                  |            |     |        | -0.4 |      |         | -0.4 | mA   |
| IOL                   | Low-level output current                   |            |     |        | 4    |      |         | 8    | mA   |
| <sup>f</sup> clock    | Clock frequency                            |            | 0   |        | 25   | 0    |         | 25   | MHz  |
| +                     | Width of clock input pulse (see Figure 2)  | Clock high | 15  |        |      | 15   |         |      | ns   |
| <sup>t</sup> w(clock) | width of clock linput pulse (see Figure 2) | Clock low  | 25  |        |      | 25   |         |      | 115  |
| <b>+</b> a = 5        | Width of load input pulse                  | Clock high | 25  |        |      | 25   |         |      | 20   |
| <sup>t</sup> w(load)  | width of load input pulse                  | Clock low  | 17  |        |      | 17   |         |      | ns   |
| t <sub>su</sub>       | Clock-enable setup time (see Figure 2)     |            | 30  |        |      | 30   |         |      | ns   |
| t <sub>su</sub>       | Parallel input setup time (see Figure 2)   |            | 10  |        |      | 10   |         |      | ns   |
| t <sub>su</sub>       | Serial input setup time (see Figure 2)     |            | 20  |        |      | 20   |         |      | ns   |
| t <sub>su</sub>       | Shift setup time (see Figure 2)            |            | 45  |        |      | 45   |         |      | ns   |
| <sup>t</sup> h        | Hold time at any input                     |            | 0   |        |      | 0    |         |      | ns   |
| Т <sub>А</sub>        | Operating free-air temperature             |            | -55 |        | 125  | 0    |         | 70   | °C   |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                 |                        | TEOT                   | ONDITIONS <sup>†</sup> |                           | SN  | 154LS16 | 5A   | SN  | 74LS16 | 5A   |    |
|-----------------|------------------------|------------------------|------------------------|---------------------------|-----|---------|------|-----|--------|------|----|
| PARAMETER       |                        | TEST                   | MIN                    | TYP‡                      | MAX | MIN     | TYP‡ | MAX | UNIT   |      |    |
| VIK             | $V_{CC} = MIN,$        | lj = -18 mA            |                        |                           |     |         | -1.5 |     |        | -1.5 | V  |
| VOH             | $V_{CC} = MIN,$        | V <sub>IH</sub> = 2 V, | V <sub>IL</sub> = MAX, | I <sub>OH</sub> = -0.4 mA | 2.5 | 3.5     |      | 2.7 | 3.5    |      | V  |
| Ve              |                        | $\lambda = 2 \lambda$  | V – MAX                | I <sub>OL</sub> = 4 mA    |     | 0.25    | 0.4  |     | 0.25   | 0.4  | V  |
| VOL             | $V_{CC} = MIN,$        | v H = 2 v,             |                        | I <sub>OL</sub> = 8 mA    |     |         |      |     | 0.35   | 0.5  | v  |
| Ц               | $V_{CC} = MAX,$        | Vj = 7 V               |                        |                           |     |         | 0.1  |     |        | 0.1  | mA |
| Чн              | $V_{CC} = MAX,$        | Vj = 2.7 V             |                        |                           |     |         | 20   |     |        | 20   | μA |
| ۱ <sub>IL</sub> | $V_{CC} = MAX,$        | VI = 0.4 V             |                        |                           |     |         | -0.4 |     |        | -0.4 | mA |
| IOS§            | $V_{CC} = MAX$         |                        |                        |                           | -20 |         | -100 | -20 |        | -100 | mA |
| ICC             | V <sub>CC</sub> = MAX, | See Note 4             |                        |                           |     | 18      | 30   |     | 18     | 30   | mA |

NOTE 4. With the outputs open, CLK INH and CLK at 4.5 V, and a clock pulse applied to SH/LD, I<sub>CC</sub> is measured first with the parallel inputs at 4.5 V, then with the parallel inputs grounded.

