

ONET1151P

ZHCSBN5 -SEPTEMBER 2013

11.3 Gbps 限幅放大器

查询样品: ONET1151P

特性

- 高达 11.3Gbps 运行
- 两线制数字接口
- 可调信号丢失 (LOS) 阀值
- 数字可选输出电压
- 数字可选输出去加重
- 可调输入阀值电压
- 输出极性选择
- 可编程 LOS 屏蔽时间
- 输入偏移消除
- 具有到 VCC 的片载 50Ω 背面端接的电流模式逻辑 (CML) 数据输出
- +3.3V 单电源

- 低功耗
- 输出禁用
- 表面贴装小型封装 3mm x 3mm 16 引脚,与 RoHS 标准兼容的四方扁平无引线 (QFN) 封装
- 与 ONET8501PB 引脚兼容

应用范围

- 10G 以太网光发射器
- 2x/4x/8x 和 10x 光纤通道光接收器
- SONET OC-192/SDH-64 光接收器
- SFP+ 和 XFP 收发器模块
- 电缆驱动器和接收器

说明

ONET1151P 是一款高速, 3.3V 限幅放大器, 此放大器用于数据速率高达 11.3Gbps 的多个光纤和铜质电缆应用。

此器件提供一个两线制接口来实现对输出振幅、输出去加重、输入阀值电压(限幅电平)以及信号丢失置位电平的数字控制。

ONET1151P 提供大约 33dB 的增益来确保针对低至 20mV_{p-p}的输入信号的完全差分输出摆幅。 输出振幅可在 350mV_{p-p}和 850mV_{p-p}之间调节。 为了根据被连接到器件输出上的微带线或带状线的损耗来补偿频率,在输出级中 包括了可编程去加重。 还提供了一个具有可编程输出屏蔽时间和输出禁用的可调信号丢失 (LOS) 检测。

此产品采用符合 RoHS 标准的小封装尺寸 3mm x 3mm 16 引脚 QFN 封装,在 550mV_{p-p}输出时的典型功率耗散为 132mW,并且额定运行温度范围在 -40℃ 和 100℃ 之间。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

www.ti.com.cn

ZHCSBN5 - SEPTEMBER 2013

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

BLOCK DIAGRAM

A simplified block diagram of the ONET1151P is shown in Figure 1.

This compact, low power 11.3 Gbps limiting amplifier consists of a high-speed data path with offset cancellation block (DC feedback) combined with an analog settable input threshold adjust, a loss of signal detection block using 2 peak detectors, a two-wire interface with a control-logic block and a bandgap voltage reference and bias current generation block.

Figure 1. Simplified Block Diagram of the ONET1151P

PACKAGE

The ONET1151P is available in a small footprint 3 mm \times 3 mm 16-pin RoHS compliant QFN package with a lead pitch of 0.5 mm. The pinout is shown in Figure 2.

PIN		TYPE	DESCRIPTION			
NAME	NO.	ITPE	DESCRIPTION			
GND	1, 4, EP	Supply	Circuit ground. Exposed die pad (EP) must be grounded.			
DIN+	2	Analog-input	Non-inverted data input. Differentially 100 Ω terminated to DIN–.			
DIN-	3	Analog-input	Inverted data input. Differentially 100 Ω terminated to DIN+.			
COC1	5	Analog	Offset cancellation filter capacitor plus terminal. An external capacitor can be connected between this pin and COC2 to reduce the low frequency cutoff. To disable the offset cancellation loop, connect COC1 and COC2 together.			
COC2	6	Analog	Offset cancellation filter capacitor minus terminal. An external capacitor can be connected between this pin and COC1 to reduce the low frequency cutoff. To disable the offset cancellation loop, connect COC1 and COC2 together.			
DIS	7	Digital-input	Disables the output stage when set to a high level.			
LOS	8	Open drain MOS	High level indicates that the input signal amplitude is below the programmed threshold level. Open drain output. Requires an external $10k\Omega$ pull-up resistor to VCC for proper operation.			
VCC	9, 12	Supply	3.3-V supply voltage.			
DOUT-	10	CML-out	Inverted data output. On-chip 50 Ω back-terminated to VCC.			
DOUT+	11	CML-out	Non-inverted data output. On-chip 50 Ω back-terminated to VCC.			
NC	13, 14	No Connect	Do not connect			
SCK	15	Digital-input	Serial interface clock input. Connect a pull-up resistor (10 kΩ typical) to VCC.			
SDA	16	Digital-input	Serial interface data input. Connect a pull-up resistor (10 kΩ typical) to VCC.			

