

ADS8166, ADS8167, ADS8168

ZHCSIK6C - NOVEMBER 2017 - REVISED NOVEMBER 2019

具有直接传感器接口的 ADS816x 8 通道、16 位 1MSPS SAR ADC

1 特性

- 紧凑的低功耗数据采集系统:
 - 多路复用器输出引脚支持单个外部驱动器放大器
 - 16 位 SAR ADC
 - 低漂移集成基准和缓冲器
 - 适用于模拟输入直流偏置的 0.5 × V_{RFE} 输出
- 出色的交流和直流性能:
 - SNR: 92dB, THD: -110dB
 - INL: ±0.3LSB, 16 位, 无丢失码
- 具有通道序列发生器的多路复用器:
 - 多通道定序选项:
 - 手动模式、动态模式、自动序列模式、自定 义通道定序
 - 早期开关可实现直接传感器接口
 - 动态模式可缩短响应时间
- 系统监测 功能:
 - 每通道可编程窗口比较器
 - 通过可编程迟滞避免错误触发
- 增强型 SPI 数字接口:
 - 在 16MHz SCLK 下具有 1MSPS 的吞吐量
 - 70MHz 高速数字接口
- 宽工作范围:
 - 外部 V_{REF} 输入范围: 2.5V 至 5V
 - AVDD 范围: 3V 至 5.5V
 - DVDD 范围: 1.65V 至 5.5V
 - 温度范围: -40°C 至 +125°C

2 应用

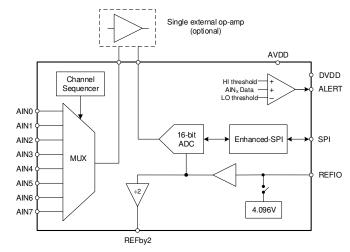
- 模拟输入模块
- 多参数患者监视器
- 麻醉给药系统
- LCD 测试
- 数据中心内部互联(地铁)
- 光学模块

3 说明

ADS816x 是一系列 16 位、8 通道、高精度逐次逼近型寄存器 (SAR) 模数转换器 (ADC),该器件由 5V 单电源供电,具有 (ADS8168)

500kSPS (ADS8166) 和 250kSPS (ADS8166)的总吞吐量。

输入多路复用器支持更长的建立时间,这使得驱动模拟输入更加容易。多路复用器和 ADC 模拟输入的输出可作为器件引脚提供。该配置使一个 ADC 驱动器运算放大器可用于多路复用器的全部八路模拟输入。


ADS816x 具有 一个数字窗口比较器,其中每个模拟输入通道具有可编程高低警报阈值。具有可编程警报阈值的单运算放大器解决方案可实现低功耗、低成本且具有最小外形尺寸的应用。

器件信息

器件型号	封装	封装尺寸 (标称值)
ADS816x	VQFN (32)	5.00mm × 5.00mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

ADS816x 方框图

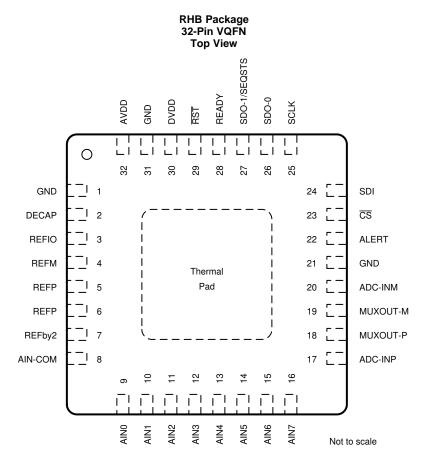
_	\rightarrow
_	ᆂ
_	`\~

1	特性1	7.5 Programming	38
2	应用1	7.6 Register Maps	
3		8 Application and Implementation	
4	修订历史记录	8.1 Application Information	72
5	Pin Configuration and Functions	8.2 Typical Applications	75
6	Specifications	9 Power Supply Recommendations	80
٠	6.1 Absolute Maximum Ratings	10 Layout	81
	6.2 ESD Ratings	10.1 Layout Guidelines	81
	6.3 Recommended Operating Conditions	10.2 Layout Example	83
	6.4 Thermal Information	11 器件和文档支持	84
	6.5 Electrical Characteristics	11.1 文档支持	84
	6.6 Timing Requirements 10	11.2 相关链接	84
	6.7 Switching Characteristics	11.3 接收文档更新通知	
	6.8 Typical Characteristics14	11.4 社区资源	
7	Detailed Description 19	11.5 商标	
	7.1 Overview 19	11.6 静电放电警告	
	7.2 Functional Block Diagram 19	11.7 Glossary	
	7.3 Feature Description	12 机械、封装和可订购信息	85
	7.4 Device Functional Modes30		

4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

Changes from Revision B (December 2018) to Revision C


Page

CI	hanges from Revision A (July 2018) to Revision B	Page
•	已更改 CURR_ALERT_STATUS Register section and name	71
•	已更改 CURR_ALERT_LO_STATUS Register section and name	
•	已更改 ALERT_STATUS Register section and name	68
•	已更改 ALERT_LO_STATUS Register section and name	66
	Mapping table	61
•	已更改 description of registers 78h, 7Ah, 7Ch, and 7Eh in Digital Window Comparator Configuration Registers	
•	已更改 reset value from R/W-0000 0001b to R/W-1111 1111b in REPEAT_INDEX_m Registers section	60
	Configuration Space table	36
•	已更改 default settings from 1 to 0xFF in <i>Channel Sample Count</i> column of <i>Custom Channel Sequencing</i>	
•	已更改 AUTO_SEQ_CFG1 = 0x84 to AUTO_SEQ_CFG1 = 0x44 in Auto Sequence Mode section	
•	已更改 更改了 ADS816x 方框图 的标题	1
•	已删除 删除了警报阈值论述中的迟滞(位于说明 部分)	1
•	已更改 将宽输入范围 更改为宽工作范围(位于特性部分),更改了并将子项目符号添加至此"特性"项目符号	1
•	已更改 将具有序列发生器的低泄漏多路复用器 更改为具有通道序列发生器的多路复用器(位于特性 部分)	1
•	已更改 将文档标题从具有易于驱动的模拟输入的 ADS816x 8 通道、16 位 1MSPS SAR ADC 更改为具有直接传感器接口的 ADS816x 8 通道、16 位 1MSPS SAR ADC	1
_		

已更改 将文档状态从"预告信息"更改为"生产数据".......1

5 Pin Configuration and Functions

Pin Functions

PIN				
NAME	NO.	FUNCTION	DESCRIPTION	
ADC-INM	20	Analog input	Negative ADC analog input	
ADC-INP	17	Analog input	Positive ADC analog input	
AIN0	9	Analog input	Analog input channel 0	
AIN1	10	Analog input	nalog input channel 1	
AIN2	11	Analog input	alog input channel 2	
AIN3	12	Analog input	Analog input channel 3	
AIN4	13	Analog input	nalog input channel 4	
AIN5	14	Analog input	Analog input channel 5	
AIN6	15	Analog input	Analog input channel 6	
AIN7	16	Analog input	Analog input channel 7	
AIN-COM	8	Analog input	Common analog input	
ALERT	22	Digital output	Digital ALERT output; active high. This pin is the output of the logical OR of the enabled channel ALERTs.	
AVDD	32	Power supply	Analog power-supply pin. Connect a 1-µF capacitor from this pin to GND.	
CS	23	Digital input	Chip-select input pin; active low. The device starts converting the active input channel on the rising edge of \overline{CS} . The device takes control of the data bus when \overline{CS} is low. The SDO-x pins go Hi-Z when \overline{CS} is high.	
DECAP	2	Power supply	Connect a 1-µF capacitor to GND for the internal power supply.	
DVDD	30	Power supply	Interface power-supply pin. Connect a 1-µF capacitor from this pin to GND.	

Pin Functions (continued)

PIN				
NAME	NO.	FUNCTION	DESCRIPTION	
GND	1, 21, 31	Power supply	Ground	
MUXOUT-M	19	Analog output	MUX negative analog output	
MUXOUT-P	18	Analog output	MUX positive analog output	
READY	28	Digital output	Multifunction output pin. When \overline{CS} is held high, READY reflects the device conversion status. READY is low when a conversion is in process. When \overline{CS} is low, the status of READY depends on the output protocol selection.	
REFby2	7	Analog output	The output voltage on this pin is equal to half the voltage on the REFP pin. Connect a 1-µF capacitor from this pin to GND.	
REFIO	3	Analog input/output	Reference voltage input; internal reference is a 4.096-V output. Connect a 1-µF capacitor from this pin to GND.	
REFM	4	Analog input	Reference ground potential; short this pin to GND externally.	
REFP	5, 6	Analog input/output	Reference buffer output, ADC reference input. Short pins 5 and 6 together.	
RST	29	Digital input	Asynchronous reset input pin. A low pulse on the RST pin resets the device. All register bits return to their default states.	
SCLK	25	Digital input	Clock input pin for the serial interface. All system-synchronous data transfer protocols are timed with respect to the SCLK signal.	
SDI	24	Digital input	Serial data input pin. This pin is used to transfer data or commands into the device.	
SDO-0	26	Digital output	Serial communication pin: data output 0.	
SDO-1/ SEQSTS	D-1/ 27 Digital output auto and custom channel sequence modes.		In dual SDO data transfer mode this pin functions as a serial communication pin: data	
Thermal pad		Supply	Exposed thermal pad; connect to GND.	

6 Specifications

6.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted)(1)

	MIN	MAX	UNIT
AVDD to GND	-0.3	7	V
DVDD to GND	-0.3	7	V
AINx ⁽²⁾ , AIN-COM, MUXOUT-P, MUXOUT-M, ADC-INP, ADC-INM	GND - 0.3	AVDD + 0.3	V
REFP	REFM - 0.3	AVDD + 0.3	V
REFIO	REFM - 0.3	AVDD + 0.3	V
REFM	GND - 0.1	GND + 0.1	V
Digital input pins	GND - 0.3	DVDD + 0.3	V
Digital output pins	GND - 0.3	DVDD + 0.3	V
Input current to any pin except supply pins	-10	10	mA
Junction temperature, T _J	-40	125	°C
Storage temperature, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2) Alnx refers to Alno, Aln1, Aln2, Aln3, Aln4, Aln5, Aln6, and Aln7 pins.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	.,
V _(ESD)		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER S	SUPPLY					
AVDD	Internal reference		4.5	5	5.5	V
AVDD	External reference		3	5	5.5	V
DVDD	Operating		1.65	3	5.5	V
טטטט	Specified throughput		2.35	3	5.5	V
ANALOG	INPUTS - SINGLE ENDE	D CONFIGURATION				
FSR	Full-scale input range		0		V_{REF}	V
V _{IN}	Absolute input voltage	AINx ⁽¹⁾ to REFM and CHx_CHy_CFG ⁽²⁾ = 00b	-0.1		V _{REF} + 0.1	V
		AINy ⁽³⁾ to REFM and CHx_CHy_CFG = 01b	-0.1		0.1	V
V _{IN} Absolute input voltage		AIN-COM	-0.1		0.1	V
ANALOG	INPUTS - PSEUDO-DIFFI	ERENTIAL CONFIGURATION				
FSR	Full-scale input range		-V _{REF} /2		V _{REF} /2	V
V	Abaduta input valtaga	AINx to REFM and CHx_CHy_CFG = 00b	-0.1		V _{REF} + 0.1	V
V_{IN}	Absolute input voltage	AINy to REFM and CHx_CHy_CFG = 10b	V _{REF} /2 - 0.1	V	_{REF} /2 + 0.1	V
V_{IN}	Absolute input voltage	AIN-COM	V _{REF} /2 - 0.1	V	_{REF} /2 + 0.1	V
EXTERNA	AL REFERENCE INPUT					
V _{REFIO} REFIO input voltage		REFIO configured as input pin	2.5	P	AVDD - 0.3	V
	ATURE RANGE					
T _A	Ambient temperature		-40	25	125	°C

AINx refers to analog inputs AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7. CHx_CHy_CFG bits set the analog input configuration as single-ended or pseudo-differential pair. See the AIN_CFG register for more

AlNy refers to analog inputs AlN1, AlN3, AlN5, and AlN7 when CHx_CHy_CFG = 01b or 10b. See the Multiplexer Configurations section for more details.

6.4 Thermal Information

		ADS816x	
	THERMAL METRIC ⁽¹⁾	RHB (VQFN)	UNIT
		32 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	29.5	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	18.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	10.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.2	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	10.2	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	1.3	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, REFIO configured as output pin, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}\text{C}$ to +125°C; typical values at $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG IN	PUTS					
C _{SH}	ADC Input capacitance			60		pF
C _{INMUX}	MUX Input capacitance			13		pF
I _{LMUX_ON}	MUX input on-channel leakage current	REFM < V _{IN} < REFP	-750	±10	750	nA
DC PERFOR	RMANCE		ı			
	Resolution			16		Bits
NMC	No missing codes		16			
INL	Integral nonlinearity		-0.8	±0.35	0.8	LSB
DNL	Differential nonlinearity		-0.5	±0.2	0.5	LSB
Vos	Input offset error		-10	±0.5	10	LSB
	Input offset error match		-1	±0.5	1	LSB
dV _{OS} /dT	Input offset thermal drift			0.25		μV/°C
G _E	Gain error	Referred to REFIO	-0.06	±0.002	0.06	%FSR
	Gain error match	Referred to REFIO	-0.005	±0.0025	0.005	%FSR
dG _E /dT	Gain error thermal drift	Referred to REFIO		±1		ppm/°C
TNS	Transition noise	V _{IN} = V _{REF} /2		0.6		LSB
AC PERFOR		IIV KEI				
SINAD	Signal-to-noise + distortion	f _{IN} = 2 kHz	91.6	93.5		dB
SNR	Signal-to-noise-ratio	f _{IN} = 2 kHz	91.8	93.6		dB
THD	Total harmonic distortion	f _{IN} = 2 kHz		-110		dB
SFDR	Spurious-free dynamic range	f _{IN} = 2 kHz		112		dB
	Isolation crosstalk	f _{IN} = 100 kHz		-115		dB
REFERENC	E BUFFER	1 113				I
V _{RO}	Reference buffer offset voltage	$V_{RO} = V_{REFP} - V_{REFIO}, T_A = 25^{\circ}C$	-250		250	μV
C _{REFP}	Decoupling capacitor on REFP			22		μF
R _{ESR}	External series resistance		0		1.3	Ω
REFby2 BUI	FFER					I.
V _{REFby2}	REFby2 output voltage			V _{REFP} /2		V
I _{REFby2}	DC Sourcing current from REFby2				2	mA
C _{REFby2}	Decoupling capacitor on REFby2		1			μF
INTERNAL F	REFERENCE OUTPUT		•			•
V _{REFIO}	REFIO output voltage ⁽¹⁾	T _A = 25°C, REFIO configured as output pin	4.091	4.096	4.101	V
dV _{REFIO} /dT	Internal reference temperature drift			4	18	ppm/°C
C _{REFIO}	Decoupling capacitor on REFIO	REFIO configured as output	1			μF
	REFERENCE INPUT					
I _{REFIO}	REFIO input current	REFIO configured as input pin		0.1	1	μΑ
C _{REF}	Internal capacitance on REFIO pin	REFIO configured as input pin		10		pF
SAMPLING	DYNAMICS	1	I.			1
	Aperture delay			4		ns
t _{j-RMS}	Aperture jitter			2		ps RMS

⁽¹⁾ Does not include the variation in voltage resulting from solder effects.

Electrical Characteristics (continued)

at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, REFIO configured as output pin, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}\text{C}$ to +125°C; typical values at $T_A = 25^{\circ}\text{C}$

,,		7 71	^			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{-3-dB(small)}	Small-signal bandwidth	Measured at ADC inputs		23		MHz
POWER SU	PPLY CURRENTS	•	•		•	
		ADS8168, AVDD = 5 V		5.3	6.4	
		ADS8167, AVDD = 5 V		3.9	5	
		ADS8166, AVDD = 5 V		3	4.1	mA
I _{AVDD}	Analog supply current	Static, no conversion		2.3		
IAVDD	Analog Supply Surrent	Static, PD_REFBUF = 1		1.6		
		Static, PD_REF = 1		800		μΑ
		Static, PD_REFBUF, PD_REF and PD_REFby2 = 1		180		μA
I _{DVDD}	Digital supply current	DVDD = 3 V, C _{LOAD} = 10 pF, no conversion		0.45		μA

6.6 Timing Requirements

at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}\text{C}$ to +125°C; typical values at $T_A = 25^{\circ}\text{C}$

			MIN	NOM	MAX	UNIT
CONVERS	ION CYCLE					
f _{CYCLE}		ADS8168			1000	
	Sampling frequency	ADS8167			500	kHz
		ADS8166			250	
	ADC cycle-time period	ADS8168	1			
t _{CYCLE}		ADS8167	2			μs
		ADS8166	4			İ
t _{wh_CSZ}	Pulse duration: CS high		30			ns
t _{wl_CSZ}	Pulse duration: CS low	Pulse duration: CS low				ns
t _{ACQ}	Acquisition time		300			ns
t _{qt_ACQ}	Quite acquisition time		30			ns
t _{d_CNVCAP}	Quiet aperture time		20			ns
ASYNCHR	ONOUS RESET AND LOW POWE	ER MODES				
t _{wl_RST}	Pulse duration: RST low		100			ns
SPI-COMP	ATIBLE SERIAL INTERFACE					
	Serial clock frequency	$2.35 \text{ V} \le \text{DVDD} \le 5.5 \text{ V},$ V _{IH} > 0.7 DVDD, V _{IL} < 0.3 DVDD			70	
f _{CLK}		1.65 V \leq DVDD $<$ 2.35 V, V _{IH} \geq 0.8 DVDD, V _{IL} \leq 0.2 DVDD			20	MHz
		1.65 V \leq DVDD $<$ 2.35 V, V _{IH} \geq 0.9 DVDD, V _{IL} \leq 0.1 DVDD			68	
t _{CLK}	Serial clock time period		1/f _{CLK}			ns
t _{ph_CK}	SCLK high time		0.45		0.55	t _{CLK}
t _{pl_CK}	SCLK low time		0.45		0.55	t _{CLK}
t _{ph_CSCK}	Setup time: CS falling to the fir	st SCLK capture edge	15			ns
t _{su_CKDI}	Setup time: SDI data valid to the	ne SCLK capture edge	3			ns
t _{ht_CKDI}	Hold time: SCLK capture edge	Hold time: SCLK capture edge to (previous) data valid on SDI				ns
t _{ht_CKCS}	Delay time: last SCLK falling to CS rising		7.5			ns
SOURCE-S	SYNCHRONOUS SERIAL INTERF	ACE				
f _{CLK}	Serial clock frequency	2.35 V ≤ DVDD ≤ 5.5 V, SDR (DATA_RATE = 0b)			70	NAL I-
		2.35 V ≤ DVDD ≤ 5.5 V, DDR (DATA_RATE = 1b)			35	MHz
t _{CLK}	Serial clock time period		1/f _{CLK}			ns

6.7 Switching Characteristics

at AVDD = 5 V, DVDD = 1.65 V to 5.5 V, and maximum throughput (unless otherwise noted); minimum and maximum values at $T_A = -40^{\circ}\text{C}$ to +125°C; typical values at $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CONVERSIO	ON CYCLE					
		ADS8168			660	
t _{CONV}	Conversion time	ADS8167			1200	ns
00.11		ADS8166			2500	
ASYNCHRO	NOUS RESET, AND LOW POWER MODES	5			<u> </u>	
t _{d_RST}	Delay time: RST rising to READY rising				4	ms
t _{PU_ADC}	Power-up time for converter module	Change PD_ADC = 1b to 0b	1			ms
t _{PU_REFIO}	Power-up time for internal reference	Change PD_REF = 1b to 0b	5			ms
t _{PU_REFBUF}	Power-up time for internal reference buffer	Change PD_REFBUF = 1b to 0b	10			ms
t _{PU_Device}	Power-up time for device		10			ms
SPI-COMPA	TIBLE SERIAL INTERFACE				<u> </u>	
t _{den_CSDO}	Delay time: CS falling to data enable				15	ns
t _{dz_CSDO}	Delay time: $\overline{\text{CS}}$ rising to SDO going to Hi-Z				15	ns
t _{d_CKDO}	Delay time: SCLK launch edge to (next) data valid on SDO				19	ns
t _{d_CSRDY_t}	Delay time: CS falling to READY falling				15	ns
SOURCE-SY	NCHRONOUS SERIAL INTERFACE (Exte	rnal Clock)			*	
t _{d_CKSTR_r}	Delay time: SCLK launch edge to READY rising				23	ns
t _{d_CKSTR_f}	Delay time: SCLK launch edge to READY falling				23	ns
t _{off_STRDO_f}	Time offset: READY falling to (next) data valid on SDO		-2		2	ns
t _{off_STRDO_r}	Time offset: READY rising to (next) data valid on SDO		-2		2	ns
t _{ph_STR}	Strobe output high time	2.35 V ≤ DVDD ≤ 5.5 V	0.45		0.55	t _{STR}
t _{pl STR}	Strobe output low time	2.35 V ≤ DVDD ≤ 5.5 V	0.45		0.55	t _{STR}