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions.

<sup>‡</sup> All typical values are at  $V_{CC} = 5 V$ ,  $T_A = 25^{\circ}C$ .

§ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

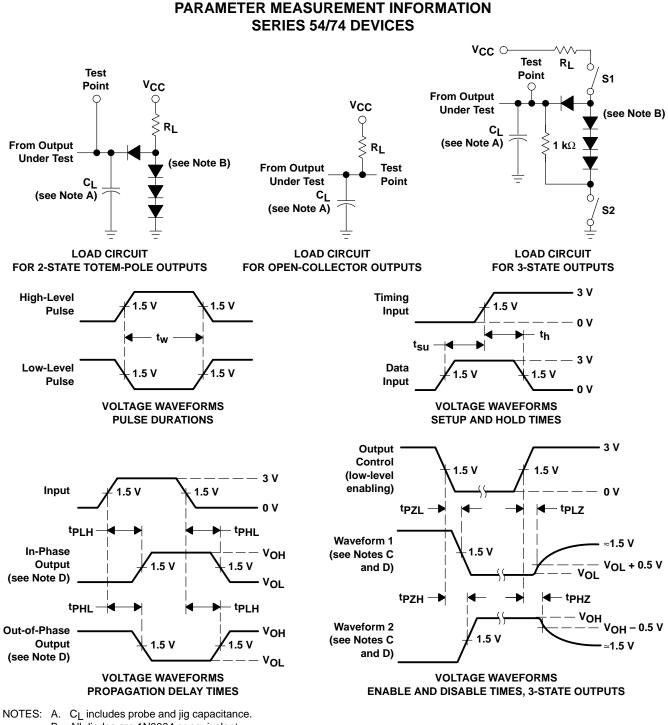


# The SN54165 and SN74165 devices are obsolete and are no longer supplied.

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

# SN54LS165A and SN74LS165A switching characteristics, $V_{CC}$ = 5 V, $T_A$ = 25°C (see Figure 2)

| PARAMETER <sup>†</sup> | FROM<br>(INPUT) | TO<br>(OUTPUT)     | TEST CONDITIONS                                      | MIN | ТҮР | МАХ | UNIT |
|------------------------|-----------------|--------------------|------------------------------------------------------|-----|-----|-----|------|
| fmax                   |                 |                    |                                                      | 25  | 35  |     | MHz  |
| <sup>t</sup> PLH       | LD              | Any                | $P_{1} = 2kO_{1}C_{2} = 15 pE$                       |     | 21  | 35  | ns   |
| <sup>t</sup> PHL       | LD              | Any                | $R_L = 2 k\Omega$ , $C_L = 15 pF$                    |     | 26  | 35  | 115  |
| <sup>t</sup> PLH       | CLK             | Any                | $R_{1} = 2 k\Omega, C_{1} = 15 pF$                   |     | 14  | 25  | ns   |
| <sup>t</sup> PHL       | OLK             | Any                | $R_{L} = 2 R_{22}, C_{L} = 15 \text{ pm}$            |     | 16  | 25  | 115  |
| <sup>t</sup> PLH       | н               | 0                  | $P_{\rm b} = 2 k \Omega C_{\rm b} = 15  \mathrm{pE}$ |     | 13  | 25  | 50   |
| <sup>t</sup> PHL       | 11              | Q <sub>H</sub>     | $R_L = 2 k\Omega$ , $C_L = 15 pF$                    |     | 24  | 30  | ns   |
| <sup>t</sup> PLH       | н               | $\overline{Q}_{H}$ |                                                      |     | 19  | 30  |      |
| <sup>t</sup> PHL       | н               | QH                 | $R_L = 2 k\Omega$ , $C_L = 15 pF$                    |     | 17  | 25  | ns   |


† fmax = maximum clock frequency, tPLH = propagation delay time, low-to-high-level output, tPHL = propagation delay time, high-to-low-level output