TEXAS INSTRUMENTS

www.ti.com.cn

ZHCSBN5 -SEPTEMBER 2013

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	VALUE			
	MIN	MAX	UNIT	
V _{CC}	Supply voltage ⁽²⁾	-0.3	4	V
V _{DIN+} , V _{DIN-}	Voltage at DIN+, DIN- ⁽²⁾	0.5	4	V
$\begin{array}{c} V_{\text{LOS}}, V_{\text{COC1}}, V_{\text{COC2}}, \\ V_{\text{DOUT+}}, V_{\text{DOUT-}}, V_{\text{DIS}}, \\ V_{\text{SDA}}, V_{\text{SCK}} \end{array}$	Voltage at LOS, COC1, COC2, DOUT+, DOUT-, DIS, SDA, SCK ⁽²⁾	-0.3	4.0	V
V _{DIN, DIFF}	Differential voltage between DIN+ and DIN-		±2.5	V
I _{DIN+} , I _{DIN} , I _{DOUT+} , I _{DOUT}	Continuous current at inputs and outputs		25	mA
ESD	ESD rating at all pins		2	kV (HBM)
T _A	Characterized free-air operating temperature range	-40	100	°C
T _{J, max}	Maximum junction temperature		125	°C
T _{STG}	Storage temperature range	-65	150	°C
T _C	Case temperature	-40	110	°C
T _{LEAD}	Lead temperature 1.6mm (1/16 inch) from case for 10 seconds		260	°C

 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

DADAMETED		TEST CONDITIONS	1	VALUE			
	FARAIMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V	Supply voltoge	$T_A = -40^{\circ}C$ to +100°C	2.9	3.3	3.63	V	
VCC	Supply voltage	$T_A = -30^{\circ}C$ to +100°C	2.85	2.85 3.3		V	
T _A	Operating free-air temperature		-40		100	°C	
	DIGITAL input high voltage		2.0			V	
	DIGITAL input low voltage				0.8	V	

DC ELECTRICAL CHARACTERISTICS

over recommended operating conditions with 50- Ω output load, 550 mV_{p-p} output voltage and BIAS bit (Register 7) set to 1, unless otherwise noted. Typical operating condition is at 3.3 V and T_A = 25°C

PARAMETER		TEST CONDITIONS	· ·	VALUE		
		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V	Supply voltage	$T_A = -40^{\circ}C$ to $+100^{\circ}C$	2.9	3.3	3.63	V
VCC	Supply voltage	$T_{A} = -30^{\circ}C \text{ to } +100^{\circ}C$	2.85	3.3	3.63	v
I _{VCC}	Supply current	DIS = 0, CML currents included		40	52	mA
R _{IN}	Data input resistance	Differential		100		Ω
R _{OUT}	Data output resistance	Single-ended, referenced to V_{CC}		50		Ω
	LOS HIGH voltage	I_{SOURCE} = 50 μA with 10 k Ω pull-up to V_{CC}	2.3			V
	LOS LOW voltage	I_{SINK} = 10 mA with 10 k Ω pull-up to V_{CC}			0.4	V

ZHCSBN5 - SEPTEMBER 2013

www.ti.com.cn

AC ELECTRICAL CHARACTERISTICS

over recommended operating conditions with 50- Ω output load, 550mVpp output voltage and BIAS bit (Register 7) set to 1, unless otherwise noted. Typical operating condition is at V_{CC} = 3.3 V and T_A = 25°C.