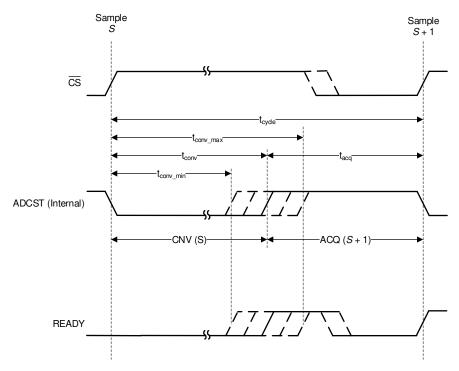


图 1. Conversion Cycle Timing

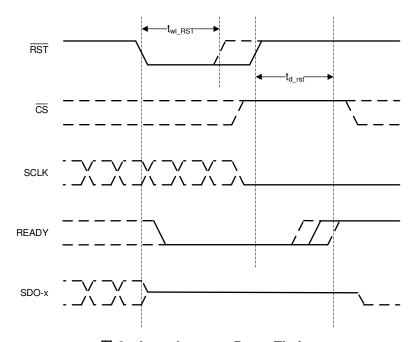
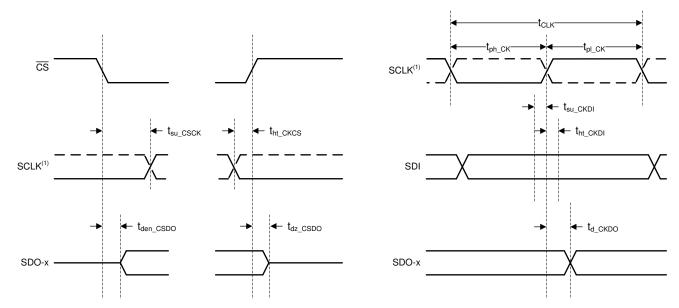
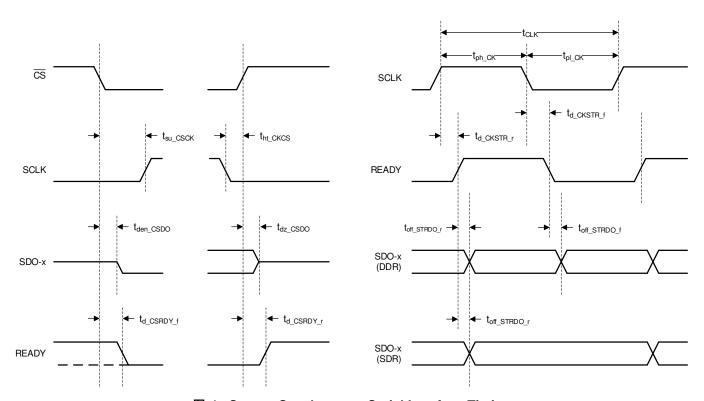
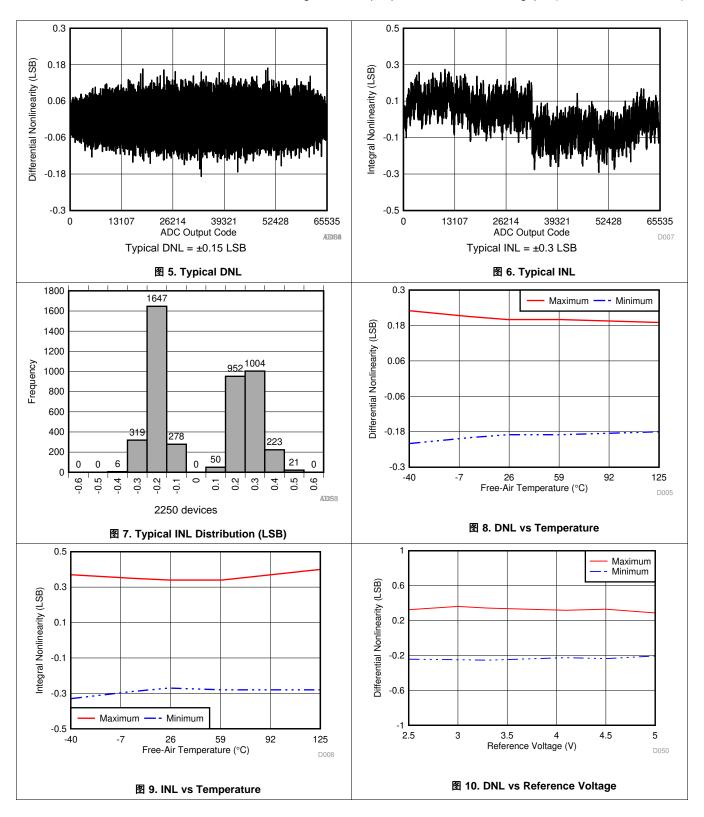
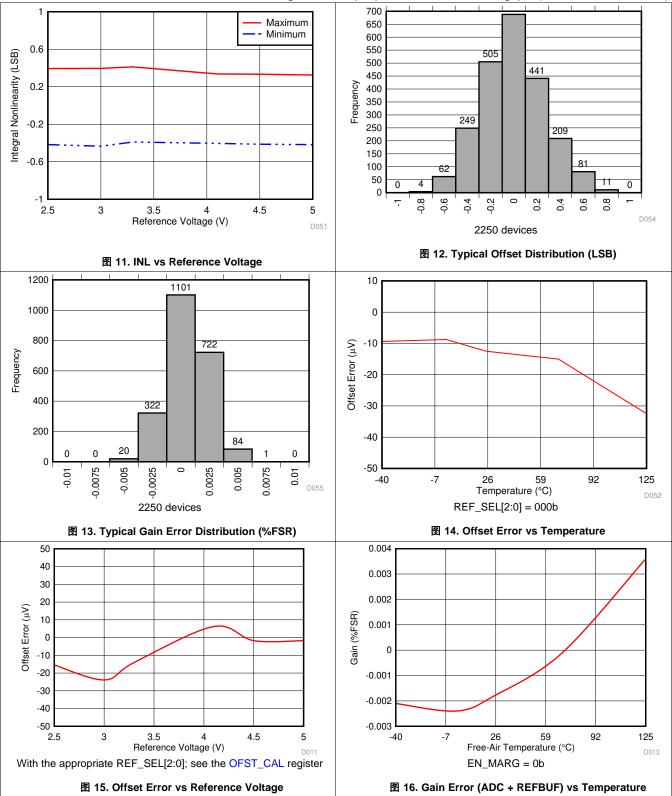



图 2. Asynchronous Reset Timing

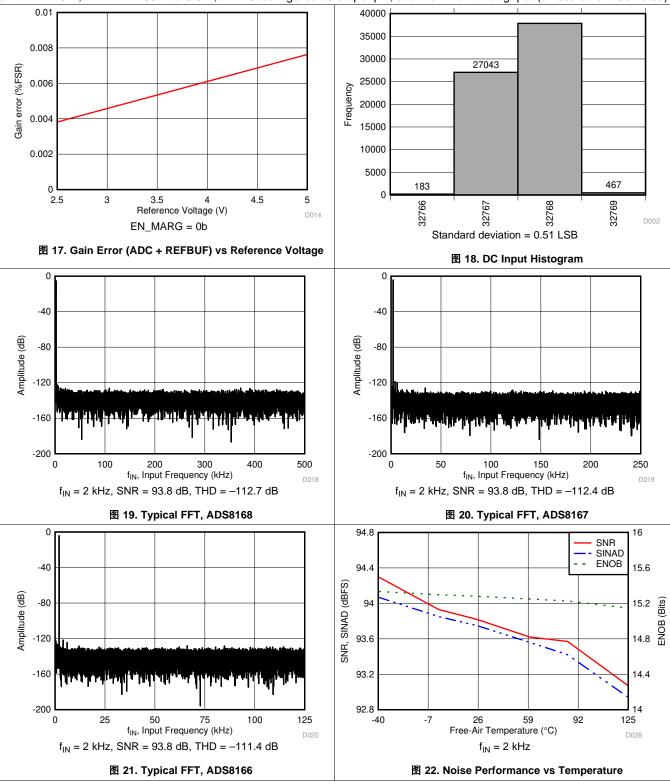
(1) The SCLK polarity, launch edge, and capture edge depend on the SPI protocol selected.

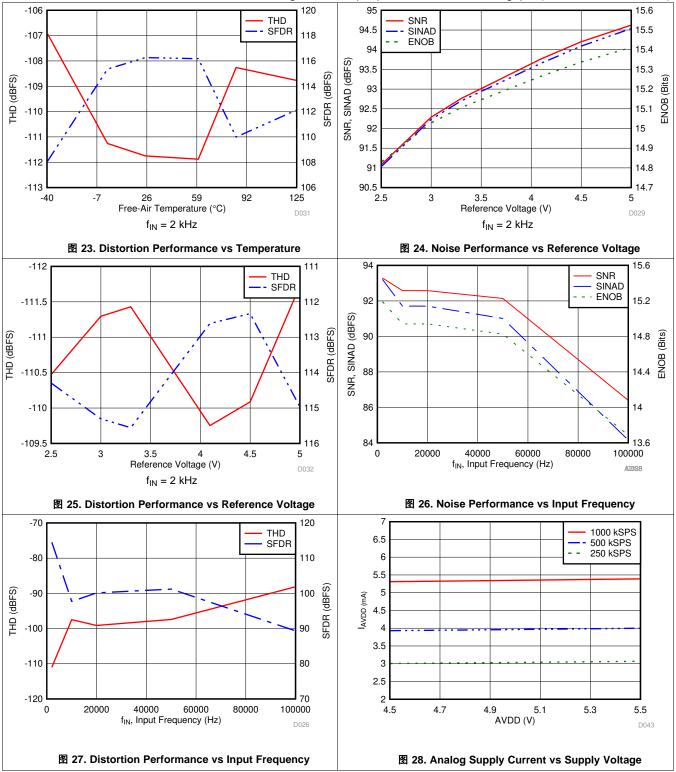
图 3. SPI-Compatible Serial Interface Timing

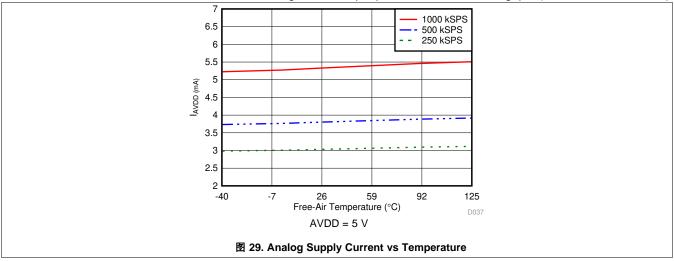




图 4. Source-Synchronous Serial Interface Timing

TEXAS INSTRUMENTS


6.8 Typical Characteristics



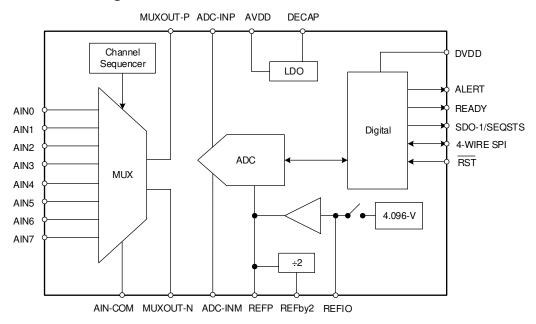


7 Detailed Description

7.1 Overview

The ADS816x is a 16-bit, successive approximation register (SAR) analog-to-digital converter (ADC) with an analog multiplexer. This device integrates a reference, reference buffer, REFby2 buffer, low-dropout regulator (LDO), and features high performance at full throughput and low power consumption.

The ADS816x supports unipolar, single-ended and pseudo-differential analog input signals. The analog multiplexer is optimized for low distortion and extended settling time. The internal reference generates a low-drift, 4.096-V reference output. The integrated reference buffer supports burst mode for data acquisition of external reference voltages in the range 2.5 V to 5 V. For DC level shifting of the analog input signals, the device has a REFby2 output. The REFby2 output is derived from the output of the integrated reference buffer (the REFP pin).


When a conversion is initiated, the differential input between the ADC-INP and ADC-INM pins is sampled on the internal capacitor array. The device uses an internal clock to perform conversions. During the conversion process, both analog inputs of the ADC are disconnected from the internal circuit. At the end of conversion process, the device reconnects the sampling capacitors to the ADC-INP and ADC-INM pins and enters an acquisition phase.

The integrated LDO allows the device to operate on a single supply, AVDD. The device consumes only 26.5 mW, 19.5 mW, and 15 mW of power when operating at 1 MSPS (ADS8168), 500 kSPS (ADS8167), and 250 kSPS (ADS8166), respectively, with the internal reference, reference buffer, REFby2 buffer, and LDO enabled.

The enhanced-SPI digital interface is backward-compatible with traditional SPI protocols. Configurable features boost analog performance and simplify board layout, timing, firmware, and support full throughput at lower clock speeds. These features enable a variety of microcontrollers, digital signal processors (DSPs), and field-programmable gate arrays (FPGAs) to be used.

The ADS816x enables optical line cards, test and measurement, medical, and industrial applications to achieve fast, low-noise, low-distortion, and low-power data acquisition in a small form-factor.

7.2 Functional Block Diagram

7.3 Feature Description

The ADS816x is comprised of five modules: the converter (SAR ADC), multiplexer (MUX), the reference module, the enhanced-SPI interface, and the low-dropout regulator (LDO); see the *Functional Block Diagram* section.

The LDO module is powered by the AVDD supply, and generates the bias voltage for the internal circuit blocks of the device. The reference buffer drives the capacitive switching load present at the reference pins during the conversion process. The multiplexer selects among eight analog input channels as the input for the converter module. The converter module samples and converts the analog input into an equivalent digital output code. The enhanced-SPI interface module facilitates communication and data transfer between the device and the host controller.

7.3.1 Analog Multiplexer

 \boxtimes 30 shows the small-signal equivalent circuit of the sample-and-hold circuit. Each sampling switch is represented by resistance (R_{S1} and R_{S2}, typically 50 Ω) in series with an ideal switch (SW). The sampling capacitors, C_{S1} and C_{S2}, are typically 60 pF.

The multiplexer on-resistance (R_{MUX}), is typically a 40- Ω resistor in series between the ON channel and the MUXOUT-P or MUXOUT-M pins. The multiplexer analog input typically has a 13-pF on-channel capacitance (C_{MUX}).

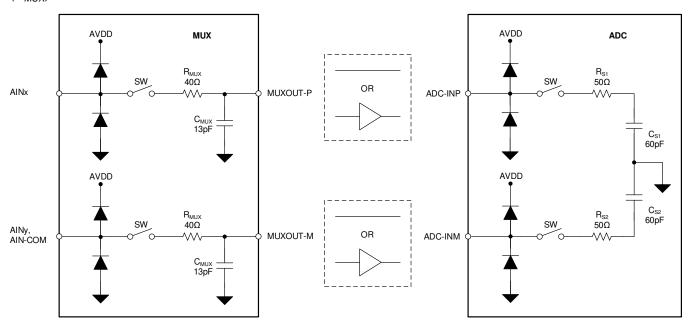


图 30. Input Sampling Stage Equivalent Circuit

During the input signal acquisition phase, the ADC-INP and ADC-INM inputs are individually sampled on C_{S1} and C_{S2} , respectively. During the conversion process, the device converts for the voltage difference between the two sampled values: $V_{ADC-INP} - V_{ADC-INM}$.

Each analog input pin has electrostatic discharge (ESD) protection diodes to AVDD and GND. Keep the analog inputs within the specified range to avoid turning the diodes on.

Feature Description (接下页)

7.3.1.1 Multiplexer Configurations

The ADS816x supports single-ended and pseudo-differential analog input signals. The flexible analog input channel configuration supports interfacing various types of sensors.
☑ 31 shows how the analog inputs can be configured.

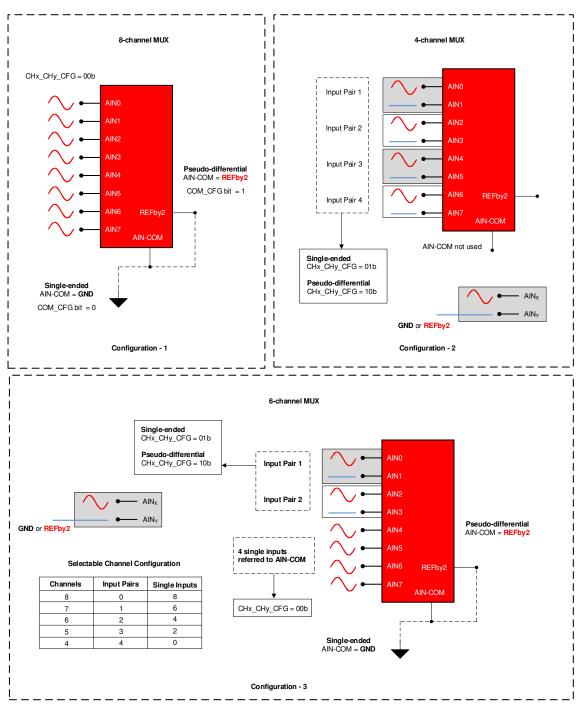


图 31. Analog Input Configurations

Feature Description (接下页)

The analog inputs can be configured as:

- Configuration 1: Eight-channel MUX with the AIN_CFG register set to 00h. The AIN-COM input range is decided by the COM_CFG register.
 - Single-ended inputs with the AIN-COM input set to GND (set the COM_CFG register to 00h).
 - Pseudo-differential inputs with the AIN-COM input set to V_{REF} / 2 (set the COM_CFG register to 01h).
- Configuration 2: Four-channel MUX.
 - As shown in 表 1, the AIN_CFG register selects the analog input range of individual pairs.
- Configuration 3: Single-ended and pseudo-differential inputs.
 - Among the eight analog inputs of the MUX, some inputs can be configured as pairs and some inputs are configured as individual channels. 表 1 lists options for channel configuration.
 - For channels configured as pairs, the AIN_CFG register selects the single-ended or pseudo-differential configuration for individual pairs.
 - For individual channels, the COM_CFG register decides the single-ended or pseudo-differential configuration.

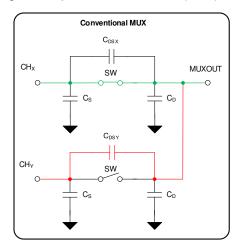
表 1. Channel Configuration Options (1)(2)

SERIAL NUMBER	TOTAL CHANNELS	INPUT PAIRS	INDIVIDUAL CHANNELS
1	8	0	8
2	7	1	6
3	6	2	4
4	5	3	2
5	4	4	0

⁽¹⁾ Channel pairs can be formed as [AIN0 - AIN1], [AIN2 - AIN3], [AIN4 - AIN5], and [AIN6 - AIN7].

注

The COM_CFG register sets the input voltage range of the AIN-COM pin. AIN-COM pin must be connected to GND (set the COM_CFG register to 0b) or REFby2 (set the COM_CFG register to 1b) externally. When using the MUX in a four-channel configuration, the COM_CFG register has no effect; connect the AIN-COM pin to GND to avoid noise coupling.


⁽²⁾ When channels are configured as pairs, AIN0, AIN2, AIN4, and AIN6 are positive inputs.

7.3.1.2 Multiplexer With Minimum Crosstalk

For precision measurement in a multichannel system, coupling (such as crosstalk) from one channel to another can distort the measurement. In conventional multiplexers, as shown in \boxtimes 32, the off channel parasitic capacitance between the drain and the source of the switch (C_{DSY}) couples the off channel signal to the on channel.

₹ 32 shows that the ADS816x uses a T-switch structure. In this switch architecture, the off channel parasitic capacitance is connected to ground, which significantly reduces coupling. Care must be taken to avoid signal coupling on the printed circuit board (PCB), as described in the *Layout* section.

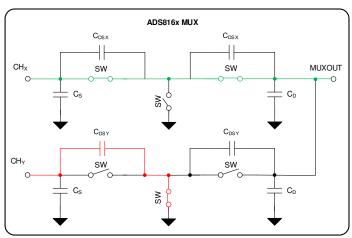


图 32. Isolation Crosstalk in a Conventional MUX versus the ADS816x

7.3.1.3 Early Switching for Direct Sensor Interface

 \boxtimes 33 shows the small-signal equivalent model of the ADS816x analog inputs. The multiplexer input has a switch resistance (R_{MUX}) and parasitic capacitance (C_{MUX}). The parasitic capacitance causes a charge kickback on the MUX analog input at the same time as the ADC sampling capacitor causes a charge kickback on ADC inputs.

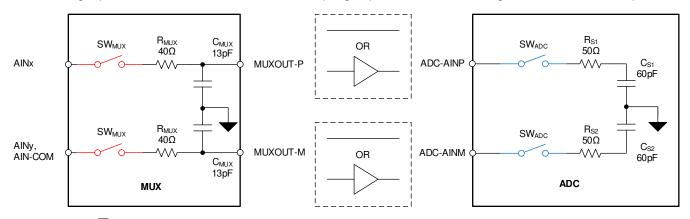


图 33. Synchronous and Timed Switching of the MUX and ADC Input Switches

In conventional multichannel SAR ADCs, the acquisition time of the ADC is also the settling time available at the analog inputs of the multiplexer because these times are internally connected. Thus, high-bandwidth op amps are required at the analog inputs of the multiplexer to settle the charge kickback. However, multiple high-bandwidth op amps significantly increase power dissipation, cost, and size of the solution.

The analog inputs of the ADS816x provide a long settling time (t_{CYCLE} − 100 ns), resulting in long acquisition time at the MUX inputs when using a driver amplifier between the MUX outputs and the ADC inputs.

34 shows a timing diagram of this long acquisition phase. The low parasitic capacitance together with the enhanced settling time eliminate the need to use an op amp at the multiplexer input in most applications.