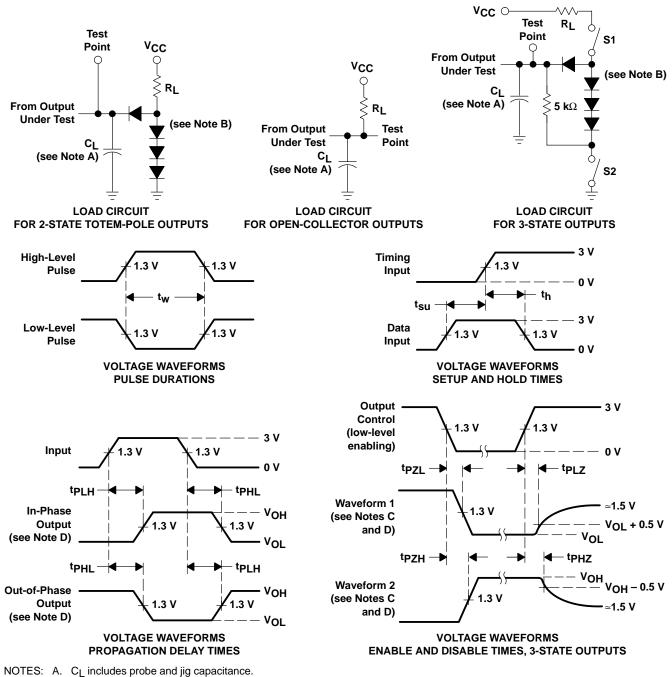
# The SN54165 and SN74165 devices are obsolete and are no longer supplied.

### SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002



- B. All diodes are 1N3064 or equivalent.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for tPLH, tPHL, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tPZL.
- E. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>O</sub>  $\approx$  50  $\Omega$ ; t<sub>r</sub> and t<sub>f</sub>  $\leq$  7 ns for Series 54/74 devices and t<sub>r</sub> and t<sub>f</sub>  $\leq$  2.5 ns for Series 54S/74S devices.
- F. The outputs are measured one at a time with one input transition per measurement.


### Figure 1. Load Circuits and Voltage Waveforms



#### The SN54165 and SN74165 devices are obsolete and are no longer supplied.

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002





- B. All diodes are 1N3064 or equivalent.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL. E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
- F. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz, Z<sub>O</sub>  $\approx$  50  $\Omega$ , t<sub>r</sub>  $\leq$  1.5 ns, t<sub>f</sub>  $\leq$  2.6 ns.
- The outputs are measured one at a time with one input transition per measurement. G.