	DADAMETED	TEST CONDITIONS	,	VALUE		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f3dB-H	-3dB bandwidth default settings		7.5	9.5		GHz
f3dB-L	Low frequency -3dB bandwidth	With 330 pF COC capacitor		10	45	kHz
N/		PRBS31 pattern at 11.3 Gbps, BER < 10 ⁻¹²		6	9	
VIN,MIN	Data input sensitivity	V _{OD-min} ≥ 0.95 * V _{OD} (output limited)		20	40	mv _{p-p}
00044		0.01 GHz < f < 5 GHz		-15		. ID
SDD11	Differential input return gain	5 GHz < f < 12.1 GHz		-8		aв
SDD22	Differential output return gain	0.01 GHz < f < 5 GHz		-15		dB
		5 GHz < f < 12.1 GHz		-8		
SCD11	Differential to common mode conversion gain	0.01 GHz < f < 12.1 GHz		-15		dB
00000		0.01 GHz < f < 5 GHz		-13		. ID
SCC22	Common mode output return gain	5 GHz < f < 12.1 GHz		-9		aв
А	Small signal gain		26	33		dB
V _{IN-MAX}	Data input overload	BIAS (Reg7 bit 0) set to 1	2000			mV _{p-p}
		V _{IN} = 15 mV _{p-p} , K28.5 pattern		3	8	
DJ	Deterministic jitter at 11.3 Gbps	$V_{IN} = 30 \text{ mV}_{p-p}$, K28.5 pattern		3	10	ps _{p-p}
		V _{IN} = 2000 mV _{p-p} , K28.5 pattern		6	15	
RJ	Random jitter	$V_{IN} = 30 \text{ mV}_{p-p}$		1		ps _{rms}
		V _{IN} > 30 mV _{p-p} , DIS = 0, AMP[02] = 000		380		
V _{OD}	Differential data output voltage	V _{IN} > 30 mV _{p-p} , DIS = 0, AMP[02] = 111		820		mv _{p-p}
		DIS = 1			5	mV _{rms}
V _{PREEM}	Output de-emphasis step size			1		dB
t _R	Output rise time	20% – 80%, V _{IN} > 30 mV _{p-p}		30	40	ps
t _F	Output fall time	20% – 80%, V _{IN} > 30 mV _{p-p}		30	40	ps
CMOV	AC common mode output voltage	PRBS31 pattern; AMP[02] = 010			7	mV _{rms}
	LOW LOS assert threshold range min.	K28.5 pattern at 11.3 Gbps, LOSRNG = 0		15		
VTH	LOW LOS assert threshold range max.	K28.5 pattern at 11.3 Gbps, LOSRNG = 0		35		mv _{p-p}
	HIGH LOS assert threshold range min.	K28.5 pattern at 11.3 Gbps, LOSRNG = 1		35		
VTH	HIGH LOS assert threshold range max.	K28.5 pattern at 11.3 Gbps, LOSRNG = 1		80		mv _{p-p}
		Versus temperature at 11.3 Gbps		1.5		dB
	LOS threshold variation	Versus supply voltage VCC at 11.3 Gbps		1		dB
		Versus data rate		1.5		dB
	LOS hysteresis (electrical)	K28.5 pattern at 11.3 Gbps	2	4	6.5	dB
T _{LOS_AST}	LOS assert time		2.5	10	80	μs
T _{LOS_DEA}	LOS deassert time		2.5	10	80	μs
	Maximum LOS output masking time		2000			μs
	LOS masking time step size			32		μs
T _{DIS}	Disable response time			20		ns

ZHCSBN5 -SEPTEMBER 2013

www.ti.com.cn

DETAILED DESCRIPTION

HIGH-SPEED DATA PATH

The high-speed data signal is applied to the data path by means of input signal pins DIN+ / DIN–. The data path consists of a 100- Ω differential termination resistor followed by an input buffer. A gain stage and an output buffer stage follow the input buffer, which together provide a gain of 33dB. The device can accept input amplitude levels from $6mV_{p-p}$ up to $2000mV_{p-p}$. The amplified data output signal is available at the output pins DOUT+ / DOUT– which include on-chip 2 x 50- Ω back-termination to VCC.

Offset cancellation compensates for internal offset voltages and thus ensures proper operation even for very small input data signals. The offset cancellation can be disabled so that the input threshold voltage can be adjusted to optimize the bit error rate or change the eye crossing to compensate for input signal pulse width distortion. The offset cancellation can be disabled by setting OCDIS = 1 (bit 1 of register 0). The input threshold level can be adjusted using register settings THADJ[0..7] (register 1). When register 1 is set to 0x00, the threshold adjustment circuitry is disabled to reduce the supply current. Setting register 1 to any other value will enable the circuitry and the supply current will increase by approximately 2 mA. The amount of adjustment that register 1 can provide is controlled by the CPRNG[1..0] bits (register 2). For details regarding input threshold adjust and range, see Table 12.

The low frequency cutoff is as low as 80 kHz with the built-in filter capacitor. For applications, which require even lower cutoff frequencies, an additional external filter capacitor may be connected to the COC1 and COC2 pins. A value of 330 pF results in a low frequency cutoff of 10 kHz.