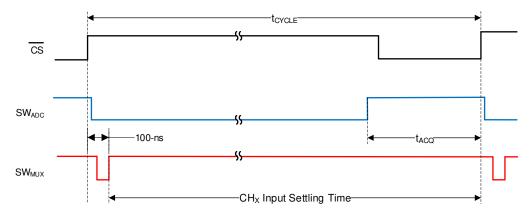


图 34. Early Switching of the MUX Enables a Long Acquisition Phase

Averaging several output codes of a particular MUX input channel without switching the MUX achieves better accuracy and noise performance. The output of the multiplexer does not create a charge kickback as long as SDI is set to 0 (that is, as long as SDI returns the NOP command); see \$\mathbb{Z}\$ 43 and \$\mathbb{Z}\$ 45. The multiplexer does not switch during subsequent conversions except for the first time when a channel is selected. Thus high-impedance sources (such as the voltage from the resistor dividers) can be connected to the analog inputs of the multiplexer without an op amp.

7.3.2 Reference

The ADS816x has a precision, low-drift reference internal to the device. See the *Internal Reference* section for details about using the internal reference.

For best SNR performance, the input signal range must be equal to the full-scale input range of the ADC. To maximize ENOB, an external reference voltage source can be used as described in the *External Reference* section.

7.3.2.1 Internal Reference

The device features an internal reference source with a nominal output value of 4.096 V. On power-up, the internal reference is enabled by default. A minimum 1-µF decoupling capacitor, as illustrated in ₹35, is recommended to be placed between the REFIO and REFM pins. The capacitor must be placed as close to the REFIO pin as possible. The output impedance of the internal band-gap circuit creates a low-pass filter with this capacitor to band-limit the noise of the reference. The internal reference is also temperature compensated to provide excellent temperature drift over an extended industrial temperature range of −40°C to +125°C. By default the internal reference is on and the voltage at REFIO is 4.096 V. The REFIO pin has ESD protection diodes to the AVDD and GND pins.

The initial accuracy specification for the internal reference can be degraded if the die is exposed to any mechanical or thermal stress. Heating the device when being soldered to a PCB and any subsequent solder reflow is a primary cause for shifts in the internal reference voltage output. The main cause of thermal hysteresis is a change in die stress and is therefore a function of the package, die-attach material, and molding compound, as well as the layout of the device itself.

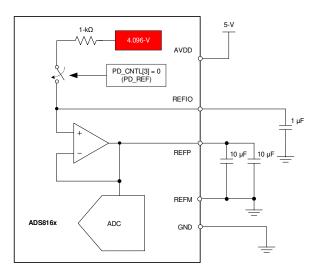


图 35. Device Connections for Using an Internal 4.096-V Reference

7.3.2.2 External Reference

₹ 36 shows the connections for using the device with an external reference. A reference without a low-impedance output buffer can be used because the input leakage current of the internal reference buffer is less than 1 µA.



图 36. Device Connections for Using an External Reference

7.3.3 Reference Buffer

The ADC starts converting the sampled analog input channel on the $\overline{\text{CS}}$ rising edge and the internal capacitors are switched to the REFP pins as per the successive approximation algorithm. Most of the switching charge required during the conversion process is provided by an external decoupling capacitor C_{REFP} . If the charge lost from C_{REFP} is not replenished before the next $\overline{\text{CS}}$ rising edge, the voltage on the REFP pins is less than V_{REFP} . The subsequent conversion occurs with this different reference voltage, and causes a proportional error in the output code. The internal reference buffer of the device maintains the voltage on the REFP pins within 0.5 LSB of V_{REFP} . All typical characteristics of the device are specified with the internal reference buffer and the specified value of C_{REFP} .

In burst-mode operation, the ADC samples the selected analog input channel for a long duration of time and then performs a burst of conversions. During the sampling time, the sampling capacitor (C_S) is connected to the differential input pins and no charge is drawn from the REFP pins. However, during the very first conversion cycle, there is a step change in the current drawn from the REFP pins. This sudden change in load triggers a transient settling response in the reference buffer. For a fixed input voltage, any transient settling error at the end of the conversion cycle results in a change in output codes over the subsequent conversions. The internal reference buffer of the ADS816x, when used with the recommended value of C_{REFP} , keeps the transient settling error at the end of each conversion cycle within 0.5 LSB. Therefore, the device supports burst-mode operation with every conversion result as per the data sheet specifications.

37 shows the block diagram of the internal reference and reference buffer.

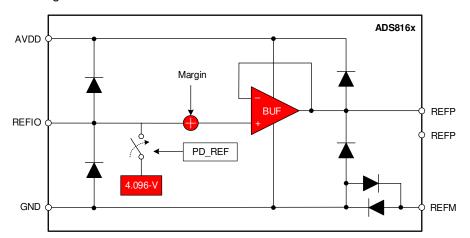
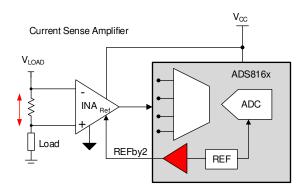
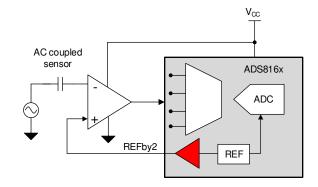
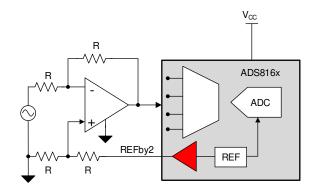


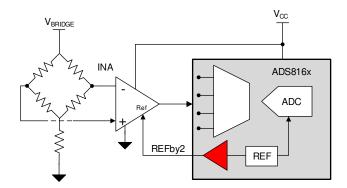
图 37. Internal Reference and Reference Buffer Block Diagram


For the minimum ADC input offset error (V_{OS}), set the REF_SEL[2:0] bits to the value closest to V_{REF} (see the OFST_CAL register). The internal reference buffer has a typical gain of 1 V/V with a minimal offset error ($V_{(RO)}$), and the output of the buffer is available between the REFP and the REFM pins. Set the REF_OFST[4:0] (see the REF_MRG1 register) bits to add or subtract an intentional offset voltage as described in $\frac{1}{5}$ 22.


Short the two REFP pins externally. Short the REFM pin to GND externally. Place a decoupling capacitor C_{REFP} between the REFP and the REFM pins as close to the device as possible; see 8.36. See the *Layout* section for layout recommendations.

7.3.4 REFby2 Buffer


To use the maximum dynamic range of the ADC, the input signal must be biased around the mid-scale of the ADC input range. In the ADS816x, where the absolute input range is 0 V to the reference voltage (V_{REF}), mid-scale is V_{REF} / 2. The REFby2 buffer generates the V_{REF} / 2 signal for mid-scale shifting of the input signal. 38 shows that REFBy2 can be used in various types of sensor signal conditioning circuits.



Configuration 1: High-side / Low-side Current sensing

Configuration 2: AC Coupled Sensor Interface

Configuration 3:Unity Gain Sensor Interface

Configuration 4: High Impedance Sensor Interface with INA

图 38. Signal Conditioning With the REFby2 Buffer

A resistor divider at the output of the reference buffer, as shown in \boxtimes 39, generates the V_{REF} / 2 signal. When not using the internal reference buffer (see the PD_CNTL register), any voltage applied at the REFP pin is applied to the resistor divider. The output of the resistor divider is buffered and available at the REFby2 pin.

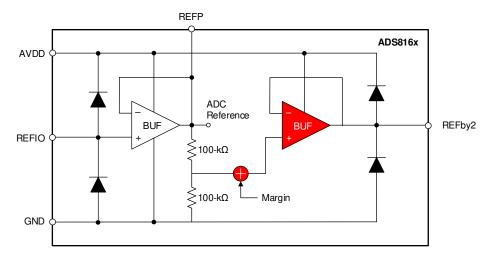


图 39. REFby2 Buffer Model

The REFby2 buffer is capable of sourcing up to 2 mA of DC current. The REFby2 pin has ESD diode connections to AVDD and GND.

7.3.5 Converter Module

The converter module samples the analog input signal (provided between the ADC-INP and ADC-INM pins), compares this signal with the reference voltage (between the REFP pins and REFM pin), and generates an equivalent digital output code.

The converter module receives the $\overline{\text{RST}}$ and $\overline{\text{CS}}$ inputs from the interface module, and outputs the conversion result back to the interface module.

7.3.5.1 Internal Oscillator

The device features an internal oscillator (OSC) that provides the conversion clock. Conversion duration varies, but is bounded by the minimum and maximum value of t_{conv} .

7.3.5.2 ADC Transfer Function

The device supports single-ended and pseudo-differential analog inputs. The device output is in straight binary format. 图 40 and 表 2 show the ideal transfer characteristics for a 16-bit ADC with unipolar inputs.

公式 1 gives the least significant bit (LSB) for the ADC:

图 40. Converter Transfer Characteristics

表 2. Transfer Characteristics

DESCRIPTION	SINGLE-ENDED INPUT VOLTAGE (V _{REF} = 4.096 V)	PSEUDO-DIFFERENTIAL INPUT VOLTAGE (V _{REF} = 4.096 V)	OUTPUT CODE (HEX)
FSR – 1 LSB	4.0959375 V	2.0479375 V	FFFF
MID + 1 LSB	2.0480625 V	0.0000625 V	8001
MID	2.048 V	0 V	8000
MID – 1 LSB	2.0479375 V	-0.0000625 V	7FFF
-FSR + 1 LSB	0.0000625 V	–2.0479375 V	0001
-FSR	0 V	–2.048 V	0000

7.3.6 Low-Dropout Regulator (LDO)

To enable single-supply operation, the device features an internal low-dropout regulator (LDO). The LDO is powered by the AVDD supply, and the 2.85-V (nominal) output is available on the DECAP pin. This LDO output powers the critical analog blocks within the device, and must not be used for any other external purposes.

Decouple the DECAP pin with the GND pin, as shown in 图 41, by placing a 1-μF, X7R-grade, ceramic capacitor with a 6.3-V rating from DECAP to GND. There is no upper limit on the value of the decoupling capacitor; however, a larger decoupling capacitor results in higher power-up time for the device. See the *Layout* section for layout recommendations.

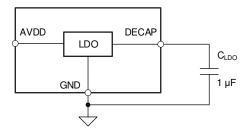


图 41. Internal LDO Connections

7.4 Device Functional Modes

The multiplexer includes a sequence control logic that supports various features as described in the *Channel Selection Using Internal Multiplexer* section.

7.4.1 Channel Selection Using Internal Multiplexer

The ADS816x includes an 8-channel, linear, and low-leakage current analog multiplexer. The multiplexer performs a break-before-make operation when switching channels. There are four modes of switching the multiplexer input channels: manual mode, on-the-fly mode, auto sequence mode, and custom channel sequencing mode.

These modes can be selected by configuring the SEQ_MODE[1:0] bits in the DEVICE_CFG register. On power-up the default mode is manual mode, SEQ_MODE[1:0] = 00b, and the default input channel is AIN0. The multiplexer configuration registers can be accessed over the SPI; see ₹ 50. The SPI interface eliminates the need for separate MUX control lines.

Device Functional Modes (接下页)

7.4.1.1 Manual Mode

In manual mode, the channel ID of the desired analog input is configured in the CHANNEL_ID register. On power-up or after device reset, AIN0 is selected and CHANNEL_ID[2:0] = 000b. Manual mode can be enabled from any other sequencing mode by programming the SEQ_MODE[1:0] bits to 00b in the DEVICE_CFG register.

■ 42 shows the timing information for changing channels in manual mode.

The channel information can be updated in a microcontroller (MCU)-friendly 3-byte access. As the 24-bits of channel configuration are sent over SDI, conversion data are clocked out over SDO. The data on SDO are MSB aligned and the first 16 clocks correspond to 16 bits of conversion data. The last eight bits of the SDO can be ignored by the MCU.

As shown in \$\bigsep\$ 42, the command to switch to AlNy is sent in the Nth cycle and the data corresponding to channel AlNy is available in the (N + 2)th cycle. This switch occurs because the SDI commands are processed and the ADC starts conversions on the rising edge of \$\overline{CS}\$. Thus, the conversion is processed on the previous channel (AlNx) and not on the updated channel ID (AlNy).

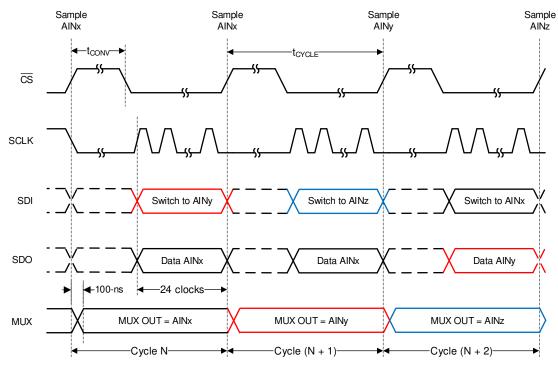


图 42. Manual Mode Timing Diagram

Device Functional Modes (接下页)

As shown in 3 43, after selecting AINy the output of the multiplexer does not create a charge kickback as long as SDI is set to 0 (that is, as long as SDI returns the NOP command). Therefore, high-impedance sources such as the voltage from resistor dividers can be connected to the analog inputs of the multiplexer without an op amp.

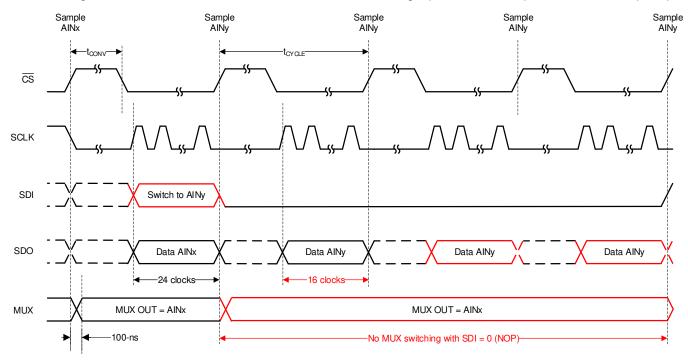


图 43. Manual Mode With No Channel Switching Timing Diagram

7.4.1.2 On-The-Fly Mode

There is a latency of one cycle when switching channels using the register access, just as in manual mode. The newly selected channel data are available two cycles after selecting the desired channel. The ADS816x supports on-the-fly switching of the analog input channels of the multiplexer. This mode can be enabled by programming the SEQ_MODE[1:0] bits to 01b in the DEVICE_CFG register. When enabled, the analog input channel for the next conversion is determined by the first five bits sent over SDI. The desired analog input channel can be selected by setting the MSB to 1 and the following four bits as the channel ID. If the MSB is 0 then the SDI bitstream is decoded as a normal frame on the rising edge of CS. 表 3 lists the channel selection commands for this mode.

2 c. on the ray mode ontainer delection communities			
SDI BITS [15:11]	SDI BITS [10:0]	DESCRIPTION	
1 0000	Don't care	Select analog input 0	
1 0001	Don't care	Select analog input 1	
1 0010	Don't care	Select analog input 2	
1 0011	Don't care	Select analog input 3	
1 0100	Don't care	Select analog input 4	
1 0101	Don't care	Select analog input 5	
1 0110	Don't care	Select analog input 6	
1 0111	Don't care	Select analog input 7	
1 1000 to 1 1111	Don't care	Error bit is set; select analog input 0	

表 3. On-the-Fly Mode Channel Selection Commands

To set the device in on-the-fly mode, configure EN_ON_THE_FLY to 1b in the ON_THE_FLY_CFG register as shown in ₹ 44 using a 3-byte register access. When in this mode, the 16-bit data transfer can be used to reduce the required clock speed for operating at full throughput.

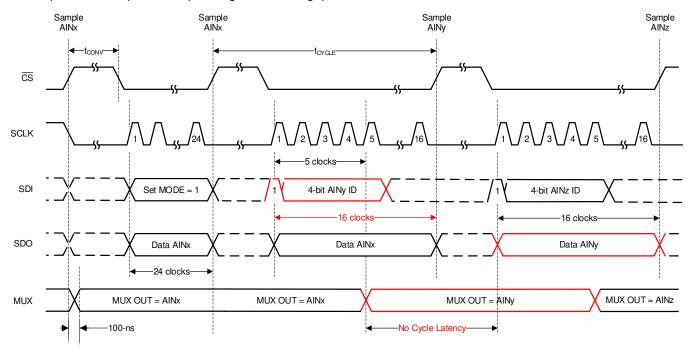


图 44. On-the-Fly Mode With No MUX Channel Selection Latency

After selecting AINy, as shown in 2 45, the output of the multiplexer does not create a charge kickback as long as SDI is set to 0 (that is, as long as SDI returns the NOP command). Thus, high-impedance sources such as the voltage from resistor dividers can be connected to the analog inputs of the multiplexer without an op amp.

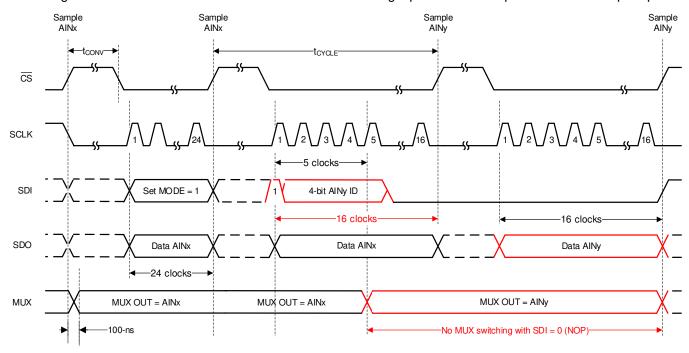


图 45. On-the-Fly Mode With No Channel Switching Timing Diagram

7.4.1.3 Auto Sequence Mode

In auto sequence mode, the internal channel sequencer can selectively scan channels from AIN0 through AIN7 in ascending order. To select auto sequence mode, configure SEQ_MODE to 10b in the DEVICE_CFG register using a 3-byte register access. One or more channels among AIN[7:0] can be enabled by configuring the AUTO_SEQ_CFG1 register. By default all analog input channels are enabled. After enabling the desired channels, the sequence can be started by setting SEQ_START to 1b. The ADC auto-increments through the enabled channels after every CS rising edge. When SEQ_START is set to 1b, the SDO-1/SEQSTS pin is at logic 1 as shown in 846 until the last channel conversion frame is complete. After the last enabled channel conversion is complete, channel AIN0 is selected and SDO-1/SEQSTS is in a high-impedance state.

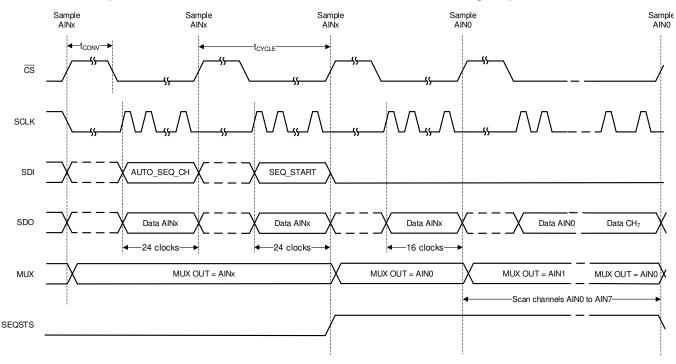


图 46. Starting a Sequence in Auto Sequence Mode

As an example, \$\frac{1}{2}\$ 47 depicts a timing diagram for when the device is scanning AIN2 and AIN6 in auto sequence mode. When AIN6 is converted, SDO-1/SEQSTS is Hi-Z and AIN0 is selected as the active channel. At the end of sequence, if more conversion frames are launched the device returns valid data corresponding to AIN0.

To use the device in auto sequence mode follow these steps:

- Set the SEQ_MODE[1:0] bits in the DEVICE_CFG register to 10b.
- Configure the AUTO SEQ CFG1 register. In

 47, AUTO SEQ CFG1 = 0x44.
- Set the SEQ_START bits in the SEQ_START register to 1b to start executing the sequence.

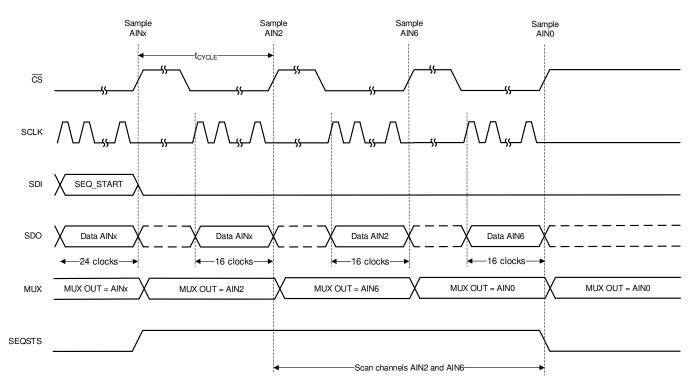


图 47. Example: Scanning Channels 2 and 6 in Auto Sequence Mode

To repeat a channel sequence indefinitely, set the AUTO_REPEAT bit in the AUTO_SEQ_CFG2 register to 1b. 图 48 shows that when the AUTO_REPEAT bit is enabled, the MUX scans through the channels enabled in the AUTO_SEQ_CFG1 register and repeats the sequence after the last channel data are converted.

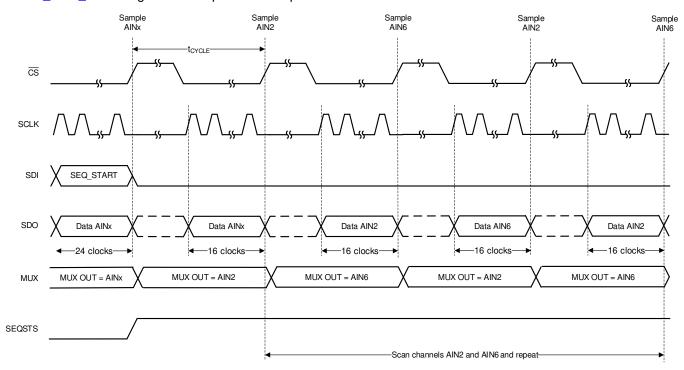


图 48. Example: Scanning Channels 2 and 6 in Auto Sequence Mode With AUTO REPEAT = 1

₹ 48 provides a timing diagram for when the device is scanning AIN2 and AIN6 in auto sequence mode with AUTO_REPEAT = 1b. When AIN6 is converted, AIN2 is selected as the active channel and the device continues scanning through the enabled channels again.