#### Figure 2. Load Circuits and Voltage Waveforms





### PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)     | Lead finish/<br>Ball material<br>(6) | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5)             | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|---------------------|--------------------------------------|----------------------|--------------|-------------------------------------|---------|
| 5962-7700601VEA  | ACTIVE        | CDIP         | J                  | 16   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | 5962-7700601VE<br>A<br>SNV54LS165AJ | Samples |
| 5962-7700601VFA  | ACTIVE        | CFP          | W                  | 16   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | 5962-7700601VF<br>A<br>SNV54LS165AW | Samples |
| 7700601EA        | ACTIVE        | CDIP         | J                  | 16   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | 7700601EA<br>SNJ54LS165AJ           | Samples |
| 7700601FA        | ACTIVE        | CFP          | W                  | 16   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | 7700601FA<br>SNJ54LS165AW           | Samples |
| JM38510/30608B2A | ACTIVE        | LCCC         | FK                 | 20   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | JM38510/<br>30608B2A                | Samples |
| JM38510/30608BEA | ACTIVE        | CDIP         | J                  | 16   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | JM38510/<br>30608BEA                | Samples |
| JM38510/30608BFA | ACTIVE        | CFP          | W                  | 16   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | JM38510/<br>30608BFA                | Samples |
| M38510/30608B2A  | ACTIVE        | LCCC         | FK                 | 20   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | JM38510/<br>30608B2A                | Samples |
| M38510/30608BEA  | ACTIVE        | CDIP         | J                  | 16   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | JM38510/<br>30608BEA                | Samples |
| M38510/30608BFA  | ACTIVE        | CFP          | W                  | 16   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | JM38510/<br>30608BFA                | Samples |
| SN54LS165AJ      | ACTIVE        | CDIP         | J                  | 16   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | SN54LS165AJ                         | Samples |
| SN74LS165AD      | ACTIVE        | SOIC         | D                  | 16   | 40             | RoHS & Green        | NIPDAU                               | Level-1-260C-UNLIM   | 0 to 70      | LS165A                              | Samples |
| SN74LS165ADR     | ACTIVE        | SOIC         | D                  | 16   | 2500           | RoHS & Green        | NIPDAU                               | Level-1-260C-UNLIM   | 0 to 70      | LS165A                              | Samples |
| SN74LS165AN      | ACTIVE        | PDIP         | N                  | 16   | 25             | RoHS & Green        | NIPDAU                               | N / A for Pkg Type   | 0 to 70      | SN74LS165AN                         | Samples |
| SN74LS165ANE4    | ACTIVE        | PDIP         | Ν                  | 16   | 25             | RoHS & Green        | NIPDAU                               | N / A for Pkg Type   | 0 to 70      | SN74LS165AN                         | Samples |
| SN74LS165ANSR    | ACTIVE        | SO           | NS                 | 16   | 2000           | RoHS & Green        | NIPDAU                               | Level-1-260C-UNLIM   | 0 to 70      | 74LS165A                            | Samples |

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)     | Lead finish/<br>Ball material<br>(6) | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5)   | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|---------------------|--------------------------------------|----------------------|--------------|---------------------------|---------|
| SNJ54LS165AFK    | ACTIVE        | LCCC         | FK                 | 20   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | SNJ54LS<br>165AFK         | Samples |
| SNJ54LS165AJ     | ACTIVE        | CDIP         | J                  | 16   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | 7700601EA<br>SNJ54LS165AJ | Samples |
| SNJ54LS165AW     | ACTIVE        | CFP          | W                  | 16   | 1              | Non-RoHS<br>& Green | SNPB                                 | N / A for Pkg Type   | -55 to 125   | 7700601FA<br>SNJ54LS165AW | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

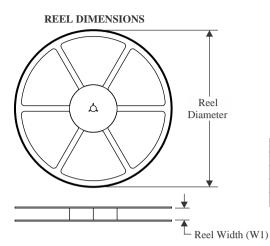
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

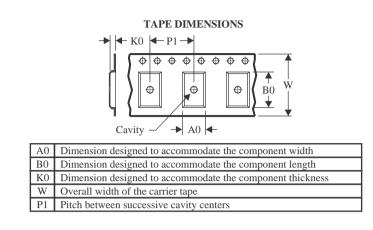


OTHER QUALIFIED VERSIONS OF SN54LS165A, SN54LS165A-SP, SN74LS165A :

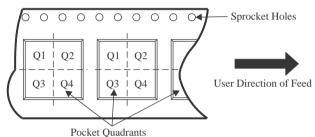
- Catalog : SN74LS165A, SN54LS165A
- Military : SN54LS165A
- Space : SN54LS165A-SP

#### NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application




Texas


STRUMENTS

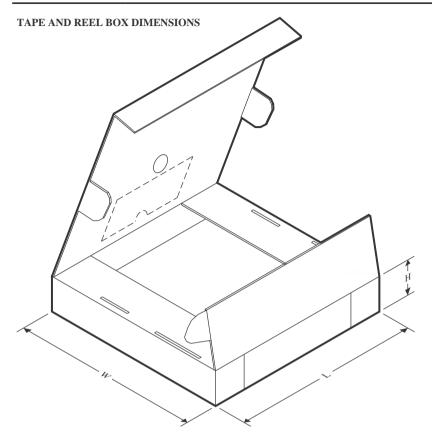
### TAPE AND REEL INFORMATION





#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| *All dimensions are nominal |      |                    |    |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | -    | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN74LS165ADR                | SOIC | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| SN74LS165ANSR               | SO   | NS                 | 16 | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1               |