The receiver can be optimized for various applications using the settings in register 7. To enable the settings, set the SEL bit (bit 7 of register 7) to 1. It is recommended that the BIAS bit (bit 0 of register 7) be set to 1, especially if the input voltage to the ONET1151P will exceed about 500 mV_{p-p} differential. Setting BIAS to 1 adds 2 mA of bias current to the input stage, making it more robust for high input voltages. For input voltages lower than 500 mV_{p-p}, as typically would be supplied from a transimpedance amplifier (TIA), BIAS can be set to 0 to reduce the supply current. In addition, the RXOPT[1..0] bits (register 7) can be used to optimize the jitter based upon the TIA that is used. When RXOPT is set to 00, there is some input equalization set at the input to the limiting amplifier. This is a good general setting to use and for most applications it is recommended to set register 7 to 0x81. If the input voltage to the limiting amplifier does not exceed about 500 mV_{p-p} differential, then the jitter may be reduced by setting register 7 to 0x85.

BANDGAP VOLTAGE AND BIAS GENERATION

The ONET1151P limiting amplifier is supplied by a single +3.3-V supply voltage connected to the VCC pins. This voltage is referred to ground (GND).

On-chip bandgap voltage circuitry generates a reference voltage, independent of supply voltage, from which all other internally required voltages and bias currents are derived.

HIGH-SPEED OUTPUT BUFFER

The output amplitude of the buffer can be varied from 350 mV_{p-p} to 850 mV_{p-p} using the register settings AMP[0..2] (register 3) via the serial interface. The default amplitude setting is AMP[0..2] = 010 which provides 550 mV_{p-p} differential output voltage. To compensate for frequency dependant losses of transmission lines connected to the output, the ONET1151P has adjustable de-emphasis of the output stage. The de-emphasis can be set from 0 to 8dB in 1dB steps using register settings DEADJ[0..3] (register 2).

In addition, the polarity of the output pins can be inverted by setting the output polarity switch bit, POL (bit 4 of register 0) to 1.

LOSS OF SIGNAL DETECTION

The loss of signal detection is done by 2 separate level detectors to cover a wide dynamic range. The peak values of the input signal and the output signal of the gain stage are monitored by the peak detectors. The peak values are compared to a pre-defined loss of signal threshold voltage inside the loss of signal detection block. As a result of the comparison, the LOS signal, which indicates that the input signal amplitude is below the defined threshold level, is generated. The LOS assert level is settable through the serial interface. There are 2 LOS ranges settable with the LOSRNG bit (bit 2 register 0). By setting LOSRNG = 1, the high range of the LOS assert values are used (35 mV_{p-p} to 80 mV_{p-p}) and by setting LOSRNG = 0, the low range of the LOS assert values are used (15 mV_{p-p}).

There are 128 possible internal LOS settings (7bit) for each LOS range to adjust the LOS assert level. If the LOS register selection bit is set low, LOSSEL = 0 (bit 7 of register 11), then the default LOS assert level of approximately 25 mV_{p-p} is used. If the register selection bit is set high, LOSSEL = 1 (bit 7 of register 11), then the content of LOS[0..6] (register 11) is used to set the LOS assert level.

An LOS output masking time can be enabled on the raising and falling edges of the LOS output signal. The LOS rising edge masking time is enabled by setting LOSTMRENA = 1 (bit 7 of register 13) and the time programmed using LOSTMR[0..6] (register 13). The LOS falling edge masking time is enabled by setting LOSTMFENA = 1 (bit 7 of register 12) and the time programmed using LOSTMF[0..6] (register 12) and the time programmed using LOSTMF[0..6] (register 12). This feature is used to mask a false input to the limiting amplifier after a loss of signal has occurred or when the input signal is re-applied. The masking time can be set from 10 μ s to 2 ms.

2-WIRE INTERFACE AND CONTROL LOGIC

The ONET1151P uses a 2-wire serial interface for digital control. The two circuit inputs, SDA and SCK, are driven, respectively, by the serial data and serial clock from a microcontroller, for example. Both inputs include $100-k\Omega$ pull-up resistors to VCC. For driving these inputs, an open drain output is recommended.