To use the device in auto sequence with the repeat mode enabled follow these steps:

- Set the SEQ_MODE[1:0] bits in the DEVICE_CFG register to 10b.
- Configure the AUTO_SEQ_CFG1 register. In 图 47, AUTO_SEQ_CFG1 = 0x44.
- Set AUTO REPEAT to 1b.
- Set the SEQ_START bit in the SEQ_START register to 1b to start executing the sequence.

To terminate an ongoing channel sequence set the SEQ_ABORT bit in the SEQ_ABORT register 1. When SEQ ABORT is set, the auto sequence stops and AIN0 is selected as the active input channel.

7.4.1.4 Custom Channel Sequencing Mode

In this mode the internal channel sequencer can selectively scan channels from AIN0 through AIN7 in any order as defined by a user-programmable lookup table. 表 4 describes the configurability of this lookup table. The device can be configured in custom channel sequencing mode by programming the SEQ_MODE[1:0] bits to 11b in the DEVICE_CFG register using a 3-byte register access. 表 4 shows that the channel scanning sequence is programmed by configuring the channel IDs in the register as space. A channel sample count can also be programmed and associated with every channel ID. By default the channel sample count is 1, which means the sequence executes in the order of programmed channel IDs. If the channel sample count is greater than 1 then the corresponding channel is sampled and converted for a programmed number of times before switching to the next channel.

表 4. Custom Channel Sequencing Configuration Space

A duction channel coductioning configuration opace					
REGISTER ADDRESS	CHANNEL ID[2:0]	REGISTER ADDRESS	CHANNEL SAMPLE COUNT[7:0]		
0x8C	Index 0 : 3-bit channel ID (default = 0)	0x8D	Index 0 : 8-bit sample count (default = 0xFF)		
0x8E	Index 1 : 3-bit channel ID (default = 0)	0x8F	Index 1 : 8-bit sample count (default = 0xFF)		
0x90	Index 2 : 3-bit channel ID (default = 0)	0x91	Index 2 : 8-bit sample count (default = 0xFF)		
0x92	Index 3 : 3-bit channel ID (default = 0)	0x93	Index 3: 8-bit sample count (default = 0xFF)		
0x94	Index 4 : 3-bit channel ID (default = 0)	0x95	Index 4 : 8-bit sample count (default = 0xFF)		
0x96	Index 5 : 3-bit channel ID (default = 0)	0x97	Index 5 : 8-bit sample count (default = 0xFF)		
0x98	Index 6 : 3-bit channel ID (default = 0)	0x99	Index 6 : 8-bit sample count (default = 0xFF)		
0x9A	Index 7 : 3-bit channel ID (default = 0)	0x9B	Index 7 : 8-bit sample count (default = 0xFF)		
0x9C	Index 8 : 3-bit channel ID (default = 0)	0x9D	Index 8 : 8-bit sample count (default = 0xFF)		
0x9E	Index 9 : 3-bit channel ID (default = 0)	0x9F	Index 9 : 8-bit sample count (default = 0xFF)		
0xA0	Index 10 : 3-bit channel ID (default = 0)	0xA1	Index 10 : 8-bit sample count (default = 0xFF)		
0xA2	Index 11 : 3-bit channel ID (default = 0)	0xA3	Index 11 : 8-bit sample count (default = 0xFF)		
0xA4	Index 12 : 3-bit channel ID (default = 0)	0xA5	Index 12 : 8-bit sample count (default = 0xFF)		
0xA6	Index 13 : 3-bit channel ID (default = 0)	0xA7	Index 13: 8-bit sample count (default = 0xFF)		
0xA8	Index 14 : 3-bit channel ID (default = 0)	0xA9	Index 14 : 8-bit sample count (default = 0xFF)		
0xAA	Index 15: 3-bit channel ID (default = 0)	0xAB	Index 15 : 8-bit sample count (default = 0xFF)		

For application-specific scanning requirements, start and stop pointers can be used to define the channel scanning sequence. The start index can be programmed in the CCS_START_INDEX register and the stop index can be programmed in the CCS_END_INDEX register. 表 4 shows that the 4-bit index corresponds to the configuration index. The sequence starts executing from the index programmed in CCS_START_INDEX (default 0) and stop or loop-back from CCS_STOP_INDEX (default 15). The channel scanning sequence can be looped-back to the start index from the stop index by setting the CCS_SEQ_LOOP register to 1b.

After configuring the channel scanning order, start index, and stop index the scanning <u>can</u> be initiated by setting the SEQ_START bit to 1b. The ADC scans through the enabled channels after every <u>CS</u> rising edge as defined by the channel scanning order. When SEQ_START is set to 1b, the SDO-1/SEQSTS pin is pulled high until the last channel conversion frame is complete, as described in <u>8</u> 46. As illustrated in <u>8</u> 47, channel AIN0 is selected and SEQSTS/SDO-1 goes to Hi-Z after the last enabled channel conversion is complete.

As an example, 图 47 provides a timing diagram for when the channel configuration is set as in 表 5. When AIN6 is converted, SEQSTS/SDO-1 goes to Hi-Z and AIN0 is selected as the active channel. If more conversion frames are launched at the end of the sequence, the device returns valid data corresponding to AIN0.

To use the device in easy capture mode follow these steps:

- Set the SEQ_MODE[1:0] bits in the DEVICE_CFG register to 3.
- Configure the channel sequence by setting registers 0x000C to 0x002B.
- Configure the CCS_START_INDEX and the CCS_END_INDEX registers. In 图 47, CCS_START_INDEX = 0 and CCS_STOP_INDEX = 1.
- Configure the CCS_SEQ_LOOP register to 1 to indefinitely loop the sequence. In

 ⊠ 47, the CCS_SEQ_LOOP register = 0b.
- Set the SEQ_START register to 1b to start executing the sequence.

110b (Channel 6)

		3 - 3 - 3	· · · · · · · · · · · · · · · · · · ·
REGISTER ADDRESS	CHANNEL ID[2:0]	REGISTER ADDRESS	CHANNEL SAMPLE COUNT[7:0]
0x8C	010b (Channel 2)	0x8D	1

0x8F

表 5. Custom Channel Sequencing Configuration Example

7.4.2 Digital Window Comparator

0x8E

The ADS816x has a programmable digital window comparator for every analog input channel. The integrated digital window comparator allows the host to not read ADC data over the serial interface for comparison purposes. In monitoring applications, the ADC can compare channel data with the set thresholds and alert the system host using the ALERT pin. Furthermore, the digital window comparator does not require software high and low comparisons and thus saves processing cycles.

Window comparison is achieved by comparing the channel output code with a programmable high and low digital threshold. As shown in 2 49, each analog input channel has a programable hysteresis that is applicable to both the high and low thresholds of the corresponding channel. Thus, low threshold, high threshold, and hysteresis configurations are available for each analog input channel.

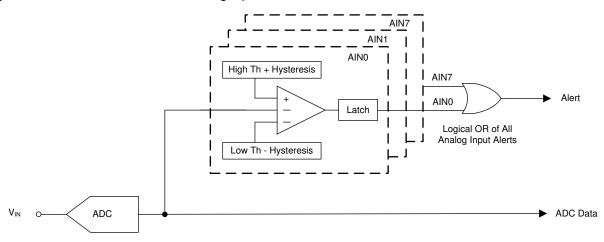


图 49. Digital Window Comparator

The thresholds and hysteresis can be configured independently for each analog input channel. The ALERT output of the device is a logical OR of all enabled alert outputs corresponding to the analog inputs. The window comparator can be selectively enabled for the analog inputs by configuring the ALERT_CFG register.

The alert status of an individual analog input channel can be read from the ALERT_STATUS register. See the ALERT_HI_STATUS and ALERT_LO_STATUS registers for further information on the high or low threshold ALERT, respectively. When monitoring only a low threshold, the high threshold can be set to the ADC positive full-scale code. Similarly, when monitoring only a high threshold, the low threshold can be set to the negative full-scale code.

7.5 Programming

7.5.1 Data Transfer Protocols

7.5.1.1 Enhanced-SPI Interface

The device features an enhanced-SPI interface that allows the host controller to operate at slower SCLK speeds and still achieve the required cycle time with a faster response time. ₹ 50 shows the ADS816x Interface connections for the minimum number of pins required by the enhanced-SPI interface.

For any data write operation, the host controller can use any of the four legacy, SPI-compatible protocols to configure the device, as described in the *Protocols for Configuring the Device* section. See the *Register Read/Write Operation* section for details about the register read or write operation.

For reading ADC conversion data or register data from the device, the enhanced-SPI interface module offers the following options:

- SPI protocol with a single data output line: SDO-0 (see the SPI Protocols With a Single SDO section)
- SPI protocol with dual data output lines: SDO-1 and SDO-0 (see the SPI Protocols With Dual SDO section)
- Clock re-timer data transfer (see the Clock Re-Timer Data Transfer section)

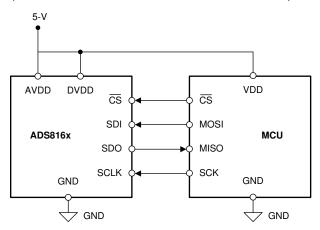
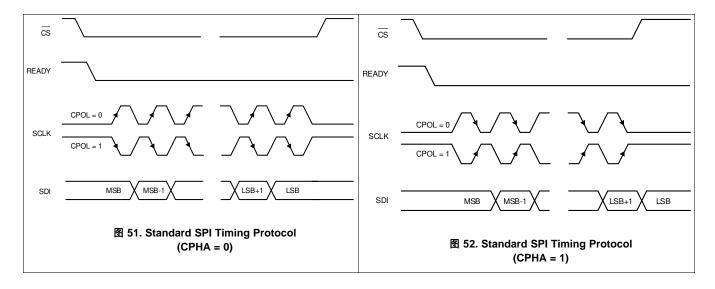


图 50. 4-Wire SPI Interface Connection Diagram

7.5.1.1.1 Protocols for Configuring the Device

As described in 表 6, the host controller can use any of the four SPI protocols (SPI-00, SPI-01, SPI-10, or SPI-11) to write data into the device.

表 6. SPI Protocols for Configuring the Device


PROTOCOL	SCLK POLARITY (At the CS Falling Edge)	SCLK PHASE (Capture Edge)	SDI_MODE[1:0] BITS ⁽¹⁾	SDO_MODE[1:0] BITS ⁽²⁾	DIAGRAM
SPI-00	Low	Rising	00h	00h	图 51
SPI-01	Low	Falling	01h	00h	图 51
SPI-10	High	Falling	02h	00h	图 52
SPI-11	High	Rising	03h	00h	图 52

- 1) See the SDI_CNTL register.
- (2) See the SDO_CNTL1 register.

On power-up or after coming out of any asynchronous reset, the device supports the SPI-00-S protocol for data read and data write operations. To select a different SPI-compatible protocol, program the SDI_MODE[1:0] bits in the SDI_CNTL register. This first write operation must adhere to the SPI-00-S protocol. Any subsequent data transfer frames must adhere to the newly-selected protocol. The SPI protocol selected by the SDI_MODE[1:0] configuration is applicable to both read and write operations.

图 51 and 图 52 detail the four protocols using an optimal data frame.

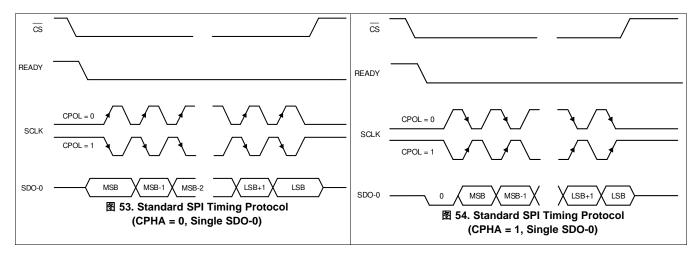
注

As explained in the *Register Read/Write Operation* section, a valid register read or write operation to the device requires 24 SCLKs to be provided within a data transfer frame. When reading ADC conversion data, a minimum 16 SCLKs are required within a data transfer frame.

7.5.1.1.2 Protocols for Reading From the Device

The protocols for the data read operation can be broadly classified into three categories:

- 1. SPI protocols (SPI-00, SPI-01, SPI-10, and SPI-11) with a single SDO (see the SPI Protocols With a Single SDO section); for example, SDO-0
- 2. SPI protocols (SPI-00, SPI-01, SPI-10, and SPI-11) with dual SDOs (see the SPI Protocols With Dual SDO section); for example, SDO-1 and SDO-0
- 3. Source-synchronous protocol for data transfer



7.5.1.1.2.1 SPI Protocols With a Single SDO

As shown in 表 7, 图 53, and 图 54, the host controller can use any of the four legacy, SPI-compatible protocols (SPI-00, SPI-01, SPI-10, or SPI-11) to read data from the device.

表 7. SPI Protocols for Reading From the Device

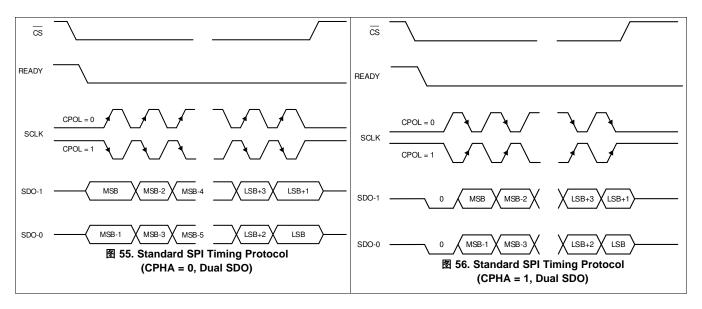
PROTOCOL	SCLK POLARITY (At the CS Falling Edge)	SCLK PHASE (Capture Edge)	MSB BIT LAUNCH EDGE	SDI_MODE[1:0] BITS	SDO_MODE[1:0] BITS	DIAGRAM
SPI-00	Low	Rising	CS falling	00h	00h	图 53
SPI-01	Low	Falling	1st SCLK rising	01h	00h	图 53
SPI-10	High	Falling	CS falling	02h	00h	图 54
SPI-11	High	Rising	1st SCLK falling	03h	00h	图 54

On power-up or after coming out of any asynchronous reset, the device supports the SPI-00 protocol for data read and data write operations. To select a different SPI-compatible protocol for both of the data transfer operations:

- 1. Program the SDI_MODE[1:0] bits in the SDI_CNTL register. This first write operation must adhere to the SPI-00 protocol. Any subsequent data transfer frames must adhere to the newly-selected protocol.
- 2. Set the SDO_MODE[1:0] bits = 00b in the SDO_CNTL1 register.

注

The SPI transfer protocol selected by configuring the SDI_MODE[1:0] bits in the SDI_CNTL register determines the data transfer protocol for both write and read operations.


When using any of the SPI-compatible protocols, the READY output remains low throughout the data transfer frame.

7.5.1.1.2.2 SPI Protocols With Dual SDO

The device provides an option to increase the SDO bus width from one bit (default, single SDO-0) to two bits (dual SDO) when operating with any of the data transfer protocols. In order to operate the device in dual SDO mode, the SDO_WIDTH bit in the SDO_CNTL1 register must be set to 1b. In this mode, the SDO-1/SEQSTS pin functions as SDO-1.

As shown in \boxtimes 55 and \boxtimes 56, two bits of data are launched on the two SDO pins (SDO-0 and SDO-1) on every SCLK launch edge in dual SDO mode.

7.5.1.1.2.3 Clock Re-Timer Data Transfer

In clock re-timer data transfer mode, the device provides an output clock that is synchronous with the output data. Furthermore, the host controller can also select the data bus width in this mode of operation. In all modes of operation, the READY pin provides the output clock, synchronous to the device data output.

The clock re-timer data transfer allows the width of the output bus to be configured, similar to the SPI protocols SPI protocols described in 表 6.

7.5.1.1.2.3.1 Output Bus Width Options

The device provides an option to increase the SDO-x bus width from one bit (default, single SDO-x) to two bits (dual SDO-x) when operating with clock re-timer data transfer. In order to operate the device in dual SDO mode, the SDO_WIDTH bit in the SDO_CNTL1 register must be set to 1b. In this mode, the SDO-1/SEQSTS pin functions as SDO-1.

For any particular data transfer, SPI or clock re-timer, the device follows the same timing specifications for single and dual SDO modes. The only difference is that in the dual SDO mode the device requires half as many clock cycles to output the same number of bits when in single SDO mode, thus reducing the minimum required clock frequency for a certain sampling rate of the ADC.

combinations

xxxxxxxx

7.5.2 Register Read/Write Operation

This device features configuration registers (as described in the *Interface and Hardware Configuration Registers* section). These devices support the commands listed in 表 8 to access the internal configuration registers.

		• •		
B[23:19]	B[18:8]	B[7:0]	COMMAND ACRONYM	COMMAND DESCRIPTION
00000	0000000000	00000000	NOP	No operation
00001	<11-bit address>	<8-bit data>	WR_REG	Write <8-bit data> to the <11-bit address>
00010	<11-bit address>	00000000	RD_REG	Read contents from the <11-bit address>
00011	<11-bit address>	<8-bit unmasked bits>	SET_BITS	Set <8-bit unmasked bits> from <11-bit address>
00100	<11-bit address>	<8-bit unmasked bits>	CLR_BITS	Clear <8-bit unmasked bits> from <11-bit address>
Remaining	yaaaaaaaa	vananana	Bosoniad	These commands are reserved and treated by the

表 8. Supported Commands

The ADS816x supports two types of data transfer operations: data write (the host controller configures the device), and data read (the host controller reads data from the device).

Reserved

device as no operation

xxxxxxx

Any data write to the device is always synchronous to the external clock provided on the SCLK pin. The WR_REG command writes the 8-bit data into the 11-bit address specified in the command string. The CLR_BITS command clears the specified bits (identified by 1) at the 11-bit address (without affecting the other bits), and the SET_BITS command sets the specified bits (identified by 1) at the 11-bit address (without affecting the other bits).

图 57 shows the digital waveform for register read operation. Register read operation consists of two frames: one frame to initiate a register read and a second frame to read data from the register address provided in the first frame. As shown in 图 57, the 11-bit register address and the 8-bit dummy data are sent over the SDI pin during the first 24-bit frame with the read command (00010b). When CS goes from low to high, this read command is decoded and the requested register data are available for reading during the next frame. During the second frame, the first eight bits on SDO correspond to the requested register read. During the second frame SDI can be used to initiate another operation or can be set to 0.

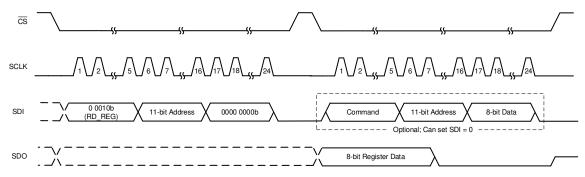


图 57. Register Read Operation

₹ 58 shows that for writing data to the register, one 24-bit frame is required. The 24-bit data on SDI consists of a 5-bit write command (00001b), an 11-bit register address, and 8-bit data. The write command is decoded on the CS rising edge and the specified register is updated with the 8-bit data specified during register write operation.

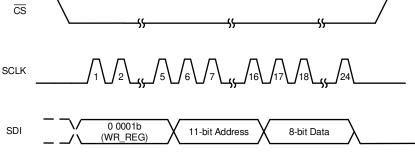


图 58. Register Write Operation

7.6 Register Maps

表 9 lists the access codes for the ADS816x registers.

表 9. ADS816x Access Type Codes

Access Type	Code	Description					
Read Type							
R	R	Read					
R-W	R/W	Read or write					
Write Type							
W	W	Write					
Reset or Default Value	Reset or Default Value						
-n		Value after reset or the default value					

7.6.1 Interface and Hardware Configuration Registers

表 10 maps the device features following a hardware configuration of the registers.

表 10. Configuration Registers Mapping

ADDRESS	REGISTER NAME	REGISTER DESCRIPTION
00h	REG_ACCESS	Enables read/write access to the device configuration registers specified in Interface and Hardware Configuration Registers
04h	PD_CNTL	Enable/disable control for reference, reference buffer, REFby2 buffer, and the ADC
08h	SDI_CNTL	SPI-00, SPI-01, SPI-10, or SPI-11 protocol selection.
0Ch	SDO_CNTL1	SDO output protocol selection
0Dh	SDO_CNTL2	Output data rate selection
0Eh	SDO_CNTL3	Reserved
0Fh	SDO_CNTL4	Configuration for the SEQSTS pin when not using SDO-1 for data transfer.
10h	DATA_CNTL	Output data word configuration
11h	PARITY_CNTL	Parity configuration register

7.6.1.1 REG_ACCESS Register (address = 00h) [reset = 00h]

This register enables or disables write access to the device configuration registers specified in 表 10.

图 59. REG_ACCESS Register

7	6	5	4	3	2	1	0
REG_ACCESS_BITS							
R/W-0000 0000b							

表 11. REG_ACCESS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	REG_ACCESS_BITS	R/W	0000 0000b	Enables or disables write access to the device configuration registers specified in 表 10. Write 1010 1010b to this register to enable write access. Write access is disabled for all values other than REG_ACCESS_BITS = 1010 1010b.

7.6.1.2 PD_CNTL Register (address = 04h) [reset = 00h]

This register controls the low-power modes offered by the device. Write access to this register is disabled on power-up. To enable write access, configure the REG_ACCESS register.