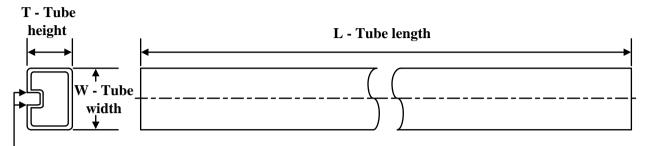
www.ti.com

# PACKAGE MATERIALS INFORMATION

9-Aug-2022



\*All dimensions are nominal


| Device        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74LS165ADR  | SOIC         | D               | 16   | 2500 | 340.5       | 336.1      | 32.0        |
| SN74LS165ANSR | SO           | NS              | 16   | 2000 | 367.0       | 367.0      | 38.0        |

### TEXAS INSTRUMENTS

www.ti.com

9-Aug-2022

### TUBE



### - B - Alignment groove width

| *All dimensions are nominal |  |
|-----------------------------|--|
|                             |  |

| Device           | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | Τ (μm) | B (mm) |
|------------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| 5962-7700601VFA  | W            | CFP          | 16   | 1   | 506.98 | 26.16  | 6220   | NA     |
| 7700601FA        | W            | CFP          | 16   | 1   | 506.98 | 26.16  | 6220   | NA     |
| JM38510/30608B2A | FK           | LCCC         | 20   | 1   | 506.98 | 12.06  | 2030   | NA     |
| JM38510/30608BFA | W            | CFP          | 16   | 1   | 506.98 | 26.16  | 6220   | NA     |
| M38510/30608B2A  | FK           | LCCC         | 20   | 1   | 506.98 | 12.06  | 2030   | NA     |
| M38510/30608BFA  | W            | CFP          | 16   | 1   | 506.98 | 26.16  | 6220   | NA     |
| SN74LS165AD      | D            | SOIC         | 16   | 40  | 507    | 8      | 3940   | 4.32   |
| SN74LS165AN      | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| SN74LS165AN      | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| SN74LS165ANE4    | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| SN74LS165ANE4    | N            | PDIP         | 16   | 25  | 506    | 13.97  | 11230  | 4.32   |
| SNJ54LS165AFK    | FK           | LCCC         | 20   | 1   | 506.98 | 12.06  | 2030   | NA     |
| SNJ54LS165AW     | W            | CFP          | 16   | 1   | 506.98 | 26.16  | 6220   | NA     |

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.



4211283-4/E 08/12

# D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
  E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



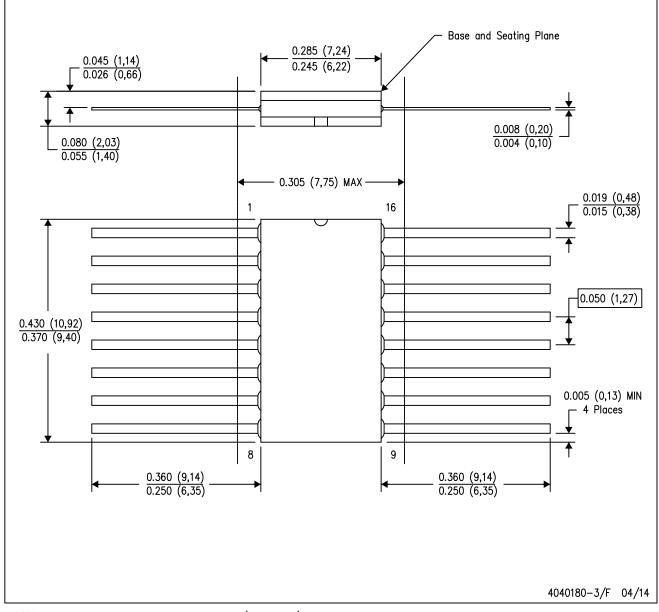
### MECHANICAL DATA

#### PLASTIC SMALL-OUTLINE PACKAGE

#### 0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 $\bigcirc$ Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS \*\* 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G\*\*)