The 2-wire interface allows write access to the internal memory map to modify control registers and read access to read out control and status signals. The ONET1151P is a slave device only which means that it can not initiate a transmission itself; it always relies on the availability of the SCK signal for the duration of the transmission. The master device provides the clock signal as well as the START and STOP commands. The protocol for a data transmission is as follows:

- 1. START command
- 2. 7 bit slave address (1000100) followed by an eighth bit which is the data direction bit (R/W). A zero indicates a WRITE and a 1 indicates a READ.
- 3. 8-bit register address
- 4. 8-bit register data word
- 5. STOP command

Regarding timing, the ONET1151P is I²C compatible. The typical timing is shown in Figure 3 and complete data transfer is shown in Figure 4. Parameters for Figure 3 are defined in Table 2.

Bus Idle: Both SDA and SCK lines remain HIGH.

Start Data Transfer: A change in the state of the SDA line, from HIGH to LOW, while the SCK line is HIGH, defines a START condition (S). Each data transfer is initiated with a START condition.

Stop Data Transfer: A change in the state of the SDA line from LOW to HIGH while the SCK line is HIGH defines a STOP condition (P). Each data transfer is terminated with a STOP condition; however, if the master still wishes to communicate on the bus, it can generate a repeated START condition and address another slave without first generating a STOP condition.

Data Transfer: Only one data byte can be transferred between a START and a STOP condition. The receiver acknowledges the transfer of data.

www.ti.com.cn

ZHCSBN5 -SEPTEMBER 2013

Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge bit. The transmitter releases the SDA line and a device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge clock pulse. Setup and hold times must be taken into account. When a slave-receiver doesn't acknowledge the slave address, the data line must be left HIGH by the slave. The master can then generate a STOP condition to abort the transfer. If the slave-receiver does acknowledge the slave address but some time later in the transfer cannot receive any more data bytes, the master must abort the transfer. This is indicated by the slave generating the not acknowledge on the first byte to follow. The slave leaves the data line HIGH and the master generates the STOP condition.

Figure 3. I²C Timing Diagram

Parameter	Symbol	Min	Max	Unit
SCK clock frequency	f _{SCK}		400	kHz
Bus free time between STOP and START conditions	t _{BUF}	1.3		μs
Hold time after repeated START condition. After this period, the first clock pulse is generated	t _{HDSTA}	0.6		μs
Low period of the SCK clock	t _{LOW}	1.3		μs
High period of the SCK clock	t _{HIGH}	0.6		μs
Setup time for a repeated START condition	t _{SUSTA}	0.6		μs
Data HOLD time	t _{HDDAT}	0		μs
Data setup time	t _{SUDAT}	100		ns
Rise time of both SDA and SCK signals	t _R		300	ns
Fall time of both SDA and SCK signals	t _F		300	ns
Setup time for STOP condition	t _{SUSTO}	0.6		μs

Table 2. Timing Diagram Definitions

TEXAS INSTRUMENTS

1 P

www.ti.com.cn

ZHCSBN5	-SEPTEMBER 2013
ELICOPING	

Write	Sequence												
1	7	1	1	8	1		8	1	1				
S	Slave Address	Wr	A	Register Address	A		Data Byte	A	Р				
Read	Sequence												
1	7	1	1	8	1	1	7		1	1	8	1	_
S	Slave Address	Wr	А	Register Address	А	s	Slave Addre	ess	Rd	A	Data Byte	N	
Legenc	1												
S	Start Condition												
Wr	Write Bit (bit value = 0)												
Rd	Read Bit (bit value = 1)												
A	Acknowledge												

1

Ν

Ρ

Not Acknowledge

Stop Condition

ZHCSBN5 -SEPTEMBER 2013

REGISTER MAPPING

The register mapping for read/write register addresses 0 (0x00) through 13 (0x0D) are shown in Table 3 through Table 10. The register mapping for the read only register address 15 (0x0F) is shown in Table 11. Table 12 describes the circuit functionality based on the register settings.

Table 3. Register 0 (0x00) Mapping – Control Settings

Register Address 0 (0x00)												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
-	-	CLKDIS	POL	DIS	LOSRNG	OCDIS	-					

Table 4. Register 1 (0x01) Mapping – Input Threshold Adjust

Register Address 1 (0x01)												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
THADJ7	THADJ6	THADJ5	THADJ4	THADJ3	THADJ2	THADJ1	THADJ0					

Table 5. Register 2 (0x02) Mapping – Cross Point Range and De-emphasis Adjust

Register Address 2 (0x02)													
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0													
-	-	CPRNG1	CPRNG0	DEADJ3	DEADJ2	DEADJ1	DEADJ0						

Table 6. Register 3 (0x03) Mapping – Output Amplitude Adjust

Register Address 3 (0x03)									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
-	-	-	-	-	AMP2	AMP1	AMP0		

Table 7. Register 7 (0x07) Mapping – Receiver Optimization

Register Address 7 (0x07)									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SEL	-	-	-	RXOPT1	RXOPT0	-	BIAS		

Table 8. Register 11 (0x0B) Mapping – LOS Assert Level

Register Address 11 (0x0B)									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
LOSSEL	LOSA6	LOSA5	LOSA4	LOSA3	LOSA2	LOSA1	LOSA0		

Table 9. Register 12 (0x0C) Mapping – Falling Edge LOS Masking Register

Register Address 12 (0x0C)									
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bi									
LOSTMFENA	LOSTMF6	LOSTMF5	LOSTMF4	LOSTMF3	LOSTMF2	LOSTMF1	LOSTMF0		

Table 10. Register 13 (0x0D) Mapping – Rising Edge LOS Masking Register

Register Address 13 (0x0D)									
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit									
LOSTMRENA	LOSTMR6	LOSTMR5	LOSTMR4	LOSTMR3	LOSTMR2	LOSTMR1	LOSTMR0		

ZHCSBN5 -SEPTEMBER 2013

Table 11. R	Register 15 (0x0F)	Mapping – Selected	LOS Level	(Read (Only)
-------------	--------------------	--------------------	-----------	---------	-------

Register Address 15 (0x0F)									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
-	SELLOS6	SELLOS5	SELLOS4	SELLOS3	SELLOS2	SELLOS1	SELLOS0		

ZHCSBN5 -SEPTEMBER 2013

Table 12. Register Functionality

Register	Bit	Symbol	Function					
	7	-						
	6	-						
	RegisterBit766554412112107654654321132165165432165432107654321101110111 <td>CLKDIS</td> <td colspan="6">Disable I²C clock: 1 = clock disabled when DIS pin is high 0 = clock enabled</td>	CLKDIS	Disable I²C clock : 1 = clock disabled when DIS pin is high 0 = clock enabled					
	4	POL	Output polarity switch 1 = inverted polarity 0 = normal polarity	bit:				
0	3	DIS	Output disable bit : 1 = output disabled 0 = output enabled					
	2	LOSRNG	LOS range bit: 1 = high LOS assert vol: 0 = low LOS assert volta	tage range age range				
	1	OCDIS	Offset cancellation dis 1 = offset cancellation is 0 = offset cancellation is	able bit: s disabled s enabled				
	0	-	Reserved					
	7	THADJ7	Input threshold adjust	ment setting:				
	6	THADJ6	Circuit disabled for 0000	00000 (0) - low supply c	current option			
1	5	THADJ5	Maximum positive shift t	for 00000001 (1)				
1	4	THADJ4	Minimum positive shift for	or 01111111 (127)				
-	3	THADJ3	Zero shift for 10000000	(128) - added supply c	urrent			
	2	THADJ2	Minimum negative shift	for 10000001 (129)				
	1	THADJ1	Maximum negative shift	for 11111111 (255)				
	0	THADJ0						
	7	-	-					
	6	-						
	5	CPRNG1	Cross point range sett	ing:				
2	4	CPRNG0	Maximum range for 11					
2	3	PEADJ3	De-emphasis setting:					
	2	PEADJ2	0000 = 0dB	0100 = 3dB	1100 = 6dB			
	1	PEADJ1	0001 = 1dB	0101 = 4dB	1101 = 7dB			
	0	PEADJ0	0011= 2dB	0111 = 5dB	1111 = 8dB			
	7	-						
	6	-						
	5	-	-					
	4	-]					
3	3	-						
	2	AMP2	Output amplitude adju	stment:				
	1	AMP1	000 = 350 mV _{p-p} , 001 = mV _{p-p}	450 mV _{p-p} , 010 = 550 m	V_{p-p} (default), 011 = 600			
	0	AMP0	100 = 650 mV _{p-p} , 101 =	700 mV _{p-p} , 110 = 750 m	hV _{p-p} , 111 = 850 mV _{p-p}			

ONET1151P

ZHCSBN5 -SEPTEMBER 2013

Table 12.	Register	Functionality	(continued)
10010 121			(0011111000)

Register	Bit	Symbol	Function
	7	SEL	Receiver Optimization: 1 = Content of register used to optimize the receiver 0 = Default receiver settings
	6	-	
	5	-	
7	4	-	
/	3	RXOPT1	00 = Some input equalization (recommended)
	2	RXOPT0	01 = Reduced input equalization
	1	-	
	0	BIAS	Bias current for input stage control bit : 1 = Add 2 mA extra bias current to the input stage (recommended). 0 = Default
	7	LOSSEL	LOS assert level:
	6	LOSA6	LOSSEL = 1
	5	LOSA5	Content of register bits 6 to 0 is used to select the LOS assert level
11	4	LOSA4	Minimum LOS assert level for 0000000
	3	LOSA3	Maximum LOS assert level for 1111111
	2	LOSA2	LOSASEL = 0
	1	LOSA1	Default LOS assert level of 25 mV _{p-p} is used
	0	LOSA0	
	7	LOSTMFENA	Falling edge LOS mask enable and duration:
	6	LOSTMF6	LOSTMFENA = 1 enables falling edge LOS masking
	5	LOSTMF5	LOSTMFENA = 0 disables falling edge LOS masking
10	4	LOSTMF4	Mask time < 10 µs for 000000
12	3	LOSTMF3	Mask time > 2 ms for 111111
	2	LOSTMF2	
	1	LOSTMF1	
	0	LOSTMF0	
	7	LOSTMRENA	Rising edge LOS mask enable and duration:
	6	LOSTMR6	LOSTMRENA = 1 enables rising edge LOS masking
	5	LOSTMR5	LOSTMRENA = 0 disables rising edge LOS masking
12	4	LOSTMR4	Mask time < 10 µs for 000000
15	3	LOSTMR3	Mask time > 2 ms for 111111
	2	LOSTMR2	
	1	LOSTMR1	
	0	LOSTMR0	
	-	-	Selected LOS assert level (read only)
	6	SELLOS6	
	5	SELLOS5	
15	4	SELLOS4	
10	3	SELLOS3	
	2	SELLOS2	
	1	SELLOS1	
	0	SELLOS0	

ZHCSBN5 -SEPTEMBER 2013

APPLICATION INFORMATION

Figure 5 shows a typical application circuit using the ONET1151P.

Figure 5. Typical Application Circuit

ONET1151P

ZHCSBN5 -SEPTEMBER 2013

Figure 9.

Copyright © 2013, Texas Instruments Incorporated

ONET1151P

vs INPUT AMPLITUDE vs INPUT AMPLITUDE (11.3GBPS) 1.0E-09 1.0E-10 DJ - Deterministic Jitter (ps_{p-p}) 1.0E-11 BER 1.0E-12 1.0E-13 3 2 1.0E-14 1 1.0E-15 0 0 1 2 3 4 5 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 VIN - Input Voltage (mVp-p) VIN - Input Voltage (mVp-p) Figure 10. Figure 11. LOS ASSERT / DEASSERT VOLTAGE RANDOM JITTER INPUT AMPLITUDE vs REGISTER SETTING (LOSRNG = 0) 3.2 90 LOS Deassert Voltage LOS Assert Voltage 80 2.8 LOS Assert/Deassert Voltage (mV_{P-P}) ~ <u>5</u> 39 02 2.4 RJ - Random Jitter (psRMS) 2.0 1.6 1.2 0.8 0.4 10 0.0 0 10 128 138 148 158 168 178 188 198 208 218 228 238 248 258 0 20 30 40 50 60 70 80 90 100 Register Setting (Decimal) VIN - Input Voltage (mVp-p) Figure 12. Figure 13.

ONET1151P

ZHCSBN5 -SEPTEMBER 2013

Figure 16.

Texas Instruments

www.ti.com.cn

ZHCSBN5 -SEPTEMBER 2013

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
ONET1151PRGTR	ACTIVE	VQFN	RGT	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 100	1151P	Samples
ONET1151PRGTT	ACTIVE	VQFN	RGT	16	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 100	1151P	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

10-Dec-2020

GENERIC PACKAGE VIEW

VQFN - 1 mm max height PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

RGT0016C

PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

RGT0016C

EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

RGT0016C

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司