图 60. PD_CNTL Register

7	6	5	4	3	2	1	0
0	0	0	PD_REFby2	PD_REF	PD_REFBUF	PD_ADC	0
R-0b	R-0b	R-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R-0b

表 12. PD CNTL Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	0	R	000b	Reserved bits. Reads return 000b.
4	PD_REFby2	R/W	0b	This bit powers down the internal REFby2 buffer. 0b = REFby2 buffer is powered up 1b = REFby2 buffer is powered down
3	PD_REF	R/W	0b	This bit powers down the internal reference. 0b = Internal reference is powered up 1b = Internal reference is powered down
2	PD_REFBUF	R/W	0b	This bit powers down the internal reference buffer. 0b = Internal reference buffer is powered up 1b = Internal reference buffer is powered down
1	PD_ADC	R/W	0b	This bit powers down the converter module. 0b = Converter module is powered up 1b = Converter module is powered down
0	0	R	0b	Reserved bits. Do not write. Reads return 0b.

To power-down the converter module, set the PD_ADC bit in the PD_CNTL register. The converter module powers down on the rising edge of CS. To power-up the converter module, reset the PD_ADC bit in the PD_CNTL register. The converter module starts to power-up on the rising edge of CS. Wait for t_{PU_ADC} before initiating any conversion or data transfer operation.

To power-down the internal reference buffer, set the PD_REFBUF bit in the PD_CNTL register. The internal reference buffer powers down on the rising edge of $\overline{\text{CS}}$.

To power-down the internal reference, set the PD_REF bit in the PD_CNTL register. The internal reference powers down on the rising edge of CS.

7.6.1.3 SDI_CNTL Register (address = 008h) [reset = 00h]

This register selects the SPI protocol for writing data to the device. Write access to this register is disabled on power-up. To enable write access, configure the REG_ACCESS register.

图 61. SDI CNTL Register

7	6	5	4	3	2	1 0
0	0	0	0	0	0	SDI_MODE[1:0]
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R/W-00b

表 13. SDI_CNTL Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-2	0	R	000000b	Reserved bits. Do not write. Reads return 000000b.
1-0	SDI_MODE[1:0]	R/W	00b	These bits select the protocol for writing data into the device. 00b = Standard SPI with CPOL = 0 and CPHASE = 0 01b = Standard SPI with CPOL = 0 and CPHASE = 1 10b = Standard SPI with CPOL = 1 and CPHASE = 0 11b = Standard SPI with CPOL = 1 and CPHASE = 1

7.6.1.4 SDO_CNTL1 Register (address = 0Ch) [reset = 00h]

This register configures the protocol for reading data from the device. Write access to this register is disabled on power-up. To enable write access, configure the REG_ACCESS register.

图 62. SDO_CNTL1 Register

7	6	5	4	3	2	1 0	
0	OUTDATA_uC _MODE	DATA_RIGHT_ ALIGNED	BYTE_ INTERLEAVE	0	SDO_WIDTH	SDO_MODE[1:0]	
R-0b	R/W-0b	R/W-0b	R/W-0b	R-0b	R/W-0b	R/W-00b	

表 14. SDO_CNTL1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	0	R	0b	Reserved bit. Do not write. Read returns 0b.
6	OUTDATA_uC_MODE	R/W	Ob	Enables the MCU or processor-friendly data interface. 0b = Length of output data is determined by the DATA_OUT_FORMAT field in the DATA_CNTL register. 1b = Length of output data is fixed to 16-bits when the length based on DATA_OUT_FORMAT is ≤ 16 or 32-bits when the length based on DATA_OUT_FORMAT is > 16.
5	DATA_RIGHT_ALIGNED	R/W	0b	This bit is ignored if OUTDATA_uC_MODE = 0b. When OUTDATA_uC_MODE = 1b: 0b = Data frame is left aligned. The SDOs output the device data bits followed by 0s in a 32-bit output frame. 1b = Data frame is right aligned. The SDOs output 0s followed by device data bits in a 32-bit output frame.
4	BYTE_INTERLEAVE	R/W	0b	This bit is ignored if OUTDATA_uC_MODE = 0b or SDO_WIDTH = 0b. When OUTDATA_uC_MODE = 1b and SDO_WIDTH = 1b: 0b = Bit mode. SDO-1 outputs (MSB, MSB - 2, LSB + 1) and SDO-0 outputs (MSB - 1, MSB - 3,, LSB). 1b = Byte mode. If the total number of bits to be read from the device is N (conversion result, parity, channel ID, and so forth) then SDO-1 outputs 8 MSB bits and SDO-0 outputs (N-8) bits when N ≤16 and SDO-1 outputs 16 MSB bits and SDO-0 outputs (N-16) bits when 16 < N ≤ 32.
3	0	R	0b	Reserved bit. Do not write. Read returns 0b.
2	SDO_WIDTH	R/W	Ob	This bit sets the width of the output bus. 0b = Data bits are output only on SDO-0 1b = Data bits are output on SDO-0 (MSB - 1, MSB - 3, LSB) and SDO-1 (MSB, MSB - 2, LSB + 1)
1-0	SDO_MODE[1:0]	R/W	00b	These bits select the protocol for reading data from the device. 00b = SDO follows the SPI protocol selected in the SDI_CNTL register 01b = Invalid configuration, not supported by the device 10b = Invalid configuration, not supported by the device 11b = SDO follows the Clock Re-Timer Data Transfer section

7.6.1.5 SDO_CNTL2 Register (address = 0Dh) [reset = 00h]

This register configures the output data rates, SDR or DDR, when using the clock re-timer data transfer. Write access to this register is disabled on power-up. To enable write access, configure the REG_ACCESS register.

图 63. SDO_CNTL2 Register

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	DATA_RATE
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R/W-0b

表 15. SDO_CNTL2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	000 0000	R	000 0000b	Reserved bit. Do not write. Reads return 000 0000b.
0	DATA_RATE	R/W	Ob	This bit is ignored if SDO_MODE[1:0] = 0xb. When SDO_MODE[1:0] = 11b: 0b = SDOs are updated at a single data rate (SDR) with respect to the output clock 1b = SDOs are updated at double data rate (DDR) with respect to the output clock

7.6.1.6 SDO CNTL3 Register (address = 0Eh) [reset = 00h]

The bits in this register are reserved.

图 64. SDO_CNTL3 Register

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 16. SDO CNTL3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	0000 0000	R	0000 0000b	Reserved bits. Do not write. Reads return 0000 0000b.

7.6.1.7 SDO_CNTL4 Register (address = 0Fh) [reset = 00h]

This register configures the behaviour of the SEQ_STS pin when not using dual SDO mode (SDO_WIDTH = 0b). Write access to this register is disabled on power-up. To enable write access, configure the REG_ACCESS register.

图 65. SDO_CNTL4 Register

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	SEQSTS_CFG
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R/W-0b

表 17. SDO_CNTL4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	000 0000	R	000 0000b	Reserved bits. Do not write. Reads return 000 0000b.
0	SEQSTS_CFG	R/W	0b	This pin decides the behaviour of SDO-1 when SDO_WIDTH = 0b. 0b = SDO-1 is Hi-Z 1b = SDO-1 indicates the sequence of the active status

7.6.1.8 DATA_CNTL Register (address = 10h) [reset = 00h]

This register configures the contents of the output data word. Write access to this register is disabled on power-up. To enable write access, configure the REG_ACCESS register.

图 66. DATA_CNTL Register

7	6	5 4	3	2	1	0
0	0	DATA_OUT_FORMAT[1:0]	0	0	0	DATA_VAL
R-0b	R-0b	R/W-00b	R-0b	R-0b	R-0b	R/W-0b

表 18. DATA_CNTL Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	00	R	000b	Reserved bits. Reads return 00b.
5-4	DATA_OUT_FORMAT[1:0]	R/W	00b	These bits control the composition of the output data frame. 00b = ADC conversion result 01b = ADC conversion result + 4-bit channel ID 10b = ADC conversion result + 4-bit channel ID + 4-bit device status (see 表 32) + 2-bit channel configuration 11b = Reserved Parity bits can be appended to the data output frame. See the PARITY_CNTL register for details.
3-1	000	R	000b	Reserved bits. Reads return 00b.
0	DATA_VAL	R/W	0b	Setting this bit enables debug mode for SDO capture. 0b = Normal operation; device data are output on SDO 1b = The device outputs a fixed 1010 0110 patten that is useful for debugging data capture from the device

7.6.1.9 PARITY_CNTL Register (address = 11h) [reset = 00h]

This register enables or disables the computing parity status for the output from the device. Write access to this register is disabled on power-up. To enable write access, configure the REG_ACCESS register.

图 67. PARITY_CNTL Register

7	6	5	4	3	2	1	0
0	0	0	0	0	PARITY_EN	0	0
R-0b	R-0b	R-0b	R-0b	R-0b	R/W-0b	R-0b	R-0b

表 19. PARITY_CNTL Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-3	0 0000	R	0 0000b	Reserved bits. Do not write. Reads return 0 0000b.
2	PARITY_EN	R/W	0b	Enables the parity computation on the data output bits. 0b = Parity disabled 1b = A 1-bit parity is appended to the data output frame. Data length is 1-bit more than the length specified by DATA_OUT_FORMAT in the DATA_CNTL register.
1-0	00	R	00b	Reserved bits. Do not write. Reads return 00b.

7.6.2 Device Calibration Registers

表 20 maps the device features following register calibration.

表 20. Calibration Registers Mapping

ADDRESS	REGISTER NAME	REGISTER DESCRIPTION
18h	OFST_CAL	Setting for optimum ADC offset calibration when using an external reference input
19h	REF_MRG1	Margin setting for the reference buffer to compensate for initial accuracy of the reference voltage
1Ah	REF_MRG2	Enable margin setting of the reference buffer as configured in the REF_MRG1 register
1Bh	REFby2_MRG	REFby2 buffer margin configuration

7.6.2.1 OFST_CAL Register (address = 18h) [reset = 00h]

This register selects the optimal offset calibration when using an external reference input. When using an internal reference, do not write to this register. See the *Reference Buffer* section for more details.

图 68. OFST_CAL Register

7		6	5	4	3	2	1	0
0		0	0	0	0		REF_SEL[2:0]	
R-0	b	R-0b	R-0b	R-0b	R-0b		R/W-000b	

表 21. OFST_CAL Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-3	0	R	0 0000b	Reserved bits. Reads return 0 0000b.
2-0	REF_SEL[2:0]	R/W	000Ь	These bits select the external reference range for optimal offset. $000b = \text{Optimum offset calibration for V}_{REF} = 5.0 \text{ V}$ $001b = \text{Optimum offset calibration for V}_{REF} = 4.5 \text{ V}$ $010b = \text{Optimum offset calibration for V}_{REF} = 4.096 \text{ V}$ $011b = \text{Optimum offset calibration for V}_{REF} = 3.3 \text{ V}$ $100b = \text{Optimum offset calibration for V}_{REF} = 3.0 \text{ V}$ $101b = \text{Optimum offset calibration for V}_{REF} = 2.5 \text{ V}$ $110b = \text{Optimum offset calibration for V}_{REF} = 5.0 \text{ V}$ $111b = \text{Optimum offset calibration for V}_{REF} = 5.0 \text{ V}$

7.6.2.2 REF_MRG1 Register (address = 19h) [reset = 00h]

This register selects the margining to be added to or subtracted from the reference buffer output; see the *Reference Buffer* section.

图 69. REF_MRG1 Register

7	6	5	4	3	2	1	0
0	0	0			REF_OFST[4:0]		
R-0b	R-0b	R-0b	R/W-0000b				

表 22. REF_MRG1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-5	0	R	000b	Reserved bits. Reads return 000b.
4-0	REF_OFST[4:0]	R/W	00000b	These bits select the reference offset value as per 表 23.

表 23. REF_OFST[4:0] Settings

REF_OFST[4:0]	ΔV _{REFBUFOUT} ⁽¹⁾	REF_OFST[4:0]	ΔV _{REFBUFOUT} ⁽¹⁾
00000b	0 mV	10000b	−4.5 mV
00001b	280 μV	10001b	-4.22 mV
00010b	580 μV	10010b	−3.94 mV
00011b	840 μV	10011b	−3.66 mV
00100b	1.12 mV	10100b	−3.38 mV
00101b	1.4 mV	10101b	−3.1 mV
00110b	1.68 mV	10110b	–2.82 mV
00111b	1.96 mV	10111b	−2.54 mV
01000b	2.24 mV	11000b	−2.26 mV
01001b	2.52 mV	11001b	–1.98 mV
01010b	2.8 mV	11010b	–1.70 mV
01011b	3.08 mV	11011b	-1.42 mV
01100b	3.36 mV	11100b	-1.14 mV
01101b	3.64 mV	11101b	–860 μV
01110b	3.92 mV	11110b	–580 μV
01111b	4.2 mV	11111b	–280 μV

⁽¹⁾ The actual V_{REFBUFOUT} value may vary by ±10% from 表 23.

7.6.2.3 REF_MRG2 Register (address = 1Ah) [reset = 00h]

This register enables or disables the reference buffer margin configuration in the REF_MRG1 register.

图 70. REF_MRG2 Register

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	EN_MARG
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R/W-0b

表 24. REF_MRG2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	R	000 0000b	Reserved bits. Reads return 000 0000b.
0	EN_MARG	R/W	0b	This bit enables the reference buffer margining feature. 0b = Margining is disabled 1b = Margining is enabled

7.6.2.4 REFby2_MRG Register (address = 1Bh) [reset = 00h]

This register selects the margining to be added to or subtracted from the REFFby2 buffer output; see the REFFby2 Buffer section.

图 71. REFby2_MRG Register

7	6	5	4	3	2	1	0
0	REFby2_OFST[2:0]			0	0	0	EN_REFby2_MARG
R-0b	R/W-000b		R-0b	R-0b	R-0b	R/W-0b	

表 25. REFby2_MRG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	0	R	0b	Reserved bit. Do not write. Reads return 0b.
6-4	REFBY2_OFST[2:0]	R/W	000b	These bits select the REFby2 offset value as per 表 26.
3-1	0	R	000b	Reserved bits. Do not write. Reads return 000b.
0	EN_REFby2_MARG	R/W	0b	This bit enables the REFby2 buffer margining feature. 0b = Margining is disabled 1b = Margining is enabled

表 26. REFby2_OFST[2:0] Settings

REFby2_OFST[2:0]	V _{REFby2} ⁽¹⁾ (V _{REF} = 4.096 V)	V _{REFby2} ⁽¹⁾ (V _{REF} = 5 V)
EN_REFby2_MARG = 0b	2.04800 V	2.50000 V
000b	2.12611 V	2.59155 V
001b	2.13008 V	2.59640 V
010b	2.13406 V	2.60124 V
011b	2.13804 V	2.60610 V
100b	2.14203 V	2.61096 V
101b	2.14602 V	2.61581 V
110b	2.14999 V	2.62065 V
111b	2.15397 V	2.62550 V

(1) The actual V_{REFby2} value may vary by ±10% from $\frac{1}{8}$ 26.

7.6.3 Analog Input Configuration Registers

表 27 maps the device features following channel configuration of the registers.

表 27. Analog Input Configuration Registers Mapping

ADDRESS	REGISTER NAME	REGISTER DESCRIPTION	
24h	AIN_CFG	Analog input signal configuration selection	
27h	COM_CFG	AIN-COM pin configuration	

7.6.3.1 AIN_CFG Register (address = 24h) [reset = 00h]

This register configures the analog inputs as single-ended or pseudo-differential with or without a common input.

图 72. AIN_CFG Register

7	6	5	4	3	2	1	0
CH7_CH6	_CFG[1:0]	CH5_CH4	_CFG[1:0]	CH3_CH2	_CFG[1:0]	CH1_CH0	_CFG[1:0]
R/W-	-00b	R/W	-00b	R/W	-00b	R/W-	-00b

表 28. AIN_CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-6	CH1_CH0_CFG[1:0]	R/W	00b	00b = AIN0 and AIN1 are two separate channels. The MUXOUT-M pin is connected to the AIN-COM pin. See the COM_CFG register for selecting single-ended or pseudo-differential operation. 01b = AIN0 and AIN1 are a single-ended pair. AIN0 connects to MUXOUT-P and AIN1 connects to MUXOUT-M. 10b = AIN0 and AIN1 are a pseudo-differential pair. AIN0 connects to MUXOUT-P and AIN1 connects to MUXOUT-M. 11b = Same as 00b
5-4	CH3_CH2_CFG[1:0]	R/W	00b	00b = AIN2 and AIN3 are two separate channels. The MUXOUT-M pin is connected to the AIN-COM pin. See the COM_CFG register for selecting single-ended or pseudo-differential operation. 01b = AIN2 and AIN3 are a single-ended pair. AIN2 connects to MUXOUT-P and AIN3 connects to MUXOUT-M. 10b = AIN2 and AIN3 are a pseudo-differential pair. AIN2 connects to MUXOUT-P and AIN3 connects to MUXOUT-M. 11b = Same as 00b
3-2	CH5_CH4_CFG[1:0]	R/W	00b	00b = AIN4 and AIN5 are two separate channels. The MUXOUT-M pin is connected to the AIN-COM pin. See the COM_CFG register for selecting single-ended or pseudo-differential operation. 01b = AIN4 and AIN5 are a single-ended pair. AIN4 connects to MUXOUT-P and AIN5 connects to MUXOUT-M. 10b = AIN4 and AIN5 are a pseudo-differential pair. AIN4 connects to MUXOUT-P and AIN5 connects to MUXOUT-M. 11b = Same as 00b
1-0	CH7_CH6_CFG[1:0]	R/W	00b	00b = AIN6 and AIN7 are two separate channels. MUXOUT-M pin connected to AIN-COM pin. See the COM_CFG register for selecting single-ended or pseudo-differential operation. 01b = AIN6 and AIN7 are a single-ended pair. AIN6 connects to MUXOUT-P and AIN7 connects to MUXOUT-M. 10b = AIN6 and AIN7 are a pseudo-differential pair. AIN6 connects to MUXOUT-P and AIN7 connects to MUXOUT-M. 11b = Same as 00b

7.6.3.2 COM_CFG Register (address = 27h) [reset = 00h]

This register selects single-ended or pseudo-differential operation for any analog input channels that are not configured as pairs (see the AIN_CFG register). Depending on the contents of this register, AIN-COM must be connected to either GND or REFby2 on the PCB.

图 73. COM_CFG Register

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	COM_CFG
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R/W-0b

表 29. COM_CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	R	000 0000b	Reserved bits. Reads return 000 0000b.
0	COM_CFG	R/W	0b	This bit selects the analog input channel configuration when = 00b or 11b in the AIN_CFG register: 0b = All individual channels are single-ended inputs; connect the AIN-COM pin to GND 1b = All individual channels are pseudo-differential inputs; connect the AIN-COM pin to REFby2

7.6.4 Channel Sequence Configuration Registers Map

表 30 maps the device features following channel configuration of the registers.

表 30. Channel Sequence Configuration Registers Mapping

ADDRESS	REGISTER NAME	REGISTER DESCRIPTION
1Ch	DEVICE_CFG	MUX sequence configuration and device status bits
1Dh	CHANNEL_ID	Analog input channel selection in manual mode (see the <i>Manual Mode</i> section)
1Eh	SEQ_START	Control for starting the multiplexer sequence
1Fh	SEQ_STOP	Control for aborting the multiplexer sequence
2Ah	ON_THE_FLY_CFG	Enables or disables on-the-fly mode (see the On-The-Fly Mode section)
80h	AUTO_SEQ_CFG1	Channel selection register for auto sequence mode (see the <i>Auto Sequence Mode</i> section)
82h	AUTO_SEQ_CFG2	Control for repeating the channels in auto sequence mode

7.6.4.1 DEVICE_CFG Register (address = 1Ch) [reset = 00h]

This register selects the mode of channel sequencing and reading this register returns device status information.

图 74. DEVICE_CFG Register

7	6	5	4	3	2	1 0
0	0	0	0	ALERT_STATUS	ERROR_STATUS	SEQ_MODE[1:0]
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R/W-00b

表 31. DEVICE_CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	0	R	0000b	Reserved bits. Do not write. Reads return 0000b.
3	ALERT_STATUS	R	0b	Read only. This bit reflects the ALERT pin logic level.
2	ERROR_STATUS	R	0b	Read only. This bit indicates a device configuration error: 0b = No error 1b = Error in configuration
1-0	SEQ_MODE[1:0]	R/W	00b	Sets the MUX channel selection operation: 00b = Manual mode 01b = On-the-fly mode 10b = Auto sequence mode 11b = Custom channel sequencing mode (see the Custom Channel Sequencing Mode section)

表 32 describes how the ALERT_STATUS, ERROR_STATUS, and SEQ_MODE[1:0] bits can be collectively decoded to indicate events.

表 32. Decoding the DEVICE_CFG Read Value

ALERT_STATUS	ERROR_STATUS	SEQ_MODE[1:0]	EVENT DESCRIPTION	
0	0	00	No ALERT, no error, manual mode	
0	0	01	No ALERT, no error, on-the-fly mode	
0	0	10	No ALERT, no error, auto sequence mode	
0	0	11	No ALERT, no error, custom channel sequencing mode	
0	1	00	No ALERT, error, manual mode	
0	1	01	No ALERT, error, on-the-fly mode	
0	1	10	No ALERT, error, auto sequence mode	
0	1	11	No ALERT, error, custom channel sequencing mode	
1	0	00	ALERT, no error, manual mode	
1	0	01	ALERT, no error, on-the-fly mode	
1	0	10	ALERT, no error, auto sequence mode	
1	0	11	ALERT, no error, custom channel sequencing mode	
1	1	00	ALERT, error, manual mode	
1	1	01	ALERT, error, on-the-fly mode	
1	1	10	ALERT, error, auto sequence mode	
1	1	11	ALERT, error, custom channel sequencing mode	

7.6.4.2 CHANNEL_ID Register (address = 1Dh) [reset = 00h]

This register selects the analog input channel; see the *Manual Mode* section.