**14-PINS SHOWN** 

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



W (R-GDFP-F16)

CERAMIC DUAL FLATPACK



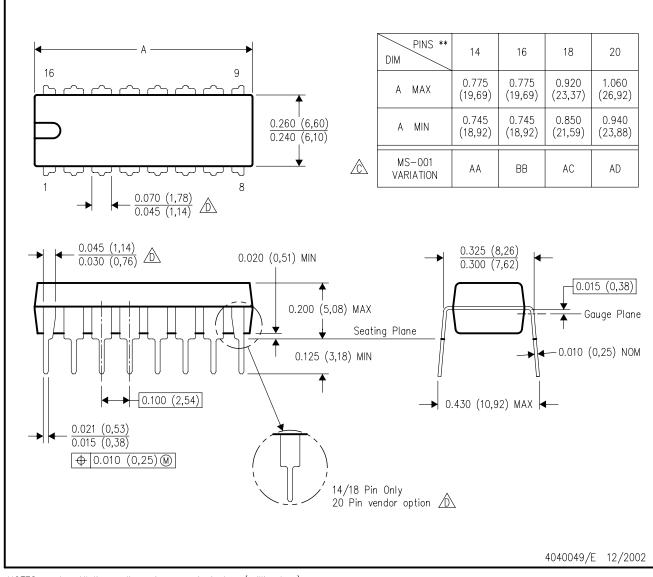
- NOTES: A. All linear dimensions are in inches (millimeters).
  - B. This drawing is subject to change without notice.
  - C. This package can be hermetically sealed with a ceramic lid using glass frit.
  - D. Index point is provided on cap for terminal identification only.
  - E. Falls within MIL STD 1835 GDFP2-F16



J (R-GDIP-T\*\*) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE




NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

# N (R-PDIP-T\*\*)

PLASTIC DUAL-IN-LINE PACKAGE

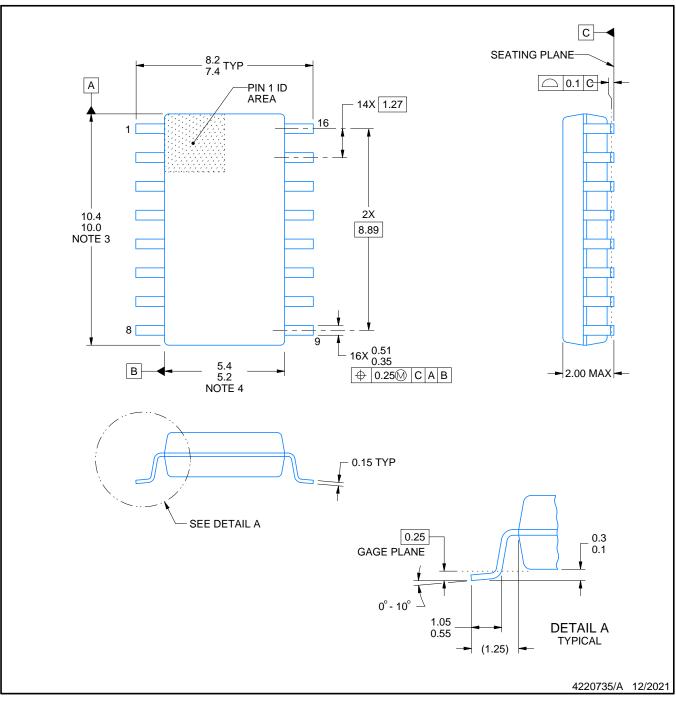
16 PINS SHOWN



NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- $\triangle$  The 20 pin end lead shoulder width is a vendor option, either half or full width.