图 75. CHANNEL_ID Register

7	6	5	4	3	2	1	0
0	0	0	0	0	CHANNEL_ID[2:0]		
R-0b	R-0b	R-0b	R-0b	R-0b	R/W-000b		

表 33. CHANNEL_ID Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-3	0	R	0 0000b	Reserved bits. Reads return 0 0000b.
2-0	CHANNEL_ID[2:0]	R/W	000b	These bits select the analog input channel as per 表 34.

表 34. Analog Input Channel Selection Settings

CHANNEL_ID[2:0]	ANALOG INPUT SELECTED
000b	AIN0
001b	AIN1
010b	AIN2
011b	AIN3
100b	AIN4
101b	AIN5
110b	AIN6
111b	AIN7

注

Writing to the CHANNEL_ID register when the device is actively operating in auto sequence mode or custom channel sequencing mode aborts the on-going sequence and the DEVICE_CFG register is set to manual mode.

7.6.4.3 SEQ_START Register (address = 1Eh) [reset = 00h]

This register starts the channel selection sequence when in auto sequence mode or custom channel sequencing mode. Writing to this register has no effect when in manual mode or on-the-fly mode.

图 76. SEQ_START Register

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	SEQ_START
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	W-0b

表 35. SEQ_START Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	R	0b	Reserved bits. Do not write.
0	SEQ_START	W	Ob	This bit starts the channel scanning sequence when SEQ_MODE[1:0] = auto sequence mode or custom channel sequencing mode. 0b = No effect; any on-going sequence is not stopped 1b = Start channel sequence

7.6.4.4 SEQ_ABORT Register (address = 1Fh) [reset = 00h]

This register stops the channel selection sequence when in auto channel sequence mode or custom channel sequencing mode. Writing to this register has no effect when in manual mode or on-the-fly mode.

图 77. SEQ_ABORT Register

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	SEQ_ABORT
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	W-0b

表 36. SEQ_ABORT Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	R	0b	Reserved bits. Do not write.
0	SEQ_ABORT	W	Ob	This bit stops the channel scanning sequence when SEQ_MODE[1:0] = auto sequence mode or custom channel sequencing mode. 0b = No effect 1b = Stop channel sequence

7.6.4.5 ON_THE_FLY_CFG Register (address = 2Ah) [reset = 00h]

This register enables on-the-fly mode of operation. This mode of operation helps select analog input channels without having to write to device configuration registers.

图 78. ON_THE_FLY_CFG Register

7		6	5	4	3	2	1	0
0		0	0	0	0	0	0	EN_ON_THE_FLY
R-0	b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R/W-0b

表 37. ON THE FLY CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	R	000 0000b	Reserved bits. Reads return 000 0000b.
0	EN_ON_THE_FLY	R/W	Ob	This bit enables on-the-fly mode. 0b = On-the-fly mode disabled 1b = On-the-fly mode enabled; the first five bits on SDI select the analog input channel for next conversion (see 图 44)

7.6.4.6 AUTO_SEQ_CFG1 Register (address = 80h) [reset = 00h]

This register selects the channels enabled for auto sequence mode.

图 79. AUTO_SEQ_CFG1 Register

7	6	5	4	3	2	1	0
EN_AIN7	EN_AIN6	EN_AIN5	EN_AIN4	EN_AIN3	EN_AIN2	EN_AIN1	EN_AIN0
R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 38. AUTO_SEQ_CFG1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	EN_AIN7	R/W	Ob	This bit enables analog input channel 7 in the auto channel sequence mode; see the <i>Auto Sequence Mode</i> section. 0b = AIN7 is not enabled in the scanning sequence 1b = AIN7 is enabled in the scanning sequence
6	EN_AIN6	R/W	0b	This bit enables analog input channel 6 in the auto sequence mode. 0b = AIN6 is not enabled in the scanning sequence 1b = AIN6 is enabled in the scanning sequence
5	EN_AIN5	R/W	0b	This bit enables analog input channel 5 in the auto sequence mode. 0b = AIN5 is not enabled in the scanning sequence 1b = AIN5 is enabled in the scanning sequence
4	EN_AIN4	R/W	0b	This bit enables analog input channel 4 in the auto sequence mode. 0b = AIN4 is not enabled in the scanning sequence 1b = AIN4 is enabled in the scanning sequence
3	EN_AIN3	R/W	0b	This bit enables analog input channel 3 in the auto sequence mode. 0b = AIN3 is not enabled in the scanning sequence 1b = AIN3 is enabled in the scanning sequence
2	EN_AIN2	R/W	0b	This bit enables analog input channel 2 in the auto sequence mode. 0b = AIN2 is not enabled in the scanning sequence 1b = AIN2 is enabled in the scanning sequence
1	EN_AIN1	R/W	0b	This bit enables analog input channel 1 in the auto sequence mode. 0b = AIN1 is not enabled in the scanning sequence 1b = AIN1 is enabled in the scanning sequence
0	EN_AIN0	R/W	0b	This bit enables analog input channel 0 in the auto sequence mode. 0b = AIN0 is not enabled in the scanning sequence 1b = AIN0 is enabled in the scanning sequence

7.6.4.7 AUTO_SEQ_CFG2 Register (address = 82h) [reset = 00h]

This register enables the sequence loop for auto sequence mode.

图 80. AUTO_SEQ_CFG2 Register

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	AUTO_REPEAT
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R/W-0b

表 39. AUTO_SEQ_CFG2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	R	000 0000b	Reserved bits. Reads return 000 0000b.
0	AUTO_REPEAT	R/W	Ob	This bit enables looping the sequence indefinitely in auto sequence mode. 0b = Sequence terminates after all enabled channels are scanned 1b = Sequence repeats after scanning all enabled channels

7.6.4.8 Custom Channel Sequencing Mode Registers

表 20 maps the device features for the custom channel sequencing mode registers; see the *Custom Channel Sequencing Mode* section for mode details.

表 40. Custom Channel Sequencing Registers

ADDRESS	REGISTER NAME	REGISTER DESCRIPTION
88h	CCS_START_INDEX	Start index for the custom channel sequencing mode sequence
89h	CCS_END_INDEX	End index for the custom channel sequencing mode sequence
8Ah	CCS_SEQ_LOOP	Custom channel sequencing mode loop control
8Ch	CCS_CHID_INDEX_0	Channel ID configuration register index 0
8Dh	REPEAT_INDEX_0	Repeat count register index 0
8Eh	CCS_CHID_INDEX_1	Channel ID configuration register index 1
8Fh	REPEAT_INDEX_1	Repeat count register index 1
90h	CCS_CHID_INDEX_2	Channel ID configuration register index 2
91h	REPEAT_INDEX_2	Repeat count register index 2
92h	CCS_CHID_INDEX_3	Channel ID configuration register index 3
93h	REPEAT_INDEX_3	Repeat count register index 3
94h	CCS_CHID_INDEX_4	Channel ID configuration register index 4
95h	REPEAT_INDEX_4	Repeat count register index 4
96h	CCS_CHID_INDEX_5	Channel ID configuration register index 5
97h	REPEAT_INDEX_5	Repeat count register index 5
98h	CCS_CHID_INDEX_6	Channel ID configuration register index 6
99h	REPEAT_INDEX_6	Repeat count register index 6
9Ah	CCS_CHID_INDEX_7	Channel ID configuration register index 7
9Bh	REPEAT_INDEX_7	Repeat count register index 7
9Ch	CCS_CHID_INDEX_8	Channel ID configuration register index 8
9Dh	REPEAT_INDEX_8	Repeat count register index 8
9Eh	CCS_CHID_INDEX_9	Channel ID configuration register index 9
9Fh	REPEAT_INDEX_9	Repeat count register index 9
A0h	CCS_CHID_INDEX_10	Channel ID configuration register index 10
A1h	REPEAT_INDEX_10	Repeat count register index 10
A2h	CCS_CHID_INDEX_11	Channel ID configuration register index 11
A3h	REPEAT_INDEX_11	Repeat count register index 11
A4h	CCS_CHID_INDEX_12	Channel ID configuration register index 12
A5h	REPEAT_INDEX_12	Repeat count register index 12
A6h	CCS_CHID_INDEX_13	Channel ID configuration register index 13
A7h	REPEAT_INDEX_13	Repeat count register index 13
A8h	CCS_CHID_INDEX_14	Channel ID configuration register index 14
A9h	REPEAT_INDEX_14	Repeat count register index 14
AAh	CCS_CHID_INDEX_15	Channel ID configuration register index 15
ABh	REPEAT_INDEX_15	Repeat count register index 15

7.6.4.8.1 CCS_START_INDEX Register (address = 88h) [reset = 00h]

This register sets the relative sequence index where the custom channel sequencing mode starts execution from.

图 81. CCS_START_INDEX Register

7	6	5	4	3	2	1	0
0	0	0	0		SEQ_STAR	Γ_INDEX[3:0]	
R-0b	R-0b	R-0b	R-0b		R/W-	0000b	

表 41. CCS_START_INDEX Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	0	R	0000b	Reserved bits. Reads return 0000b.
3-0	SEQ_START_INDEX[3:0]	R/W	0000b	Relative pointer to the index for the start of the sequence in custom channel sequencing mode.

7.6.4.8.2 CCS_END_INDEX Register (address = 89h) [reset = 00h]

This register sets the relative sequence index where the custom channel sequencing mode stops execution at. The value in the CCS_END_INDEX register must not be less than the value in the CCS_START_INDEX register.

图 82. CCS_END_INDEX Register

7	6	5	4	3	2	1	0
0	0	0	0		SEQ_END_	INDEX[3:0]	
R-0b	R-0b	R-0b	R-0b		R/W-0	0000b	

表 42. CCS_END_INDEX Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-4	0	R	0000b	Reserved bits. Reads return 0000b.
3-0	SEQ_END_INDEX[3:0]	R/W	0000b	Relative pointer to the index for the end of the sequence in custom channel sequencing mode.

7.6.4.8.3 CCS_SEQ_LOOP Register (address = 8Bh) [reset = 00h]

This register controls the looping of the sequence in custom channel sequencing mode.

图 83. CCS_SEQ_LOOP Register

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	SEQ_LOOP
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R/W-0b

表 43. CCS_SEQ_LOOP Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-1	0	R	000 0000b	Reserved bits. Reads return 000 0000b.
0	SEQ_LOOP	R/W	Ob	Configures the looping of sequence in custom channel sequencing mode. 0b = Sequence ends at the index location configured in the CCS_END_INDEX[3:0] bits; see the CCS_END_INDEX register 1b = Sequence resumes from the CCS_START_INDEX[3:0] bits (see the CCS_START_INDEX register) after executing the CCS_END_INDEX[3:0] bits.

7.6.4.8.4 CCS_CHID_INDEX_m Registers (address = 8C, 8E, 90, 92, 94, 96, 98, 9A, 9C, 9E, A0, A2, A4, A6, A8, and AAh) [reset = 00h]

In custom channel sequencing mode, the intended sequence of the analog input channels can be programmed in these 16 registers. See the REPEAT_INDEX_m registers for details about repeating a particular channel before switching to the next index.

图 84. CCS_CHID_INDEX_m Register

7	6	5	4	3	2	1	0
0	0	0	0	0		CHID[2:0]	
R-0b	R-0b	R-0b	R-0b	R-0b		R/W-000b	

表 44. CCS_CHID_INDEX_m Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-3	0	R	0 0000b	Reserved bits. Reads return 0 0000b.
2-0	CHID[2:0]	R/W	000b	These bits configure the analog input channel associated with the index in custom channel sequencing mode. 000b = AIN0 001b = AIN1 010b = AIN2 011b = AIN3 100b = AIN4 101b = AIN5 110b = AIN6 111b = AIN7

7.6.4.8.5 REPEAT_INDEX_m Registers (address = 8D, 8F, 91, 93, 95, 97, 99, 9B, 9D, 9F, A1, A3, A5, A7, A9, and ABh) [reset = 00h]

In custom channel sequencing mode, the analog input selected in the corresponding CCS_CHID_INDEX register can be repeated by configuring the respective register.

图 85. REPEAT_INDEX_m Register

7	6	5	4	3	2	1	0
REPEAT[7:0]							
	R/W-1111 1111b						

表 45. REPEAT_INDEX_m Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	REPEAT[7:0]	R/W	1111 1111b	These bits configure the number of times the analog input configured in the corresponding CCS_CHID_INDEX register is repeated. Configuring 0000 0000b in this register results in an error.

7.6.5 Digital Window Comparator Configuration Registers Map

表 46 maps the device features for the digital window comparator; see the *Digital Window Comparator* section.

表 46. Digital Window Comparator Configuration Registers Mapping

ADDRESS	REGISTER NAME	REGISTER DESCRIPTION
2Eh	ALERT_CFG	ALERT enable control for individual analog input channels
31h and 30h	HI_TRIG_AIN7	High threshold input for the AIN7 digital window comparator
35h and 34h	HI_TRIG_AIN6	High threshold input for the AIN6 digital window comparator
39h and 38h	HI_TRIG_AIN5	High threshold input for AIN5 digital window comparator
3Dh and 3Ch	HI_TRIG_AIN4	High threshold input for the AIN4 digital window comparator
41h and 40h	HI_TRIG_AIN3	High threshold input for the AIN3 digital window comparator
45h and 44h	HI_TRIG_AIN2	High threshold input for the AIN2 digital window comparator
49h and 48h	HI_TRIG_AIN1	High threshold input for the AIN1 digital window comparator
4Dh and 4Ch	HI_TRIG_AIN0	High threshold input for the AINO digital window comparator
55h and 54h	LO_TRIG_AIN7	Low threshold input for the AIN7 digital window comparator
59h and 58h	LO_TRIG_AIN6	Low threshold input for the AIN6 digital window comparator
5Dh and 5Ch	LO_TRIG_AIN5	Low threshold input for the AIN5 digital window comparator
61h and 60h	LO_TRIG_AIN4	Low threshold input for the AIN4 digital window comparator
65h and 64h	LO_TRIG_AIN3	Low threshold input for the AIN3 digital window comparator
69h and 68h	LO_TRIG_AIN2	Low threshold input for the AIN2 digital window comparator
6Dh and 6Ch	LO_TRIG_AIN1	Low threshold input for the AIN1 digital window comparator
71h and 70h	LO_TRIG_AIN0	Low threshold input for the AIN0 digital window comparator
33h	HYSTERESIS_AIN7	Threshold hysteresis for the AIN7 digital window comparator
37h	HYSTERESIS_AIN6	Threshold hysteresis for the AIN6 digital window comparator
3Bh	HYSTERESIS_AIN5	Threshold hysteresis for the AIN5 digital window comparator
3Fh	HYSTERESIS_AIN4	Threshold hysteresis for the AIN4 digital window comparator
43h	HYSTERESIS_AIN3	Threshold hysteresis for the AIN3 digital window comparator
47h	HYSTERESIS_AIN2	Threshold hysteresis for the AIN2 digital window comparator
4Bh	HYSTERESIS_AIN1	Threshold hysteresis for the AIN1 digital window comparator
4Fh	HYSTERESIS_AIN0	Threshold hysteresis for the AIN0 digital window comparator
78h	ALERT_LO_STATUS	Indicates the analog input channel-wise ALERT resulting from a low threshold
79h	ALERT_HI_STATUS	Indicates the analog input channel-wise ALERT resulting from a high threshold
7Ah	ALERT_STATUS	Indicates the analog input channel-wise ALERT status
7Ch	CURR_ALERT_LO_STATUS	Indicates the analog input channel-wise ALERT resulting from a low threshold for the last conversion data
7Dh	CURR_ALERT_HI_STATUS	Indicates the analog input channel-wise ALERT resulting from a high threshold for the last conversion data
7Eh	CURR_ALERT_STATUS	Indicates the analog input channel-wise ALERT status for the last conversion data

7.6.5.1 ALERT_CFG Register (address = 2Eh) [reset = 00h]

This register enables or disables the digital window comparator for the individual analog input channels.

图 86. ALERT_CFG Register

7	6	5	4	3	2	1	0
ALERT_EN_ AIN7	ALERT_EN_ AIN6	ALERT_EN_ AIN5	ALERT_EN_ AIN4	ALERT_EN_ AIN3	ALERT_EN_ AIN2	ALERT_EN_ AIN1	ALERT_EN_ AIN0
R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 47. ALERT_CFG Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	ALERT_EN_AIN7	R/W	0b	Digital window comparator control for AIN7. 0b = Digital window comparator disabled 1b = Digital window comparator enabled
6	ALERT_EN_AIN6	R/W	0b	Digital window comparator control for AIN6. 0b = Digital window comparator disabled 1b = Digital window comparator enabled
5	ALERT_EN_AIN5	R/W	0b	Digital window comparator control for AIN5. 0b = Digital window comparator disabled 1b = Digital window comparator enabled
4	ALERT_EN_AIN4	R/W	0b	Digital window comparator control for AIN4. 0b = Digital window comparator disabled 1b = Digital window comparator enabled
3	ALERT_EN_AIN3	R/W	0b	Digital window comparator control for AIN3. 0b = Digital window comparator disabled 1b = Digital window comparator enabled
2	ALERT_EN_AIN2	R/W	0b	Digital window comparator control for AIN2. 0b = Digital window comparator disabled 1b = Digital window comparator enabled
1	ALERT_EN_AIN1	R/W	0b	Digital window comparator control for AIN1. 0b = Digital window comparator disabled 1b = Digital window comparator enabled
0	ALERT_EN_AIN0	R/W	0b	Digital window comparator control for AIN0. 0b = Digital window comparator disabled 1b = Digital window comparator enabled

When the digital window comparator is disabled, the bits corresponding to the disabled digital window comparator are not updated in the ALERT_STATUS, ALERT_HI_STATUS, ALERT_LO_STATUS, CURR_ALERT_STATUS, CURR_ALERT_HI_STATUS, or CURR_ALERT_LO_STATUS registers.

7.6.5.2 HI_TRIG_AINx[15:0] Register (address = 4Dh to 30h) [reset = 0000h]

This bank of registers configures the high threshold for the digital window comparator. For 16-bit ADC data output, the comparator thresholds are 16-bits wide and are spread over two 8-bit registers. Use the registers listed in 表 48 to configure the high threshold for the individual analog input channels.

表 48. HI_TRIG_AINx[15:0] Register Address Map⁽¹⁾

ANALOG INPUT	REGISTER ADDRESS FOR HI_TRIG_AINx[15:8]	REGISTER ADDRESS FOR HI_TRIG_AINx[7:0]
AIN7	031h	030h
AIN6	035h	034h
AIN5	039h	038h
AIN4	03Dh	03Ch
AIN3	041h	040h
AIN2	045h	044h
AIN1	049h	048h
AIN0	04Dh	04Ch

⁽¹⁾ AINx refers to analog inputs channels AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7.

图 87. MSB Byte Register for HI_TRIG_AINx[15:8]

7	6	5	4	3	2	1	0		
HI_TRIG[15:8]									
	R/W-0000 0000b								

图 88. LSB Byte Register for HI_TRIG_AINx[7:0]

7	6	5	4	3	2	1	0		
	HI_TRIG[7:0]								
	R/W-0000 0000b								

表 49. HI_TRIG_AINx[15:0] Registers Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	HI_TRIG[15:0]	R/W	0000 0000 0000 0000b	High threshold for the digital window comparator

7.6.5.3 LO_TRIG_AINx[15:0] Register (address = 71h to 54h) [reset = 0000h]

This bank of registers configures the low threshold for the digital window comparator. For 16-bit ADC data output, the comparator thresholds are 16-bits wide and are spread over two 8-bit registers. Use the registers listed in 表 50 to configure the low threshold for the individual analog input channels

表 50. LO_TRIG_AINx[15:0] Register Address Map⁽¹⁾

ANALOG INPUT	REGISTER ADDRESS FOR LO_TRIG_AINx[15:8]	REGISTER ADDRESS FOR LO_TRIG_AINx[7:0]
AIN7	051h	054h
AIN6	059h	058h
AIN5	05Dh	05Ch
AIN4	061h	060h
AIN3	065h	064h
AIN2	069h	068h
AIN1	06Dh	06Ch
AIN0	071h	070h

(1) AINx refers to analog inputs channels AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7.

图 89. MSB Byte Register for LO_TRIG_AINx[15:8]

7	6	5	4	3	2	1	0		
LO_TRIG[15:8]									
	R/W-0000 0000b								

图 90. LSB Byte Register for LO_TRIG_AINx[7:0]

7	6	5	4	3	2	1	0		
	LO_TRIG[7:0]								
	R/W-0000 0000b								

表 51. LO_TRIG_AINx[15:0] Registers Field Descriptions

Bit	Field	Туре	Reset	Description
15:0	LO_TRIG[15:0]	R/W	0000 0000 0000 0000b	Low threshold for the digital window comparator

7.6.5.4 HYSTERESIS_AINx[7:0] Register (address = 4Fh to 33h) [reset = 00h]

This bank of registers configures the hysteresis around the high and low thresholds for the digital window comparator. For 16-bit ADC data output, the hysteresis is six bits wide.

图 91. HYSTERESIS_AINx[7:0] Registers

7	6	5	4	3	2	1	0
		HYSTER	ESIS[5:0]			0	0
	R/W-00 0000b						R-0b

表 52. HYSTERESIS_AINx[7:0]⁽¹⁾ Register Field Descriptions

Bit	Field	Туре	Reset	Description
7:2	HYSTERESIS[5:0]	R/W	000 0000b	Low threshold for the digital window comparator

(1) AINx refers to analog inputs channels AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AIN6, and AIN7.

7.6.5.5 ALERT_LO_STATUS Register (address = 78h) [reset = 00h]

This register reflects the status of the ALERT pin resulting from the low thresholds of the respective analog input channels.

图 92. ALERT_LO_STATUS Register

7	6	5	4	3	2	1	0
ALERT_LO_ AIN7	ALERT_LO_ AIN6	ALERT_LO_ AIN5	ALERT_LO_ AIN4	ALERT_LO_ AIN3	ALERT_LO_ AIN2	ALERT_LO_ AIN1	ALERT_LO_ AIN0
R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 53. ALERT_LO_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	ALERT_LO_AIN7	R/W	0b	This bit indicates that the low threshold for AIN7 has been exceeded. 0b = Low threshold is not exceeded 1b = Low threshold has been exceeded; clear this bit by writing 1b
6	ALERT_LO_AIN6	R/W	0b	This bit indicates that the low threshold for AIN6 has been exceeded. 0b = Low threshold is not exceeded 1b = Low threshold has been exceeded; clear this bit by writing 1b
5	ALERT_LO_AIN5	R/W	0b	This bit indicates that the low threshold for AIN5 has been exceeded. 0b = Low threshold is not exceeded 1b = Low threshold has been exceeded; clear this bit by writing 1b
4	ALERT_LO_AIN4	R/W	0b	This bit indicates that the low threshold for AIN4 has been exceeded. 0b = Low threshold is not exceeded 1b = Low threshold has been exceeded; clear this bit by writing 1b
3	ALERT_LO_AIN3	R/W	0b	This bit indicates that the low threshold for AIN3 has been exceeded. 0b = Low threshold is not exceeded 1b = Low threshold has been exceeded; clear this bit by writing 1b
2	ALERT_LO_AIN2	R/W	0b	This bit indicates that the low threshold for AIN2 has been exceeded. 0b = Low threshold is not exceeded 1b = Low threshold has been exceeded; clear this bit by writing 1b
1	ALERT_LO_AIN1	R/W	0b	This bit indicates that the low threshold for AIN1 has been exceeded. 0b = Low threshold is not exceeded 1b = Low threshold has been exceeded; clear this bit by writing 1b
0	ALERT_LO_AIN0	R/W	0b	This bit indicates that the low threshold for AINO has been exceeded. 0b = Low threshold is not exceeded 1b = Low threshold has been exceeded; clear this bit by writing 1b

7.6.5.6 ALERT_HI_STATUS Register (address = 79h) [reset = 00h]

This register reflects the status of the ALERT pin resulting from the high thresholds of the respective analog input channels.

图 93. ALERT_HI_STATUS Register

7	6	5	4	3	2	1	0
ALERT_HI_ AIN7	ALERT_HI_ AIN6	ALERT_HI_ AIN5	ALERT_HI_ AIN4	ALERT_HI_ AIN3	ALERT_HI_ AIN2	ALERT_HI_ AIN1	ALERT_HI_ AIN0
R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 54. ALERT_HI_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	ALERT_HI_AIN7	R/W	0b	This bit indicates that the high threshold for AIN7 has been exceeded. 0b = High threshold is not exceeded 1b = High threshold has been exceeded; clear this bit by writing 1b
6	ALERT_HI_AIN6	R/W	Ob This bit indicates that the high threshold for AIN6 has been exceeded Ob = High threshold is not exceeded 1b = High threshold has been exceeded; clear this bit by writing	
5	ALERT_HI_AIN5	R/W	0b	This bit indicates that the high threshold for AIN5 has been exceeded. 0b = High threshold is not exceeded 1b = High threshold has been exceeded; clear this bit by writing 1b
4	ALERT_HI_AIN4	R/W	0b	This bit indicates that the high threshold for AIN4 has been exceeded. 0b = High threshold is not exceeded 1b = High threshold has been exceeded; clear this bit by writing 1b
3	ALERT_HI_AIN3	R/W	0b	This bit indicates that the high threshold for AIN3 has been exceeded. 0b = High threshold is not exceeded 1b = High threshold has been exceeded; clear this bit by writing 1b
2	ALERT_HI_AIN2	R/W	0b	This bit indicates that the high threshold for AIN2 has been exceeded. 0b = High threshold is not exceeded 1b = High threshold has been exceeded; clear this bit by writing 1b
1	ALERT_HI_AIN1	R/W	0b	This bit indicates that the high threshold for AIN1 has been exceeded. 0b = High threshold is not exceeded 1b = High threshold has been exceeded; clear this bit by writing 1b
0	ALERT_HI_AIN0	R/W	0b	This bit indicates that the high threshold for AIN0 has been exceeded. 0b = High threshold is not exceeded 1b = High threshold has been exceeded; clear this bit by writing 1b

7.6.5.7 ALERT_STATUS Register (address = 7Ah) [reset = 00h]

This register reflects the ALERT status for the analog input channels.

图 94. ALERT_STATUS Register

7	6	5	4	3	2	1	0
ALERT_AIN7	ALERT_AIN6	ALERT_AIN5	ALERT_AIN4	ALERT_AIN3	ALERT_AIN2	ALERT_AIN1	ALERT_AIN0
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 55. ALERT_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	ALERT_AIN7	R	Ob	This bit indicates if either the high or low threshold for AIN7 has been exceeded. 0b = Neither the high are low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
6	ALERT_AIN6	R	0b	This bit indicates if either the high or low threshold for AIN6 has been exceeded. 0b = Neither the high are low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
5	ALERT_AIN5	R	0b	This bit indicates if either the high or low threshold for AIN5 has been exceeded. 0b = Neither the high are low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
4	ALERT_AIN4	R	0b	This bit indicates if either the high or low threshold for AIN4 has been exceeded. 0b = Neither the high are low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
3	ALERT_AIN3	R	Ob	This bit indicates if either the high or low threshold for AIN3 has been exceeded. Ob = Neither the high are low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
2	ALERT_AIN2	R	Ob	This bit indicates if either the high or low threshold for AIN2 has been exceeded. Ob = Neither the high are low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
1	ALERT_AIN1	R	Ob	This bit indicates if either the high or low threshold for AIN1 has been exceeded. 0b = Neither the high are low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
0	ALERT_AIN0	R	0b	This bit indicates if either the high or low threshold for AIN0 has been exceeded. 0b = Neither the high are low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded

If the ALERT bit for a particular channel is set in the ALERT_STATUS register, then the ALERT bit can be cleared by writing 1b to the corresponding bit in the ALERT_HI_STATUS or ALERT_LO_STATUS registers. If both the high and low thresholds have been exceeded for a particular analog input channel, then the corresponding ALERT bit in both the ALERT_HI_STATUS or ALERT_LO_STATUS registers must be set to 1b to clear the ALERT bit.

7.6.5.8 CURR_ALERT_LO_STATUS Register (address = 7Ch) [reset = 00h]

This register reflects the low threshold ALERT status for the analog input channels. The bits in this register are updated after every conversion.

图 95. CURR_ALERT_LO_STATUS Register

7	6	5	4	3	2	1	0
ALERT_LO_ AIN7	ALERT_LO_ AIN6	ALERT_LO_ AIN5	ALERT_LO_ AIN4	ALERT_LO_ AIN3	ALERT_LO_ AIN2	ALERT_LO_ AIN1	ALERT_LO_ AIN0
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 56. CURR_ALERT_LO_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	ALERT_LO_AIN7	R	Ob	This bit indicates if the low threshold for AIN7 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = Low threshold has been exceeded
6	ALERT_LO_AIN6	R	0b	This bit indicates if the low threshold for AIN6 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = Low threshold has been exceeded
5	ALERT_LO_AIN5	R	0b	This bit indicates if the low threshold for AIN5 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = Low threshold has been exceeded
4	ALERT_LO_AIN4	R	0b	This bit indicates if the low threshold for AIN4 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = Low threshold has been exceeded
3	ALERT_LO_AIN3	R	0b	This bit indicates if the low threshold for AIN3 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = Low threshold has been exceeded
2	ALERT_LO_AIN2	R	0b	This bit indicates if the low threshold for AIN2 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = Low threshold has been exceeded
1	ALERT_LO_AIN1	R	0b	This bit indicates if the low threshold for AIN1 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = Low threshold has been exceeded
0	ALERT_LO_AIN0	R	Ob	This bit indicates if the low threshold for AIN0 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = Low threshold has been exceeded

The status of the individual bits in this register is evaluated after every conversion. The contents of this register can be used to ascertain if the last output data are within the specified high threshold for the respective analog input channels.

7.6.5.9 CURR_ALERT_HI_STATUS Register (address = 7Dh) [reset = 00h]

This register reflects the high threshold ALERT status for the analog input channels. The bits in this register are updated after every conversion.

图 96. CURR_ALERT_HI_STATUS Register

7	6	5	4	3	2	1	0
ALERT_HI_ AIN7	ALERT_HI_ AIN6	ALERT_HI_ AIN5	ALERT_HI_ AIN4	ALERT_HI_ AIN3	ALERT_HI_ AIN2	ALERT_HI_ AIN1	ALERT_HI_ AIN0
R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 57. CURR_ALERT_HI_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	ALERT_HI_AIN7	R	Ob	This bit indicates if the high threshold for AIN7 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = High threshold has been exceeded
6	ALERT_HI_AIN6	R	0b	This bit indicates if the high threshold for AIN6 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = High threshold has been exceeded
5	ALERT_HI_AIN5	R	0b	This bit indicates if the high threshold for AIN5 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = High threshold has been exceeded
4	ALERT_HI_AIN4	R	Ob	This bit indicates if the high threshold for AIN4 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = High threshold has been exceeded
3	ALERT_HI_AIN3	R	Ob	This bit indicates if the high threshold for AIN3 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = High threshold has been exceeded
2	ALERT_HI_AIN2	R	0b	This bit indicates if the high threshold for AIN2 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = High threshold has been exceeded
1	ALERT_HI_AIN1	R	Ob	This bit indicates if the high threshold for AIN1 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = High threshold has been exceeded
0	ALERT_HI_AIN0	R	0b	This bit indicates if the high threshold for AIN0 has been exceeded by the last converted data from channel AIN7. 0b = High threshold is not exceeded 1b = High threshold has been exceeded

The status of the individual bits in this register is evaluated after every conversion. The contents of this register can be used to ascertain if the last output data are within the specified high threshold for the respective analog input channels.

7.6.5.10 CURR_ALERT_STATUS Register (address = 7Eh) [reset = 00h]

This register reflects the ALERT pin status for the analog input channels. The bits in this register are updated after every conversion.

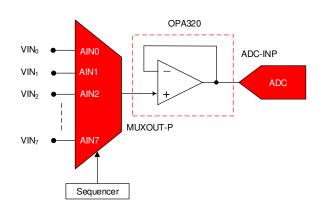
图 97. CURR_ALERT_STATUS Register

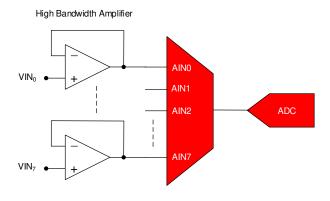
7	6	5	4	3	2	1	0
ALERT_AIN7	ALERT_AIN6	ALERT_AIN5	ALERT_AIN4	ALERT_AIN3	ALERT_AIN2	ALERT_AIN1	ALERT_AIN0
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 58. CURR_ALERT_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	ALERT_AIN7	R	Ob	This bit indicates that either the high or low threshold for AIN7 has been exceeded by the last converted data from channel AIN7. Ob = Neither the high or low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
6	ALERT_AIN6	R	0b	This bit indicates that either the high or low threshold for AIN6 has been exceeded by the last converted data from channel AIN7. Ob = Neither the high or low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
5	ALERT_AIN5	R	Ob	This bit indicates that either the high or low threshold for AIN5 has been exceeded by the last converted data from channel AIN7. Ob = Neither the high or low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
4	ALERT_AIN4	R	Ob	This bit indicates that either the high or low threshold for AIN4 has been exceeded by the last converted data from channel AIN7. Ob = Neither the high or low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
3	ALERT_AIN3	R	Ob	This bit indicates that either the high or low threshold for AIN3 has been exceeded by the last converted data from channel AIN7. Ob = Neither the high or low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
2	ALERT_AIN2	R	Ob	This bit indicates that either the high or low threshold for AIN2 has been exceeded by the last converted data from channel AIN7. Ob = Neither the high or low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
1	ALERT_AIN1	R	Ob	This bit indicates that either the high or low threshold for AIN1 has been exceeded by the last converted data from channel AIN7. Ob = Neither the high or low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded
0	ALERT_AIN0	R	Ob	This bit indicates that either the high or low threshold for AIN0 has been exceeded by the last converted data from channel AIN7. 0b = Neither the high or low threshold have been exceeded 1b = Either the high threshold, the low threshold, or both thresholds have been exceeded

Bits in this register reflect the result of the logical OR of the corresponding channel bits in the CURR_ALERT_HI_STATUS and CURR_ALERT_LO_STATUS registers. The status of the individual bits in this register is evaluated after every conversion. The contents of this register can be used to ascertain if the last output data are within the specified high and low thresholds for the respective analog input channels.


8 Application and Implementation


注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

8.1.1 Multiplexer Input Connection

ADS8168 Solution - Single Wide Bandwidth Amplifier

Conventional Solution - Eight Wide Bandwidth Amplifiers

图 98. Small-Size and Low-Power 8-Channel DAQ System Using the ADS816x

When connecting the sensor directly to the input of the ADS816x, the maximum switching speed of the multiplexer is limited by multiplexer on-resistance and parasitic capacitance. \boxtimes 99 illustrates the source resistance (R_{S0}, R_{S1}...), multiplexer impedance (R_{MUX}), multiplexer capacitance (C_{MUX}), op amp input capacitance (C_{OPA}), and the stray PCB capacitance at the output of the multiplexer (C_{STRAY}). In this example, the total output capacitance is the combination of the multiplexer output capacitance, the op amp input capacitance, and the stray capacitance (C_{MUX} + C_{OPA} + C_{STRAY}) = 15 pF. When switching to a channel, this capacitance must be charged to the sensor output voltage via the source resistance and the multiplexer resistance (R_{S0} + R_{MUX}).

公式 2 can be used to estimate the number of time constants required for N bits of settling. For this example, to achieve 16-bit settling, 11.09 time constants are required. Thus, as computed in 公式 3 and 公式 4, for channel 0 the required settling time is 167 ns.

$$N_{TC} = \ln(2^{16}) = 11.09$$
 (2)

Settling Time Required =
$$(R_{S0} + R_{MUX}) \times (C_{MUX} + C_{OPA} + C_{STRAY}) \times N_{TC}$$
 (3)

Settling Time Required =
$$(1 \text{ k}\Omega) \times (15 \text{ pF}) \times 11.09 = 167 \text{ ns}$$
 (4)

Application Information (接下页)

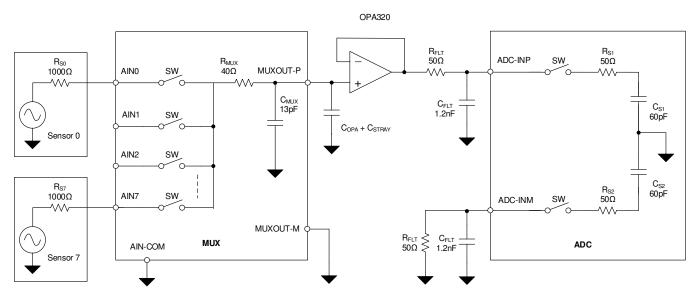


图 99. Direct Sensor Interface With the ADS816x in an 8-Channel, Single-Ended Configuration

When operating at 1 MSPS in either manual mode, auto sequence mode, or custom channel sequencing mode, a 900-ns settling time is available at the analog inputs of the multiplexer; see the *Early Switching for Direct Sensor Interface* section. Using $\Delta \vec{x}$ 4, the maximum sensor output impedance for a direct connection is 5.4 kΩ.

In some applications, such as temperature sensing, the sensor output impedance can be greater than 10 k Ω . When scanning the multiplexer channels at high throughput, the relatively higher driving impedance results in a settling error. In such cases, $\boxed{8}$ 100 shows that the multiplexer inputs can be driven using an amplifier. The multiplexer outputs can be connected to the ADC inputs directly. For best distortion performance, an amplifier can be used between the multiplexer and the ADC as described in the *Selecting an ADC Input Buffer* section.

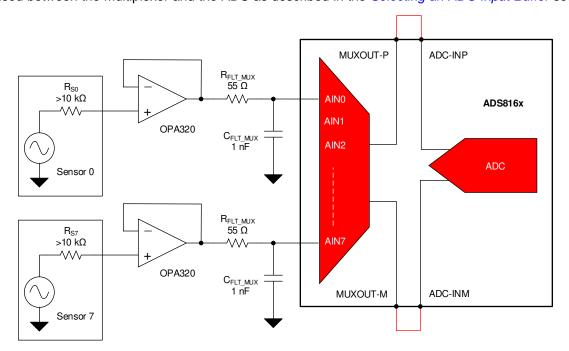


图 100. High Output Impedance Sensor Interface

Application Information (接下页)

8.1.2 Selecting an ADC Input Buffer

 $\ensuremath{\mathbb{Z}}$ 101 shows the external amplifier, charge bucket filter, and sample-and-hold circuit at the ADC input for the ADS816x. Having a short background on the conversion process helps to understand the design procedure for selecting the amplifier and RC filter. The conversion process is broken up into two phases: the acquisition phase and the conversion phase. During the acquisition phase the SW switches are closed, and the input signal is stored on the sample-and-hold capacitors, C_{S1} and C_{S2} . After the acquisition phase, the switches opens and the voltage stored on the capacitors is converted to a digital code by the SAR algorithm. This conversion process depletes the charge on the sample-and-hold capacitors.

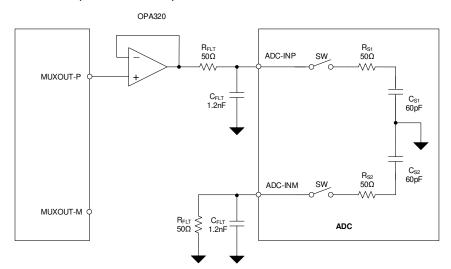


图 101. Driving the ADC Inputs (ADC-INP and ADC-INM)

During subsequent acquisition cycles, the sample-and-hold capacitor must be charged to the ADC input voltage that can make step changes in the value because each input may be from a different multiplexer channel. For example, if AIN0 is connected to 4 V and AIN1 is connected to 0.5 V, the sample-and-hold capacitor must charge to 4 V for the first acquisition cycle and then must charge to 0.5 V for the second acquisition cycle. When running at high throughput, the acquisition time is small and a wide bandwidth amplifier is required for proper settling at the ADC inputs (minimum acquisition time for the ADS816x is $t_{ACQ} = 330$ ns). The RC filter (R_{FLT} and C_{FLT}) is designed to provide a reservoir of charge that helps rapidly charge the internal sample-and-hold capacitor at the start of the acquisition period. For this reason, the RC filter is sometimes called a *charge bucket* or *charge kickback* filter. A method for determining the required amplifier bandwidth and the values of the RC charge bucket filter is provided in this section.

A summary of the equations and an example calculation is provided to determine the amplifier bandwidth and RC charge bucket circuit for the ADS816x assuming a minimum ADC acquisition time is used. 公式 5 finds the amplifier time constant and 公式 6 uses this to computer the amplifiers required unity-gain bandwidth.

$$\tau_{\text{AMP}} = \frac{\tau_{\text{C}}}{\sqrt{17}} = \frac{40.9 \text{ns}}{\sqrt{17}} = 9.917 \text{ns}$$
(5)

UGBW =
$$\frac{1}{2\pi \times \tau_{AMP}} = \frac{1}{2\pi \times (9.917 \text{ns})} = 16 \text{MHz}$$
 (6)

公式 7, 公式 8, and 公式 9 calculate C_{SH} , the LSB value, and τ_C , respectively.

$$C_{SH} = 60pF, t_{ACQ} = 330ns, N = 16bits, V_{REF} = 4.096V$$
 (7)

$$LSB = \frac{V_{REF}}{2^{N}} = \frac{4.096V}{2^{16}} = 62.5\mu V \tag{8}$$

$$\tau_{C} = \frac{-t_{ACQ}}{In\left(\frac{0.5 \times LSB}{100mV}\right)} = \frac{-330ns}{In\left(\frac{0.5 \times (62.5\mu V)}{100mV}\right)} = 40.9ns$$
(9)

Application Information (接下页)

The value of C_{FLT} is computed in $\triangle \vec{\Xi}$ 10 by taking 20 times the internal sample-and-hold capacitance. The factor of 20 is a rule of thumb that is intended to minimize the droop in voltage on the charge bucket capacitor, C_{FLT} , after the start of the acquisition period. The filter resistor, R_{FLT} , is computed in $\triangle \vec{\Xi}$ 11 using the op amp time constant and C_{FLT} . These equations model the system as a first-order system, but in reality the system is a higher order. Consequently, the values may need to be adjusted to optimize performance. This optimization and more details on the math behind the component selection are covered in the ADC Precision Labs training videos.

$$C_{FLT} = 20 \times C_{FLT} = 20 \times (60pF) = 1.2nF$$
 (10)

$$R_{FLT} = \frac{4 \times \tau_{AMP}}{C_{FLT}} = \frac{4 \times (9.917 ns)}{1.2 nF} = 33.05 \Omega \tag{11}$$

8.2 Typical Applications

8.2.1 1-MSPS DAQ Circuit With Lowest Distortion and Noise Performance

₹ 102 shows an 8-channel and 1-MSPS solution with minimum external components. This solution significantly reduces solution size and power by not requiring amplifiers on every analog input.

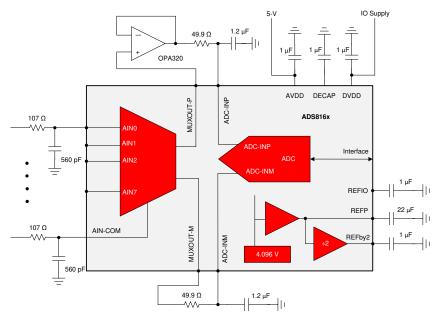


图 102. 1-MSPS DAQ Circuit With Lowest Distortion and Noise Performance

8.2.1.1 Design Requirements

表 59 lists the design parameters for this example.

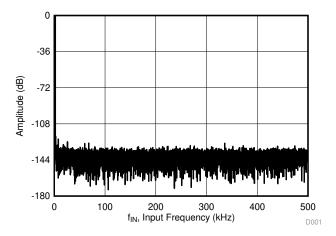
表 59. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
SNR	≥ 92 dB
THD	≤ –108 dB
Throughput	1 MSPS
Input signal frequency	≤100 kSPS

8.2.1.2 Detailed Design Procedure

The procedure discussed in this section can be used for any ADS816x application circuit. See the *Example Schematic* section for the final design for this example.

All ADS816x applications require the supply and reference decoupling as given in the Example Schematic



and Layout sections.

- Select the buffer amplifier and associated charge bucket filter between the multiplexer output and the ADC input using the method described in the Selecting an ADC Input Buffer section. The values given in this section meet the maximum throughput and input signal frequency design requirements given. A lower bandwidth solution can be used in cases where lower power is required.
- Select an input amplifier for rapid settling when the multiplexer switches channels. This selection is covered in the *Multiplexer Input Connection* section. The OPA320 buffer and associated RC filter illustrated in

 100 meet these requirements.

8.2.1.3 Application Curve

 $f_{IN} = 2 \text{ kHz}$, SNR = 92 dB, THD = -109 dB

图 103. FFT Plot: ADS8168

8.2.2 8-Channel Photodiode Detector With Smallest Size and Lowest Number of Components

The circuit in **8** 104 shows an 8-channel photodiode detector using the ADS816x. In this example, one common amplifier is used for eight photodiodes. See the 1 MHz, Single-Supply, Photodiode Amplifier Reference Design reference guide for a detailed description of the transimpedance amplifier.

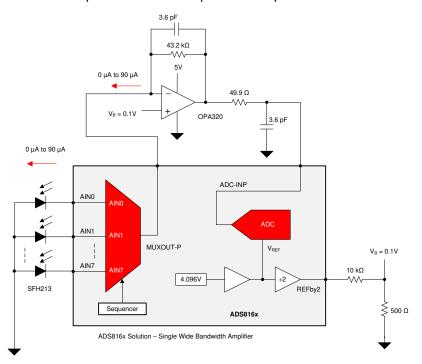


图 104. Small Size, 8-Channel Photodetector

8.2.2.1 Design Requirements

The objective of this design is to achieve:

- Smallest solution size
- Transimpedance output of 0.1 V to 4 V for a 0-µA to 90-µA input with a bandwidth of 1 MHz
- The voltage divider is designed to provide a minimum amplifier output of 0.1 V when the photodiode current is zero (dark current) to prevent the amplifier from saturating to the negative rail

8.2.2.2 Detailed Design Procedure

The OPA320 is used as a transimpedance amplifier that can also drive the ADC inputs. In order to set the output voltage of the OPA320 to 0.1 V in dark conditions, an equivalent bias voltage (V_B) is applied at the noninverting terminal. \triangle 式 12 shows that this bias voltage is derived using a resistive voltage divider on the REFby2 output (2.048V).

$$V_{B} = (V_{REFby2}V) \times \left(\frac{500\Omega}{10k\Omega + 500\Omega}\right) = 97.5mV$$
(12)

公式 13 shows that the feedback resistor for the transimpedance amplifier can be selected by designing for a 4-V output for a 90-µA input.

$$R_{F} = \frac{V_{OUT_MAX} - V_{OUT_MIN}}{I_{IN_MAX}} = \frac{4V - 0.1V}{90\mu A} = 43.3k\Omega \tag{13}$$

公式 14 computes the value of the feedback capacitance to limit the bandwidth of the transimpedance circuit to 1 MHz.

$$C_F = \frac{1}{2\pi \times f_C \times R_F} = \frac{1}{2\pi \times (1MHz) \times (43.3k\Omega)} = 3.6pF$$
(14)

Transimpedance amplifiers can have potential stability concerns. Stability is a function of the feedback capacitance, the capacitance on the inverting input of the amplifier, and the amplifier gain bandwidth. In this case the capacitance on the inverting amplifier input (C_{IN} , as calculated by Δ 15 and Δ 16) includes the photodiode junction capacitance (C_{J}), the multiplexer capacitance (C_{MUX}), the trace capacitance, and the op amp input differential (C_{D}) and common-mode (C_{CM2}) capacitances. Δ 17 and Δ 18 compute the minimum gain bandwidth of the amplifier for stability for a given C_{IN} . The minimum required gain bandwidth is 10.9 MHz and the gain bandwidth for the OPA320 is 20 MHz, so the stability test passes.

$$C_{IN} = C_J + C_D + C_{CM2} + C_{MUX}$$
 (15)

$$C_{IN} = 11pF + 5pF + 4pF + 15pF = 35pF$$
 (16)

$$F_{GBW} > \frac{C_{IN} + C_F}{2\pi \times R_F \times (C_F)^2}$$
(17)

$$F_{GBW} > \frac{35pF + 3.6pF}{2\pi \times 43.3k\Omega \times (3.6pF)^2} = 10.9MHz$$
 (18)

8.2.3 1-MSPS DAQ Circuit for Factory Automation

The circuit in ₹ 105 shows an example of how the ADS816x can be used for a factory automation application.

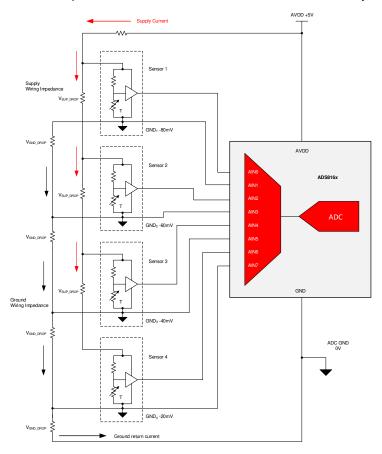


图 105. Remote Ground Sense With the ADS816x in Factory Automation

8.2.3.1 Design Requirements

The goal of this design to sense outputs from four sensors, with each sensor being at a different ground potential.

8.2.3.2 Detailed Design Procedure

In 105, the sensors are connected over long leads to the supply, ground, and ADC inputs. Voltage drop resulting from ground wiring impedance causes the ground connections to be at different potentials for each sensor. The ADS816x can be configured into four single-ended pairs with a remote ground sense; see the *Multiplexer Configurations* section. In this input configuration, the error in ground potential is sensed and accounted for in the measurement.

The ADC negative input can sense ground voltages of ±100 mV. The ADC has digital window comparators that can be programed to set an alarm if the sensor output is out of range. Many industrial applications require isolation. When scanning all the channels at 1 MSPS, the serial clock rate can be as low as 16 MHz. This clock rate is suitable for most isolators. Using a common amplifier to drive the ADC input simplifies calibration because all channels have a common error.

9 Power Supply Recommendations

The ADS816x has two separate power supplies: AVDD and DVDD. The internal reference, reference buffer, multiplexer, and the internal LDO operate on AVDD. The ADC core operates on the LDO output (available on the DECAP pin). DVDD is used for setting the logic levels on the digital interface. AVDD and DVDD can be independently set to any value within their permissible ranges. During normal operation, if any voltage on the AVDD supply drops below the AVDD minimum specification, then the AVDD supply is recommended to be ramped down to ≤ 0.7 V before power-up. Also during power-up, AVDD must monotonously rise to the desired operating voltage above the minimum AVDD specification.

When using an internal reference, set AVDD so that 4.5 V ≤ AVDD ≤ 5.5 V.

The AVDD supply voltage value defines the permissible range for the external reference voltage, V_{REF} , on the REFIO pin. To use the external reference voltage (V_{REF}), set AVDD such that 3 V \leq AVDD \leq (AVDD + 0.3) V.

As shown in 🗵 106, place a minimum 1-μF decoupling capacitor between the AVDD and GND pins and between the DVDD and GND pins. Use a minimum 1-μF decoupling capacitor between the DECAP and GND pins.

There are no specific requirements with regard to the power-supply sequencing of the device. However, issue a reset after the supplies are powered and stable to ensure the device is properly configured.

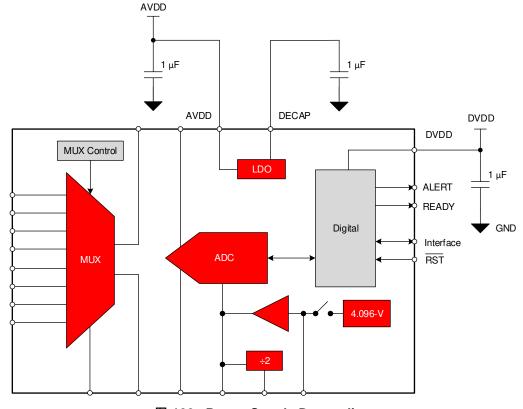


图 106. Power-Supply Decoupling

10 Layout

10.1 Layout Guidelines

This section provides some layout guidelines for achieving optimum performance with the ADS816x.

10.1.1 Analog Signal Path

As illustrated in \$\textstyle{\mathbb{R}}\$ 108, the analog input signals are routed in opposite directions to the digital connections. The reference decoupling components are kept away from the switching digital signals. This arrangement prevents noise generated by digital switching activity from coupling to sensitive analog signals.

10.1.2 Grounding and PCB Stack-Up

Low inductance grounding is critical for achieving optimum performance. Place all critical components of the signal chain on the same PCB layer as the ADS816x.

For lowest inductance grounding, connect the GND pins of the ADS816x (pins 1, 21, and 31) and reference ground REFM (pin 4) directly to the device thermal pad. Connect the device thermal pad to the PCB ground using four vias; see 图 108.

10.1.3 Decoupling of Power Supplies

Use wide traces or a dedicated power-supply plane to minimize trace inductance. Place 1-µF, X7R-grade, ceramic decoupling capacitors in close proximity on AVDD (pin 32), DECAP (pin 2), DVDD (pin 30), and REFby2 (pin 7). Avoid placing vias between any supply pin and the respective decoupling capacitor.

10.1.4 Reference Decoupling

When using the internal reference (see the *External Reference* section), REFIO (pin 3) must have a 1-µF, X7R-grade, ceramic capacitor with at least a 10-V rating. This capacitor must be placed close to the REFIO pin, as illustrated in
■ 108. In cases where an external reference is used, refer to the reference component data sheet for filtering capacitor requirements.

10.1.5 Reference Buffer Decoupling

Dynamic currents are present at the REFP and REFM pins during the conversion phase, and excellent decoupling is required to achieve optimum performance. Place a 22-µF, X7R-grade, ceramic capacitor with at least a 10-V rating between the REFP and the REFM pins, as illustrated in ₹ 108. Select 0603- or 0805-size capacitors to keep the equivalent series inductance (ESL) low. Connect the REFM pin to the decoupling capacitor before connecting to a ground via.

10.1.6 Multiplexer Input Decoupling

Minimizing channel-to-channel parasitic capacitance reduces the crosstalk induced on the PCB. This lower capacitance can be achieved by increasing the spacing between the analog traces to the multiplexer input.

In 图 108, each multiplexer input has an RC filter. Use C0G- or NPO-type capacitors in the RC filter to help reduce settling when switching between multiplexer channels. When not switching the multiplexer, as discussed in 图 43 and 图 44, the RC filter can be omitted.

10.1.7 ADC Input Decoupling

Dynamic currents are also present at the ADC analog inputs (pins 18 and 19) of the ADS816x. Use C0G- or NPO-type capacitors to decouple these inputs. With these type of capacitors, capacitance remains almost constant over the full input voltage range. Lower-quality capacitors (such as X5R and X7R) have large capacitance changes over the full input voltage range that may cause degradation in device performance.

In 图 108, each multiplexer input has an RC filter that helps reduce settling when switching between multiplexer channels. When not switching the multiplexer, as discussed in 图 43 and 图 44, the RC filter can be omitted.

Layout Guidelines (接下页)

10.1.8 Example Schematic

图 107 shows the schematic used for 图 108.

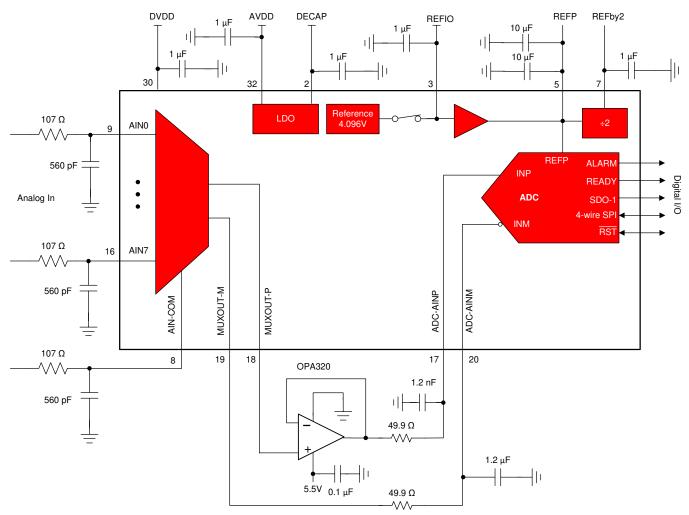


图 107. Example Schematic for 图 108

10.2 Layout Example

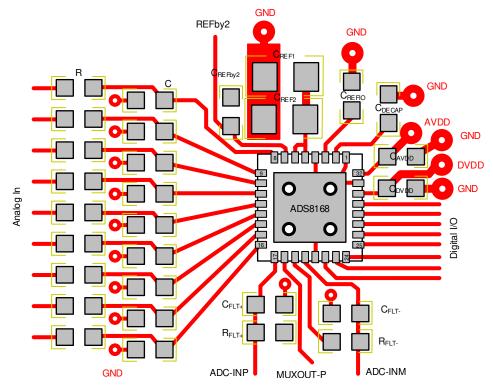


图 108. Recommended Layout

11 器件和文档支持

11.1 文档支持

11.1.1 相关文档

请参阅如下相关文档:

- 德州仪器 (TI), 适用于单端多路复用器应用的 16 位 1MSPS 数据采集参考 设计设计指南
- 德州仪器 (TI),OPAx625 高带宽、高精度、低 THD+N、16 位和 18 位模数转换器 (ADC) 驱动器产品说明书
- 德州仪器 (TI), THS4551 低噪声、高精度的 150MHz 全差分放大器产品说明书
- 德州仪器 (TI),具有关断功能的 OPAx320x 高精度 20MHz、0.9pA、低噪声、RRIO、CMOS 运算放大器产品 说明书
- 德州仪器 (TI), 1MHz 单电源光电二极管放大器参考设计参考指南
- 德州仪器 (TI), 具有精密多通道 ADC 应用的简化系统设计概要

11.2 相关链接

下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。

火 00. 彻大姓汝	表	60.	相关链接
-------------------	---	-----	------

器件	产品文件夹	立即订购	技术文档	工具与软件	支持和社区
ADS8166	单击此处	单击此处	单击此处	单击此处	单击此处
ADS8167	单击此处	单击此处	单击此处	单击此处	单击此处
ADS8168	单击此处	单击此处	单击此处	单击此处	单击此处

11.3 接收文档更新通知

要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.4 社区资源

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.5 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 静电放电警告

★ 前

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

▲『☆▲ ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

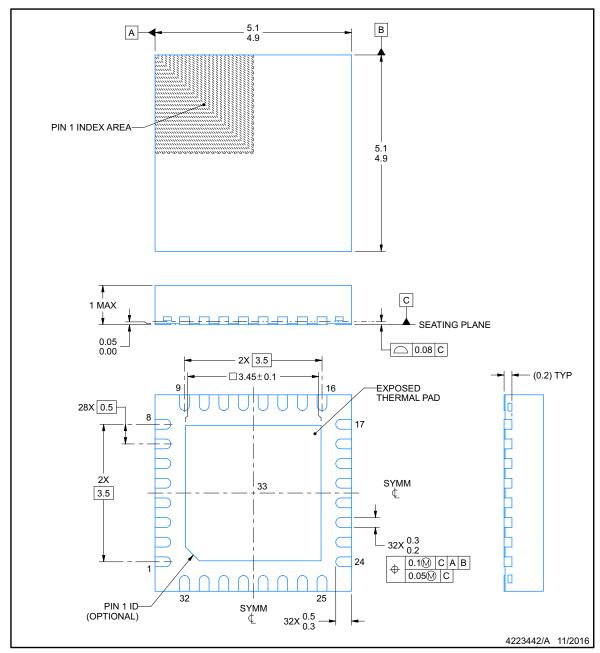
11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。


RHB0032E

PACKAGE OUTLINE

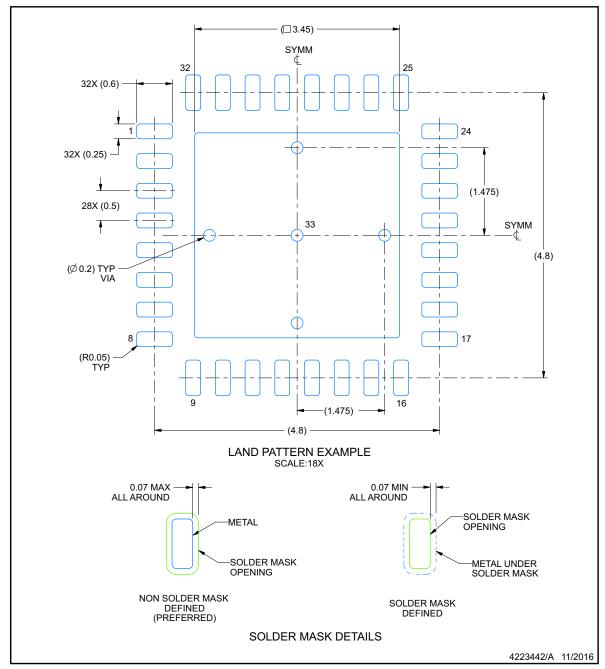
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



EXAMPLE BOARD LAYOUT

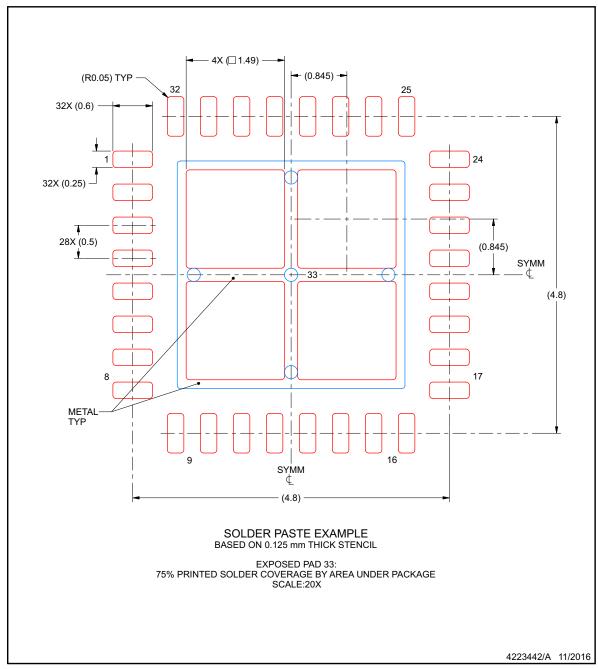
RHB0032E

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

RHB0032E

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ADS8166IRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS 8166	Samples
ADS8166IRHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS 8166	Samples
ADS8167IRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS 8167	Samples
ADS8167IRHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS 8167	Samples
ADS8168IRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS 8168	Samples
ADS8168IRHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ADS 8168	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

10-Dec-2020

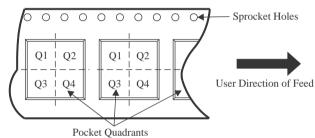
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

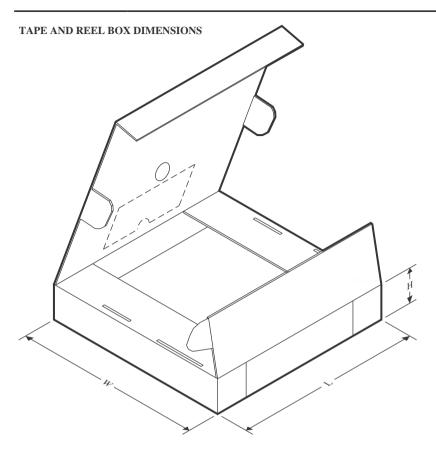
www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity A0

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADS8166IRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
ADS8166IRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
ADS8167IRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
ADS8167IRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
ADS8168IRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
ADS8168IRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2

www.ti.com 3-Jun-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS8166IRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
ADS8166IRHBT	VQFN	RHB	32	250	210.0	185.0	35.0
ADS8167IRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
ADS8167IRHBT	VQFN	RHB	32	250	210.0	185.0	35.0
ADS8168IRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
ADS8168IRHBT	VQFN	RHB	32	250	210.0	185.0	35.0

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司