# **NS0016A**



# **PACKAGE OUTLINE**

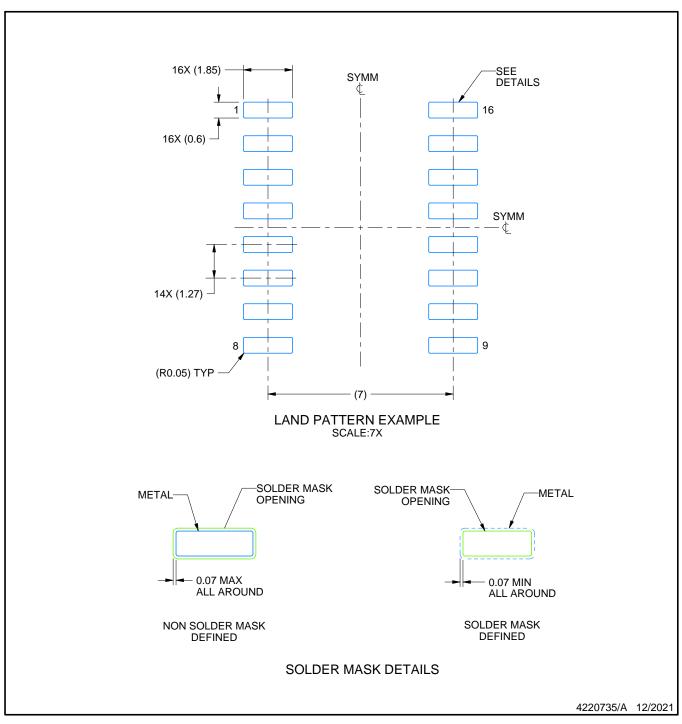
SOP - 2.00 mm max height

SOP



#### NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- Per ASME Y14.5M.
  This drawing is subject to change without notice.
  This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.




# NS0016A

# **EXAMPLE BOARD LAYOUT**

### SOP - 2.00 mm max height

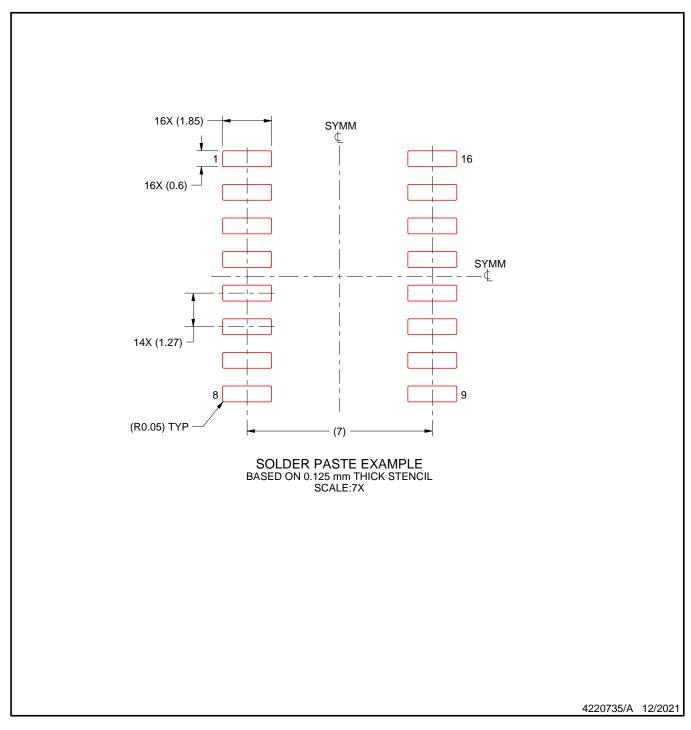
SOP



NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




# NS0016A

# **EXAMPLE STENCIL DESIGN**

### SOP - 2.00 mm max height

SOP



NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.



### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated