

16 位、4 通道 CCD/CMOS 传感器 具有定时发生器的模拟前端

查询样品: VSP5610, VSP5611, VSP5612

特性

- 四通道 CCD/CMOS 信号: 2 通道、4 通道或 4 通 道(可选)
- 电源: 仅限 3.3V (典型值) (内置 LDO, 3.3V 至 1.8V)
- 最大转换速率:
 - VSP5610: 35 MSPS
 - VSP5611: 50 MSPS
 - VSP5612: 70 MSPS
- 16 位分辨率
- CDS/SH (可选)
- 最大输入信号范围: 2.0V
- 模拟和数字混合增益:
 - 模拟增益: 3/64-V/V 步骤中为
 0.5V/V 至 3.5V/V
 - 数字增益: 1/256-V/V 步骤中为
 1V/V 至 2V/V
- 偏移校正 DAC: ±250mV、8 位
- 标准 LVDS/CMOS 可选输出:
 - LVDS:
 - 数据通道: 2 通道、3 通道
 - 时钟通道:**1**通道
 - 8 位**/7** 位串行器(可选)
 - CMOS: 4 位 × 4、8 位 × 2
- 定时发生器:
 - 快速传输时钟: 八个信号
 - 慢速传输时钟: 六个信号
- 定时调节分辨率: t_{MCLK}/48
- 输入钳位/输入参考级别内部/外部(可选)
- 参考 DAC: 0.5V、1.1V、1.5V、2V
- SPI™: 三线串行
- GPIO: 四端口

应用

- 复印机
- 传真机
- 扫描仪

说明

VSP5610/11/12 为高速、高性能 16 位模数转换器 (ADC),具有四个独立的采样电路通道,用于多路输出 充电耦合设备 (CCD)及互补金属氧化物半导体 (CMOS)系列传感器。传感器的像素数据由采样/保持 (SH)或相关双采样 (CDS)电路采样,然后由 ADC 转 化为数字数据。数据输出在低电压差动信号 (LVDS) 或 CMOS 模式下可选。

VSP5610/11/12 包括一个可编程增益,支持亮度引起的像素级反射。集成数模转换器 (DAC) 可用于调节模 拟输入信号的偏移级别。此外,定时发生器 (TG) 和一些控制传感器运行的器件集成。

VSP5610/11/12 使用 1.65V 至 1.95V 用于内核电 压, 3.0V 至 3.6V 用于 I/O。 内核电压由内置低压降稳 压器 (LDO) 提供。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SPI is a trademark of Motorola.

All other trademarks are the property of their respective owners.

VSP5610 VSP5611 VSP5612 ZHCS260 – JUNE 2011

www.ti.com.cn

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PRODUCT	PACKAGE- LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA				
VSP5610	QFN-56	RSH	0°C to +85°C	VSP5610	VSP5610RSHR	Tape and Reel				
VSP5611	QFN-56	RSH	0°C to +85°C	VSP5611	VSP5611RSHR	Tape and Reel				
VSP5612	QFN-56	RSH	0°C to +85°C	VSP5612	VSP5612RSHR	Tape and Reel				

PACKAGE/ORDERING INFORMATION⁽¹⁾

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Over operating free-air temperature range, unless otherwise noted.

	VSP5610, VSP5611, VSP5612	UNIT
Supply voltage: VDD, DVDD_IO, LVDD	4.0	V
Supply voltage difference: VDD, DVDD_IO, LVDD	±0.6	V
Ground voltage difference: VSS, DVSS, LVSS	±0.1	V
Digital voltage input	-0.3 to DVDD_IO + 0.3	V
Analog voltage input	–0.3 to VDD + 0.3	V
Digital input current	±10	mA
Analog input current	±10	mA
Ambient temperature under bias	-40 to +125	°C
Storage temperature	–55 to +150	°C
Junction temperature	+150	°C
Package temperature (IR reflow, peak)	+260	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
LDO and analog I/O power-supply voltage	VDD	3.0	3.3	3.6	V
Digital power-supply voltage	DVDD_IO	3.0	3.3	3.6	V
LVDS/CMOS power-supply voltage	LVDD	3.0	3.3	3.6	V
Supply voltage difference	VDD, DVDD_IO, LVDD	-0.3		0.3	V
Digital input logic family	nily Low-voltage CMOS				
	VSP5610	1		11.66	MHz
Master clock frequency (MCLK)	VSP5611	1		16.66	MHz
	VSP5612	1		23.33	MHz
Serial I/O clock frequency (SCLK)				10	MHz
Operating free-air temperature		0		+85	°C

ELECTRICAL CHARACTERISTICS: VSP5610

All specifications at $T_A = +25^{\circ}$ C, supply voltage = +3.3 V, conversion rate = 8.75 MHz, and four-channel mode, unless otherwise noted.

			VSP	5610		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUT					·	
Allowable input voltage			0		VDD	V
Full-scale range		Gain = 1 V/V		1		V _{PP}
Input capacitor				5		pF
DIGITAL INPUT						
Positive-going threshold	V _{T+}			DVD	D_IO × 0.7	V
Negative-going threshold	V _{T-}		DVDD_IO × 0.3			V
Hysteresis (V _{T+} – V _{T–})	ΔV_T		DVDD_IO	× 0.13		V
Input current	I _{IN}				±1	μA
Input capacitor				5		pF
DIGITAL OUTPUT						
		I _{OH} = -2 mA	DVDD_IO - 0.45			V
High-level output voltage	V _{OH}	I _{OH} = -4 mA	DVDD_IO - 0.50			V
		I _{OH} = -8 mA	DVDD_IO - 0.50			V
		$I_{OL} = 2 \text{ mA}$			0.35	V
Low-level output voltage	V _{OL}	$I_{OL} = 4 \text{ mA}$			0.50	V
		I _{OL} = 8 mA			0.65	V
TC output timing about		XP1, XP2, XP3, XP4	-1		1	ns
		Other signals	-2		2	ns
CMOS data output bit rate					80	MHz
LVDS DRIVER (TA, TB, TC, TCLK)						
Differential steady-state output voltage adjustment range	V _{OD}	R _L = 100 Ω	300	350	400	mV
Differential steady-state output adjustment step	V _{OD}			3		Steps
Differential steady-state output voltage tolerance	V _{OD}		-30		30	%
Change in the steady-state differential output voltage magnitude between opposite binary states	$\Delta V_{OD} $				35	mV
Steady-state common-mode output voltage	V _{OC(SS)}	R _L = 100 Ω	1.125		1.375	V
Peak-to-peak common-mode output voltage	V _{OC(PP)}			80	150	mV
Short-circuit output current	I _{OS}	$V_0 = 0 V (V_0 = TA, TB, TC, TCLK)$		-6	±24	mA
Hi-Z output current	I _{OZ}	V _O = 0 V to LVDD (V _O = TA, TB, TC, TCLK)			±10	μA
Transition time, differential output voltage	t _{LR} /t _{LF}			0.75	1.5	ns
TCLK clock rate			8		35	MHz
LVDS RECEIVER (RCLK)					·	
Positive-going differential input threshold voltage	V _{IT+}				100	mV
Negative-going differential input threshold voltage	V _{IT-}		-100			mV
RCLK clock rate			1		11.66	MHz

ELECTRICAL CHARACTERISTICS: VSP5610 (continued)

All specifications at $T_A = +25^{\circ}$ C, supply voltage = +3.3 V, conversion rate = 8.75 MHz, and four-channel mode, unless otherwise noted.

				VSP5610		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY						
LDO and analog I/O supply voltage	VDD		3.0	3.3	3.6	V
Digital I/O supply voltage DVDI	0_0		3.0	3.3	3.6	V
LVDS/CMOS supply voltage	VDD		3.0	3.3	3.6	V
LDO and analog I/O current	VDD			74.9		mA
Digital I/O current DVDI	0_0	Load = 10 pF		3.8		mA
CMOS current L	VDD			10		mA
LVDS current L	VDD	Three-pair data, one-pair clock		24		mA
		LVDS, three-pair		339		mW
Power consumption		CMOS output		317		mW
		Standby mode (MCLK = 0 MHz)		15		mW
TEMPERATURE RANGE						
Operation temperature	T _A		0		+85	°C
Thermal resistor (junction-to-air)	θ_{JA}	PCB (50 mm × 50 mm, four-layer), 0 lfm airflow		29		°C/W
Thermal resistor (junction-to-case)	θ_{JC}			24		°C/W
DLL, PLL						
MCLK input frequency f	MCLK		1		11.66	MHz
MCLK modulated frequency		MCLK > 5 MHz			35	kHz
MCLK modulated amplitude			-3.5		0	%
DLL tap number				48		Taps
Maximum DLL and PLL lock-up time		MCLK = 1 MHz		10		ms
TRANSFER CHARACTERISTICS						
Channels			2		4	Channels
Resolution				16		Bits
		LVDS, two- and three-channel mode	1		11.66	MHz/Ch
		LVDS, four-channel mode	1		8.75	MHz/Ch
		CMOS 8-bit × 2, two-channel mode	1		11.66	MHz/Ch
		CMOS 4-bit × 4, two-channel mode	1		10	MHz/Ch
Conversion rate		CMOS 8-bit × 2, three-channel mode	1		11.66	MHz/Ch
		CMOS 4-bit × 4, three-channel mode	1		6.7	MHz/Ch
		CMOS 8-bit × 2, four-channel mode	1		8.75	MHz/Ch
		CMOS 4-bit × 4, four-channel mode	1		5	MHz/Ch
Maximum differential nonlinearity		Gain = 1 V/V, 12-bit		±0.5		LSB
Maximum integral nonlinearity		Gain = 1 V/V, 12-bit		±2		LSB
No missing codes				Specified		
Signal-to-noise ratio	SNR	Gain = 1 V/V	72 ⁽¹⁾	76		dB
Analog channel crosstalk		Gain = 1 V/V, 12-bit, full-scale step		±3		LSB
Total absolute gain error			-10		10	%

(1) Specified by design.

ELECTRICAL CHARACTERISTICS: VSP5610 (continued)

All specifications at $T_A = +25^{\circ}$ C, supply voltage = +3.3 V, conversion rate = 8.75 MHz, and four-channel mode, unless otherwise noted.

			v	/SP5610		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG PROGRAMMABLE GAIN	(APG)				<u> </u>	
Gain range	APG_x		0.5		3.5	V/V
Gain step				63		Steps
Gain relative error		Basis gain = 1 V/V	-10		10	%
Gain monotonicity		Only APG_x		Specified		
DIGITAL PROGRAMMABLE GAIN	(DPG)					
Gain range	DPG_x		1.0		2.0	V/V
Gain step				255		Steps
Gain monotonicity		Only DPG_x		Specified		
AIN REFERENCE LEVEL (REF_AIN	I)					
Internal DAC output		Setting code = 2		0.5		V
	V	Setting code = 3		1.1		V
	V RIN1	Setting code = 0 (default)		1.5		V
		Setting code = 1		2.0		V
Internal DAC output tolerance	V _{RINT}		-10		10	%
Internal DAC output temperature drift	V _{RINT}	$T_A = 0^{\circ}C$ to +85°C ⁽²⁾	-2		2	%
External reference range	V _{REXT}		0.5		VDD – 0.9	V
INPUT CLAMP						
		Internal reference level clamp		V _{RINT}		V
Clamp level	V _{CLP}	External reference level clamp		V _{REXT}		V
		Fixed level clamp		2.2		V
Clamp-on resistance	R _{CLP}			500		Ω
OFFSET DAC						
Resolution				8		Bits
Output range				±250		mV
Setting tolerance			-10		10	%
Temperature drift		$T_A = 0^{\circ}C \text{ to } +85^{\circ}C^{(2)}$	-2		2	%

(2) Specified by design.

ELECTRICAL CHARACTERISTICS: VSP5611

All specifications at $T_A = +25^{\circ}$ C, supply voltage = +3.3 V, conversion rate = 12.5 MHz, and four-channel mode, unless otherwise noted.

			VSP5611			
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUT			IL			
Allowable input voltage			0		VDD	V
Full-scale range		Gain = 1 V/V		1		V _{PP}
Input capacitor				5		pF
DIGITAL INPUT						
Positive-going threshold	V _{T+}			DVDD	D_IO × 0.7	V
Negative-going threshold	V _{T-}		DVDD_IO × 0.3			V
Hysteresis (V _{T+} – V _{T-})	ΔV_T		DVDD_IO	× 0.13		V
Input current	I _{IN}				±1	μA
Input capacitor				5		pF
DIGITAL OUTPUT						
		I _{OH} = -2 mA	DVDD_IO - 0.45			V
High-level output voltage	V _{OH}	I _{OH} = -4 mA	DVDD_IO - 0.50			V
		I _{OH} = -8 mA	DVDD_IO - 0.50			V
		$I_{OL} = 2 \text{ mA}$			0.35	V
Low-level output voltage	V _{OL}	$I_{OL} = 4 \text{ mA}$			0.50	V
		I _{OL} = 8 mA			0.65	V
TC output timing alkow		XP1, XP2, XP3, XP4	-1		1	ns
TG output timing skew		Other signals	-2		2	ns
CMOS data output bit rate					80	MHz
LVDS DRIVER (TA, TB, TC, TCLK)						
Differential steady-state output voltage adjustment range	V _{OD}	R _L = 100 Ω	300	350	400	mV
Differential steady-state output adjustment step	V _{OD}			3		Steps
Differential steady-state output voltage tolerance	V _{OD}		-30		30	%
Change in the steady-state differential output voltage magnitude between opposite binary states	$\Delta V_{OD} $				35	mV
Steady-state common-mode output voltage	V _{OC(SS)}	$R_L = 100 \ \Omega$	1.125		1.375	V
Peak-to-peak common-mode output voltage	V _{OC(PP)}			80	150	mV
Short-circuit output current	I _{OS}	$V_{O} = 0 V (V_{O} = TA, TB, TC, TCLK)$		-6	±24	mA
Hi-Z output current	I _{OZ}	$V_O = 0 V$ to LVDD ($V_O = TA$, TB, TC, TCLK)			±10	μA
Transition time, differential output voltage	t_{LR}/t_{LF}			0.75	1.5	ns
TCLK clock rate			8		50	MHz
LVDS RECEIVER (RCLK)						
Positive-going differential input threshold voltage	V _{IT+}				100	mV
Negative-going differential input threshold voltage	V _{IT-}		-100			mV
RCLK clock rate			1		16.66	MHz

ELECTRICAL CHARACTERISTICS: VSP5611 (continued)

All specifications at $T_A = +25^{\circ}$ C, supply voltage = +3.3 V, conversion rate = 12.5 MHz, and four-channel mode, unless otherwise noted.

				VSP5611		I
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY						
LDO and analog I/O supply voltage	VDD		3.0	3.3	3.6	V
Digital I/O supply voltage	DVDD_IO		3.0	3.3	3.6	V
LVDS/CMOS supply voltage	LVDD		3.0	3.3	3.6	V
LDO and analog I/O current	VDD			99.6		mA
Digital I/O current	DVDD_IO	Load = 10 pF		5.4		mA
CMOS current	LVDD			10		mA
LVDS current	LVDD	Three-pair data, one-pair clock		24		mA
		LVDS, three-pair		426		mW
Power consumption		CMOS output		398		mW
		Standby mode (MCLK = 0 MHz)		15		mW
TEMPERATURE RANGE						
Operation temperature	T _A		0		+85	°C
Thermal resistor (junction-to-air)	θ_{JA}	PCB (50 mm × 50 mm, four-layer), 0 lfm airflow		29		°C/W
Thermal resistor (junction-to-case)	θ_{JC}			24		°C/W
DLL, PLL						
MCLK input frequency	f _{MCLK}		1		16.66	MHz
MCLK modulated frequency		MCLK > 5 MHz			35	kHz
MCLK modulated amplitude			-3.5		0	%
DLL tap number				48		Taps
Maximum DLL and PLL lock-up time		MCLK = 1 MHz		10		ms
TRANSFER CHARACTERISTICS						
Channel			2		4	Channels
Resolution				16		Bits
		LVDS, two- and three-channel mode	1		16.66	MHz/Ch
		LVDS, four-channel mode	1		12.5	MHz/Ch
		CMOS 8-bit × 2, two-channel mode	1		16.66	MHz/Ch
		CMOS 4-bit × 4, two-channel mode	1		10	MHz/Ch
Conversion rate		CMOS 8-bit × 2, three-channel mode	1		13.3	MHz/Ch
		CMOS 4-bit × 4, three-channel mode	1		6.7	MHz/Ch
		CMOS 8-bit × 2, four-channel mode	1		10	MHz/Ch
		CMOS 4-bit × 4, four-channel mode	1		5	MHz/Ch
Maximum differential nonlinearity		Gain = 1 V/V, 12-bit		±0.5		LSB
Maximum integral nonlinearity		Gain = 1 V/V, 12-bit		±2		LSB
No missing codes				Specified		
Signal-to-noise ratio	SNR	Gain = 1 V/V	72 ⁽¹⁾	76		dB
Analog channel crosstalk		Gain = 1 V/V, 12-bit, full-scale step		±6.5		LSB
Total absolute gain error			-10		10	%

(1) Specified by design.

TEXAS INSTRUMENTS

www.ti.com.cn

ELECTRICAL CHARACTERISTICS: VSP5611 (continued)

All specifications at $T_A = +25^{\circ}$ C, supply voltage = +3.3 V, conversion rate = 12.5 MHz, and four-channel mode, unless otherwise noted.

			v	/SP5611		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG PROGRAMMABLE GAIN	(APG)					
Gain range	APG_x		0.5		3.5	V/V
Gain step				63		Steps
Gain relative error		Basis gain = 1 V/V	-10		10	%
Gain monotonicity		Only APG_x		Specified		
DIGITAL PROGRAMMABLE GAIN	(DPG)					
Gain range	DPG_x		1.0		2.0	V/V
Gain step				255		Steps
Gain monotonicity		Only DPG_x		Specified		
AIN REFERENCE LEVEL (REF_AIN	1)					
Internal DAC output		Setting code = 2		0.5		V
	N/	Setting code = 3		1.1		V
	¥ RINT	Setting code = 0 (default)		1.5		V
		Setting code = 1		2.0		V
Internal DAC output tolerance	V _{RINT}		-10		10	%
Internal DAC output temperature drift	V _{RINT}	$T_A = 0^{\circ}C$ to +85°C ⁽²⁾	-2		2	%
External reference range	V _{REXT}		0.5		VDD - 0.9	V
INPUT CLAMP						
		Internal reference level clamp		V _{RINT}		V
Clamp level	V _{CLP}	External reference level clamp		V _{REXT}		V
		Fixed level clamp		2.2		V
Clamp-on resistance	R _{CLP}			500		Ω
OFFSET DAC						
Resolution				8		Bits
Output range				±250		mV
Setting tolerance			-10		10	%
Temperature drift		$T_A = 0^{\circ}C \text{ to } +85^{\circ}C^{(2)}$	-2		2	%

(2) Specified by design.

ELECTRICAL CHARACTERISTICS: VSP5612

All specifications at $T_A = +25^{\circ}$ C, supply voltage = +3.3 V, conversion rate = 17.5 MHz, and four-channel mode, unless otherwise noted.

			VSP	5612		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUT					·	
Allowable input voltage			0		VDD	V
Full-scale range		Gain = 1 V/V		1		V _{PP}
Input capacitor				5		pF
DIGITAL INPUT						
Positive-going threshold	V _{T+}			DVD	D_IO × 0.7	V
Negative-going threshold	V _{T-}		DVDD_IO × 0.3			V
Hysteresis (V _{T+} – V _{T–})	ΔV_T		DVDD_IO	× 0.13		V
Input current	I _{IN}				±1	μA
Input capacitor				5		pF
DIGITAL OUTPUT						
		I _{OH} = -2 mA	DVDD_IO - 0.45			V
High-level output voltage	V _{OH}	I _{OH} = -4 mA	DVDD_IO - 0.50			V
		I _{OH} = -8 mA	DVDD_IO - 0.50			V
		$I_{OL} = 2 \text{ mA}$			0.35	V
Low-level output voltage	V _{OL}	$I_{OL} = 4 \text{ mA}$			0.50	V
		I _{OL} = 8 mA			0.65	V
TC output timing allow		XP1, XP2, XP3, XP4	-1		1	ns
		Other signals	-2		2	ns
CMOS data output bit rate					80	MHz
LVDS DRIVER (TA, TB, TC, TCLK)						
Differential steady-state output voltage adjustment range	V _{OD}	R _L = 100 Ω	300	350	400	mV
Differential steady-state output adjustment step	V _{OD}			3		Steps
Differential steady-state output voltage tolerance	V _{OD}		-30		30	%
Change in the steady-state differential output voltage magnitude between opposite binary states	$\Delta V_{OD} $				35	mV
Steady-state common-mode output voltage	V _{OC(SS)}	R _L = 100 Ω	1.125		1.375	V
Peak-to-peak common-mode output voltage	V _{OC(PP)}			80	150	mV
Short-circuit output current	I _{OS}	$V_0 = 0 V (V_0 = TA, TB, TC, TCLK)$		-6	±24	mA
Hi-Z output current	I _{OZ}	V _O = 0 V to LVDD (V _O = TA, TB, TC, TCLK)			±10	μA
Transition time, differential output voltage	t _{LR} /t _{LF}			0.75	1.5	ns
TCLK clock rate			8		70	MHz
LVDS RECEIVER (RCLK)						
Positive-going differential input threshold voltage	V _{IT+}				100	mV
Negative-going differential input threshold voltage	V _{IT-}		-100			mV
RCLK clock rate			1		23.33	MHz

TEXAS INSTRUMENTS

www.ti.com.cn

ELECTRICAL CHARACTERISTICS: VSP5612 (continued)

All specifications at $T_A = +25^{\circ}$ C, supply voltage = +3.3 V, conversion rate = 17.5 MHz, and four-channel mode, unless otherwise noted.

				VSP5612		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY						
LDO and analog I/O supply voltage	VDD		3.0	3.3	3.6	V
Digital I/O supply voltage DVD	D_IO		3.0	3.3	3.6	V
LVDS/CMOS supply voltage	VDD		3.0	3.3	3.6	V
LDO and analog I/O current	VDD			133		mA
Digital I/O current DVD	D_IO	Load = 10 pF		7.5		mA
CMOS current L	VDD			10		mA
LVDS current L	VDD	Three-pair data, one-pair clock		24		mA
		LVDS, three-pair		542		mW
Power consumption		CMOS output		507		mW
		Standby mode (MCLK = 0 MHz)		15		mW
TEMPERATURE RANGE						
Operation temperature	T _A		0		+85	°C
Thermal resistor (junction-to-air)	θ_{JA}	PCB (50 mm × 50 mm, four-layer), 0 lfm airflow		29		°C/W
Thermal resistor (junction-to-case)	θ_{JC}			24		°C/W
DLL, PLL						
MCLK input frequency	f _{MCLK}		1		23.33	MHz
MCLK modulated frequency		MCLK > 5 MHz			35	kHz
MCLK modulated amplitude			-3.5		0	%
DLL tap number				48		Taps
Maximum DLL and PLL lock-up time		MCLK = 1 MHz		10		ms
TRANSFER CHARACTERISTICS						
Channel			2		4	Channels
Resolution				16		Bits
		LVDS, two- and three-channel mode	1		23.33	MHz/Ch
		LVDS, four-channel mode	1		17.5	MHz/Ch
		CMOS 8-bit × 2, two-channel mode	1		20	MHz/Ch
		CMOS 4-bit × 4, two-channel mode	1		10	MHz/Ch
Conversion rate		CMOS 8-bit × 2, three-channel mode	1		13.3	MHz/Ch
		CMOS 4-bit × 4, three-channel mode	1		6.7	MHz/Ch
		CMOS 8-bit × 2, four-channel mode	1		10	MHz/Ch
		CMOS 4-bit × 4, four-channel mode	1		5	MHz/Ch
Maximum differential nonlinearity		Gain = 1 V/V, 12-bit		±0.5		LSB
Maximum integral nonlinearity		Gain = 1 V/V, 12-bit		±2		LSB
No missing codes				Specified		
Signal-to-noise ratio	SNR	Gain = 1 V/V	72 ⁽¹⁾	75		dB
Analog channel crosstalk		Gain = 1 V/V, 12-bit, full-scale step		±15		LSB
Total absolute gain error			-10		10	%

(1) Specified by design.

ELECTRICAL CHARACTERISTICS: VSP5612 (continued)

All specifications at $T_A = +25^{\circ}$ C, supply voltage = +3.3 V, conversion rate = 17.5 MHz, and four-channel mode, unless otherwise noted.

			V	SP5612		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG PROGRAMMABLE GAIN	(APG)					
Gain range	APG_x		0.5		3.5	V/V
Gain step				63		Steps
Gain relative error		Basis gain = 1 V/V	-10		10	%
Gain monotonicity		Only APG_x		Specified		
DIGITAL PROGRAMMABLE GAIN	(DPG)					
Gain range	DPG_x		1.0		2.0	V/V
Gain step				255		Steps
Gain monotonicity		Only DPG_x		Specified		
AIN REFERENCE LEVEL (REF_AIM	4)					
Internal DAC output		Setting code = 2		0.5		V
	V	Setting code = 3		1.1		V
	V RIN I	Setting code = 0 (default)		1.5		V
		Setting code = 1		2.0		V
Internal DAC output tolerance	V _{RINT}		-10		10	%
Internal DAC output temperature drift	V _{RINT}	$T_A = 0^{\circ}C$ to +85°C ⁽²⁾	-2		2	%
External reference range	V _{REXT}		0.5		VDD - 0.9	V
INPUT CLAMP						
		Internal reference level clamp		V _{RINT}		V
Clamp level	V _{CLP}	External reference level clamp		V_{REXT}		V
		Fixed level clamp		2.2		V
Clamp-on resistance	R _{CLP}			500		Ω
OFFSET DAC						
Resolution				8		Bits
Output range				±250		mV
Setting tolerance			-10		10	%
Temperature drift		$T_A = 0^{\circ}C \text{ to } +85^{\circ}C^{(2)}$	-2		2	%

(2) Specified by design.

THERMAL INFORMATION

		VSP561xRSH	
	THERMAL METRIC ⁽¹⁾	RSH	UNITS
		56 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	25.8	
θ_{JCtop}	Junction-to-case (top) thermal resistance	13.2	
θ_{JB}	Junction-to-board thermal resistance	3.5	°C 11/
Ψ_{JT}	Junction-to-top characterization parameter	0.2	C/W
Ψ _{JB}	Junction-to-board characterization parameter	3.5	
θ _{JCbot}	Junction-to-case (bottom) thermal resistance	0.4	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

VSP5610 VSP5611 VSP5612 ZHCS260 – JUNE 2011

www.ti.com.cn

PARAMETERIC MEASUREMENT INFORMATION

Analog Input Specification (AIN1, AIN2, AIN3, AIN4)

The analog input specification has two signal inputs: negative and positive. These inputs are shown in Figure 1a and Figure 1b, respectively.

Figure 1. Analog Input Definition

PARAMETER		TEST CONDITIONS	MIN	TYP MA	X UNIT
		VSP5610	1	11.6	6 MHz/Ch
Input pixel rate	f _{PIX}	VSP5611	1	16.6	6 MHz/Ch
		VSP5612	1	TYP MAX 11.66 16.66 23.33 VOFFSET VDD – VOFFSET 2 2 2.2 VDD – VOFFSET 2.2 VRUD – VOFFSET 2.2	3 MHz/Ch
Signal range	V	Negative $(AINx_POL^{(1)} = 0)$		V _{OFFSE}	T V
Signal range	VSIG	Positive (AINx_POL ^{(1)} = 1)	VDD – V _{OFFSET}		T V
Maximum full-scale range	V _{SIG}	Gain = 0.5 V/V	1.8	2 2	2 V
Reset field through noise range	V _{RST}		-V _{OFFSET}	VDD – V _{OFFSP}	т V
		Fixed level clamp mode (REF_SEL = 0)		2.2	V
Offset level	V _{OFFSET}	Internal reference level clamp mode (REF_SEL = 1)	V _{RINT}		V
		External reference level clamp mode (REF_SEL = 2)		V _{REXT}	V

Table 1. Timing Characteristics for Figure 1

(1) $AINx_POL = Analog input polarity setting register (x = 1, 2, 3, and 4).$

LVDS Output Voltage Specification

The test load and voltage definition for the LVDS outputs are shown in Figure 2.

(1) $R_L/2 = 49.9 \ \Omega \pm 1\%$

Figure 2. Test Load and Voltage Definition for LVDS Outputs

TEXAS INSTRUMENTS

www.ti.com.cn

PIN ASSIGNMENTS

PIN NUMBER	PIN NAME	TYPE ⁽¹⁾	DESCRIPTION	
1	TEST	DI3.3	Internal test pin; connect to DGND	
2	AVDD LDO	AP1.8	Analog core power voltage output; not connected, open	
3	VSS	AGND	LDO and analog I/O ground	
4	AIN1	Al3.3	First channel analog signal input ⁽²⁾	
5	AINGND1	Al3.3	First channel analog signal ground ⁽²⁾	
6	AIN2	Al3.3	Second channel analog signal input ⁽²⁾	
7	AINGND2	Al3.3	Second channel analog signal ground ⁽²⁾	
8	AIN3	AI3.3	Third channel analog signal input ⁽²⁾	
9	AINGND3	AI3.3	Third channel analog signal ground ⁽²⁾	
10	AIN4	AI3.3	Fourth channel analog signal input ⁽²⁾	
11	AINGND4	AI3.3	Fourth channel analog signal ground ⁽²⁾	
12	VSS	AGND	LDO and analog I/O ground	
			REF_DAC_IN	
13	REF_AIN	AI3.3/AO3.3	0 = Analog signal reference output (default) 1 = Analog signal reference input	
14	ISET	LVO1.8	Internal reference voltage output; by pass to ground with a 10-k Ω ±1% resister	
15	VSS	AGND	LDO and analog I/O ground	
16	REFP	AO1.8	Positive reference; bypass to AGND with a 0.1-µF capacitor	
17	REFN	AO1.8	Negative reference; bypass to AGND with a 0.1-µF capacitor	
18	VSS	AGND	LDO and analog I/O ground	
19	VDD	AP3.3	LDO and analog I/O power supply	
20	XSH1	DO3.3	Sensor shift gate output 1	
21	XSH2	DO3.3	Sensor shift gate output 2	
22	XSH3	DO3.3	Sensor shift gate output 3	
23	XSH4	DO3.3	Sensor shift gate output 4	
			GPIO0_SEL	
24	GPIO0	DIO3.3	0 = GPI0, general-purpose input port 0 (default) (In case of input, internal pull-down resistor) 1 = GPO0, general-purpose output port 0	
			GPIO2_SDO_SEL	
25	SDO/GPIO2	DIO3.3	0 = GPI2, general-purpose input port 2 (default) (In case of input, internal pull-down resistor) 1 = GPO2, general-purpose output port 2 2 = Reserved 3 = SDO, serial I/F data output	
26	DVSS	DGND	Digital ground	
27	RCLKN	LVI3.3	LVDS clock input	
28	RCLKP	LVI3.3	CMOS master clock input/positive LVDS clock input	
29	DVSS	DGND	Digital ground	
30	SEN	DI3.3	Serial I/F enable; active low, internal pull-up resistor	
			SDI_BUFF_CTRL	
31	SDI	DIO3.3	0 = Serial I/F data input 1 = Serial I/F data input/output (Internal pull-down resistor)	
32	SCLK	DI3.3	Serial I/F clock (internal pull-down resistor)	
33	TCLK–/CK1/ D7	LVO3.3	Negative LVDS clock output/Clock output 1/Data output bit 7	
34	TCLK+/CK0/ D6	LVO3.3	Positive LVDS clock output/Clock output 0/Data output bit 6	

AP3.3 = 3.3-V analog power supply; AP1.8 = 1.8-V analog power supply; AGND = analog ground; GND = ground; AO3.3 = 3.3-V analog output; AO1.8 = 1.8-V analog output; Al3.3 = 3.3-V analog input; DP3.3 = 3.3-V digital power supply; DP1.8 = 1.8-V digital power supply; DGND = digital ground; DO3.3 = 3.3-V digital output; DI3.3 = 3.3-V digital input; DIO3.3 = 3.3-V LVDS output; LVDS power supply; LVGND = LVDS ground; LVO3.3 = 3.3-V LVDS output; LVI3.3 = 3.3-V LVDS input; and LVO = 3.3-V LVDS output.
 (2) If these pins are unused, they can be opened or decoupled to GND with a decoupling capacitor.

VSP5610 VSP5611 VSP5612 ZHCS260 – JUNE 2011

www.ti.com.cn

PIN ASSIGNMENTS (continued)

PIN NUMBER	PIN NAME	TYPE ⁽¹⁾	DESCRIPTION
35	TC–/D5	LVO3.3	Negative TC channel LVDS data output/Data output bit 5
36	TC+/D4	LVO3.3	Positive TC channel LVDS data output/Data output bit 4
37	TB–/D3	LVO3.3	Negative TB channel LVDS data output/Data output bit 3
38	TB+/D2	LVO3.3	Positive TB channel LVDS data output/Data output bit 2
39	TA–/D1	LVO3.3	Negative TA channel LVDS data output/Data output bit 1
40	TA+/D0	LVO3.3	Positive TA channel LVDS data output/Data output bit 0
41	LVDD	LVP3.3	LVDS/CMOS output power supply
42	LVSS	LVGND	LVDS/CMOS output ground
43	DVDD_IO	DP3.3	Digital I/O power supply
44	DVSS	DGND	Digital ground
			XLSYNC_SEL
45	XLSYNC	DIO3.3	 0 = Internal line synchronous signal output (default) (In case of input, internal pull-down resistor) 1 = External line synchronous signal input. Polarity is set by the XLSYNC_POL register (default is active high).
			GPIO1_SDO_SEL
46	SDO/GPIO1	DIO3.3	0 = GPI1, general-purpose input port 1 (default) (In case of input, internal pull-down resistor) 1 = GPO1, general-purpose output port 1 2 = Reserved, internal test input 3 = SDO, serial I/F data output
			GPIO3_XST_SEL
47	XST/GPIO3	DIO3.3	0 = GPI3, general-purpose input port 3 (default) (In case of input, internal pull-down resistor) 1 = GPO3, general-purpose output port 3 2 = Reserved, internal test input 3 = XST, storage pulse output
48	XCLR	DO3.3	Sensor clear gate output
49	XP1	DO3.3	Fast transfer clock output φ1
50	XP2	DO3.3	Fast transfer clock output φ2
51	XP3	DO3.3	Fast transfer clock output φ3
52	XP4	DO3.3	Fast transfer clock output φ4
53	X1L	DO3.3	Fast transfer clock output 1L
54	X2L	DO3.3	Fast transfer clock output 2L
55	XCP	DO3.3	Clamp gate clock output
56	XRS	DO3.3	Reset gate clock output

FUNCTIONAL BLOCK DIAGRAM

Figure 3. VSP5610/11/12 Block Diagram

SYSTEM OVERVIEW

INTRODUCTION

The VSP5610/11/12 are analog front-end (AFE) devices for CCD and CMOS line image sensor applications such as copiers, facsimile machines, etc. The VSP5610/11/12 each provide four independent data processing channels.

The data from each image sensor channel are sampled and held by either the SH or CDS circuit and are then converted into digital data by an ADC. The digital data for each channel are later converted into serial data that can be output in either LVDS mode or CMOS mode.

AFE BLOCK

ANALOG SIGNAL INPUT

These devices have four channels that can be used as analog input ports for an image sensor. In addition to the four-channel input, this AFE device also supports three-channel and two-channel inputs. Table 2 shows the register settings required to select the different channel modes.

MODE	AIN_CH_SEL	AIN1	AIN2	AIN3	AIN4
Two-channel	2	Active	Standby	Active	Standby
Three-channel	1	Active	Active	Active	Standby
Four-channel	0	Active	Active	Active	Active

Table 2. Analog Input Channel Mode Selection

Each analog input supports CDS and simple SH circuits to accommodate CCD and CMOS image sensors. The sampling mode can be selected independently for each channel by configuring the internal registers. As shown in Table 3, if AINx_SH_CDS is set to '0', then the corresponding channel operates in CDS mode.

Table 3. CDS/SH Mode Selection

AINx_SH_CDS ⁽¹⁾	SH/CDS
0	CDS
1	SH

(1) $AINx_POL = Analog input polarity setting register (x = 1, 2, 3, and 4).$

In addition, these devices also support independent selection of the input signal polarity for each channel. Input signal polarity can be set using the AINx_POL register, where x = 1, 2, 3, or 4. The input signal range and polarity are defined in the *Analog Input Specification* section.

Correlated Double Sampler (CDS) Mode (AINx_SH_CDS = 0)

CDS mode is designed to accommodate inputs from the CCD sensor. The output signal of a CCD image sensor is sampled twice during one pixel period. First, the reference interval is sampled by the SHP pulse, then the data interval is sampled by the SHD pulse. Subtracting these two samples provides the video information of the pixel as well as removes any noise common to both intervals. Thus, CDS plays an important role in reducing the reset noise and other low-frequency noises that are present on the CCD output signal. Figure 4 shows a diagram of CDS mode.

Figure 4. CDS Mode Input Circuit for CCD Signal

Sample Hold (SH) Mode (AINx_SH_CDS = 1)

SH mode supports CCD and CMOS sensors. For the CCD sensor, the sensor signal pedestal level is clamped to the V_{CLP} level using an internal clamp circuit. SH samples only once during a pixel period. The SHD pulse is used to sample the CCD signal data interval. After sampling, the SH circuit takes the difference of the data and V_{CLP} levels to extract the video information.

For the CMOS input, the input clamp function should be set according to the requirements. If the sensor output is within the allowable input range, an ac-coupling capacitor for analog input may not be needed. When the sensor signal is directly input to the AFE, the SH circuit requires a reference voltage to set the black level. To use V_{CLP} as a reference, SH_REFx_EN should be enabled and AINGNDx then opened or coupled to GND with a capacitor. To use an external reference, it can be input to AINGNDx with sensor signals connected to AINx. Figure 5 shows a diagram of the SH mode.

(1) Under some conditions, the sensor signal can be directly input to the AFE without requiring an external capacitor.

(2) In SH mode, the SHP clock should be programmed so that it does not overlap the SHD clock.

Figure 5. SH Mode Input Circuit for CCD or CMOS Signal

INPUT CLAMP AND SENSOR REFERENCE

The CCD output signal has a large dc offset that may exceed the input range of the AFE input circuit. Therefore, this output signal is ac-coupled to the AFE through a capacitor, and the internal dc level is set to the clamp voltage (V_{CLP}) by an internal clamp circuit. The VSP5610/11/12 provide three modes for clamp operation: pixel clamp, line clamp, and not clamped. These modes are shown in Table 4. The clamp mode can be set independently for each channel by configuring the AINx_CLP_SEL register.

	MODE SETTING		CLAMP ACTIVE CONDITION AND SETTING			
CLAMP MODE	AINx_CLP_SEL ⁽¹⁾	CDS/SH	CLP_y ⁽²⁾	CLPDM AND SHP_y ⁽²⁾	SH_REF_EN	
Pixel clamp	0 (default)	CDS/SH	Active	Active	Off	
Line clamp	1	CDS/SH	_	Active	Off	
Not closed	2	Only SH	_	—	On	
Not clamped	3	Only SH	_	_	Off	

(1) AINx_CLP_SEL (x = 1, 2, 3, and 4).

(2) y = A and B.

In pixel clamp mode, CLP_A/B is used for clamping. The input signal is clamped to V_{CLP} via the CLP_A/B pulse during each pixel period, as shown in Figure 6a. Because the ac-coupling capacitor is charged on a pixel-to-pixel basis, the clamp level droop can be controlled by the clamp pulse width.

In line clamp mode, SHP_A/B is used for clamping when CLPDM is active, as shown in Figure 6b. The input signal is clamped only in the CLPDM period within one line cycle of the sensor. The signal is clamped in this method because the charge leaks the least from the coupling capacitor during the CLPDM period. Accordingly, because there may be a large droop in the clamp level, this device does not support line clamp in the SH mode.

The *not-clamped* mode is mainly used in for a CMOS sensor input. If the sensor signal is directly connected to the AFE, this mode should be configured without an ac-coupling capacitor at the input port. This mode has two options to select a reference for the sensor black level: internal reference and external input. In the internal reference option, the internal reference (V_{CLP}) is used with AINx_CLP_SEL = 2. In the external input option, the external input is used from AINGNDx with AINx_CLP_SEL = 3.

(1) x = AIN channel number, x = 1, 2, 3, and 4.

(2) y = Group code of sample pulse signals. When x = 1 or 2, y = A. When x = 3 or 4, y = B.

Figure 6. Input Clamp Function

As shown in Figure 7, the internal V_{CLP} node provides the clamp reference voltage. As for the clamp level, it is possible to select three reference voltage modes by setting the AINx_REF_SEL register. The first mode provides a fixed 2.2 V, the second mode provides selectable outputs (0.5 V, 1.1 V, 1.5 V, and 2.0 V) of an internal DAC, and the third mode allows an external input from the REF_AIN pin to be used as the clamp reference. This REF_AIN pin is bidirectional and also acts as an output of the internal DAC. Table 5 shows the relationship between the register and clamp level. Table 6 shows the DAC configuration.

(1) If the sensor signal is directly input to the AFE, the enternal capacitor should not be connected.

Figure 7. V_{CLP} Block Diagram

Table 5. Clamp Level Selection

MODE SETTING AINx_REF_SEL[1:0] ⁽¹⁾		CLAMP LEVEL
0	2.2 V	
1	V _{RINT}	Reference DAC (0.5 V, 1.1 V, 1.5 V, and 2.0 V)
2	V _{REXT}	REF_AIN external input

(1) AINx_CLP_SEL (x = 1, 2, 3, and 4).

Table 6. V_{RINT} Voltage Selection

SETTING CODE VRINT_SEL	REF DAC V _{RINT} (V)
2	0.5
3	1.1
0	1.5 (default)
1	2.0

If line clamp mode is used, the CLPDM period should be configured by the internal registers. The CLPDM period is determined with reference to the line cycle signal for the sensor (LS). Thus, the start and end of CLPDM are each defined as the number of pixels from the LS falling edge. Because CLPDM is used as the clamp period, it should be assigned for the interval of any dummy or optical black pixels. Figure 8 shows the relationship between LS and CLPDM.

Figure 8. Line Clamp Period Setting

Pixel Clamp Period Setting

In pixel clamp mode, without CLPDM, the sensor signal is clamped with CLP_A and CLP_B pulses. CLP_A corresponds to AIN1 and AIN2; CLP_B corresponds to AIN3 and AIN4. The start of these pulses is synchronized with the SHP_y rising edge (where y = A or B). There are two options to configure the end position: first, to automatically set the pulse width to 50% that of SHP_y; and second, to manually configure the end position using an internal register. Figure 9 and Figure 10 illustrate the details of the clamp pulse function in automatic and manual modes, respectively.

Automatic Mode (CLP_TF_AT_DIS = 0)

Figure 9 shows the automatic mode when CLP_TF_AT_DIS is '0'.

Figure 9. Automatic Mode

Manual Mode (CLP_TF_AT_DIS = 1)

Figure 10 shows the manual mode when CLP_TF_AT_DIS is '1'.

Figure 10. Manual Mode

In pixel clamp mode when CLPDM is active, the sensor signal is clamped with SHP_y. Therefore, the pixel clamp operation is closely related with the status of CLPDM. The condition of CLPDM should be properly defined with the internal registers. Because CLPDM is always high during a default condition after reset or power up, the status of CLPDM should be defined according to this sequence. Furthermore, the CLPDM status should be defined in the second step of the flowchart shown in Figure 11 for either configuration. All other user-dependent settings, except XLSYNC SEL and EN OUT of the software reset sequence, are described in Figure 11.

a) Only Pixel clamp

b) Line clamp + Pixel clamp

(1) Internal registers: AINx_CLP_SEL = addresses 16 and 17; LINT = address 7; DM_STR = address 8; DM_END = address 9; and EN_CLPDM = address 399, bit 1.

Figure 11. Configuration Sequence for Pixel Clamp

Code

EXAS

NSTRUMENTS

ANALOG PROGRAMMABLE GAIN (APG)

The SH output can be amplified using programmable analog gain. This gain can be set from 0.5 V/V to 3.5 V/V with a step size of 3/64 V/V.

The gain setting can be controlled by an internal register (APG_x). Equation 1 shows the relationship between the setting code and gain. The gain of each of the four channels can be set independently using different registers. Note that the black pixel level may possibly change as a result of the change in the gain; therefore, the appropriate timing of the gain change should be used to avoid degradation in image quality. Figure 12 shows analog gain as a function of gain control code in terms of V/V. Figure 13 shows the maximum allowed input signal as a function of gain control code.

APG (V/V) = $\frac{3}{63}$ × Code + 0.5 (Code = 0 LSB to 63 LSB)(1) 3.5 2 1.8 3 1.6 2.5 1.4 Input Range (V) Gain (V/V) 1.2 2 1 1.5 0.8 0.6 1 0.4 0.5 0.2 0 0 16 24 32 48 8 16 24 32 0 8 40 56 64 0 40 48 56 64 Input Code for Analog Gain Control (0 LSB to 63 LSBs) Input Code for Analog Gain Control (0 LSB to 63 LSBs) Figure 12. Analog Gain vs Setting Code Figure 13. Input Range vs Analog Gain Setting

DIGITAL PROGRAMMABLE GAIN (DPG)

The VSP5610/11/12 provide a maximum digital gain of 2 V/V. The total gain is fixed by the combination of CDS/SH analog gain (APG) and digital gain (DPG). DPG is controlled by an 8-bit internal register (DPG_x) that can set the gain from 1 V/V to 2 V/V, as defined by Equation 2. This register is included in each of the four channels, so the gain of each channel can be set independently.

Figure 14 shows the relationship between the digital gain and register code. Note that the default value is 1 V/V.

$$DPG (V/V) = \frac{1}{256} \times Code + 1 \qquad (Code = 0 LSB to 255 LSB)$$

$$(2)$$

Figure 14. Digital Gain Setting Code

ADC

The ADC output format is selectable as twos complement or offset binary by configuring a register. Table 7 shows the relationship between register setting and condition.

Table	7. A	DC	Data	Format	Configuration
-------	------	----	------	--------	---------------

ADC_DAT_FRM	MODE
0 (default)	Twos complement
1	Offset binary

OFFSET DAC

The VSP5610/11/12 have an independent DAC in each channel for offset level correction of the input signal. The correction range is ± 250 mV and resolution is 8 bits. The DAC output voltage can be set by register settings. Table 8 and Figure 15 show the relationship between the output and setting codes. The setting code is defined in twos complement format. The DAC output offset voltage in millivolts as a function of the register setting is given in Equation 3.

SETTING CODE OFDAC_x[7:0] ⁽¹⁾	OUTPUT (mV)
7Fh	248.05
7Eh	246.09
01h	1.95
00h	0
FFh	-1.95
81h	-248.05
80h	-250.00

Table 8. Offset DAC Setting Code

$$DAC \text{ Output (mV)} = \frac{250}{128} \times \text{OFDAC}_x[7:0]$$

where:

x = 1, 2, 3, and 4

Figure 15. Offset DAC Setting Code vs Output Voltage

Copyright © 2011, Texas Instruments Incorporated

(3)

TIMING GENERATOR (TG)

The image sensor timing generator (TG) is incorporated into these devices. The TG provides six signals that function as slow transfer clocks and eight signals that function as fast transfer clocks. In addition, the fast clock signals can also be used as slow clock signals. The TG signals are synchronized with LS (which is the image sensor line cycle) and are completely controlled by the internal registers. Because the TG output is locked under the default setting, EN_OUT (address 2, bit 10) should be set to '1' to enable the outputs.

LINE SYNCHRONOUS FUNCTION

The VSP5610/11/12 have two modes for synchronizing the sensor line cycle: internal line (Figure 16) and external line syncronous mode (Figure 17). In internal line synchronous mode, the line cycle signal (LS) is generated after a certain number of MCLK cycles that are counted by an internal counter (PIX_CNT). The number of MCLK cycles is determined by the LINT[19:0] register; the counter clears after LS is generated. The active LS period is equal to one MCLK cycle period.

Figure 17. External Line Synchronous Mode (XLSYNC_SEL = 0, default)

	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
t _{LINE}	Line cycle period setting	XLSYNC = 1	3	LINT + 1	2 ²⁰ – 1	Clocks
t _{XLS_ACT}	XLSYNC active period	XLSYNC = 0	3			Clocks
t _{XLS_S}	XLSYNC setup to MCLK	XLSYNC = 0	10			ns
t _{XLS_H}	XLSYNC hold to MCLK	XLSYNC = 0	10			ns

Fable 9.	Timing	Requirements	for Fig	gure 16	and Fig	jure 17
			•	<u> </u>	•	-

The other mode is the external line synchronous mode which requires an external signal (XLSYNC). In this mode, if the logic circuit detects an active XLSYNC period for more than three MCLK cycles, the internal line synchronous signal (LS) is generated. This mode has a function that mask XLSYNC in order to avoid noise interference. The duration of the XLSYNC mask can be set by the LINT[19:0] register, which is also used in the internal line synchronous mode.

The two line synchronous modes and the polarity can be selected by the XLSYNC_SEL and XLSYNC_POL registers, respectively. The default settings are external mode and active high polarity. XLSYNC can be used to output some internal signals. Table 10 shows the register settings required to select the desired output signals.

PIX_CNT can be automatically reset by LS_CNT_RST (which is an internal register). Before performing this function, a software reset must be executed in order set RST_ALL to '1'. If LS_CNT_RST is set to '1' after a software reset, the pixel counter is then held at '0'. To make the counter active, LS_CNT_RST should return to '0'.

REGISTER SETTING XLSYNC_OUT	OUTPUT SIGNAL
0	LS
1	CLPDM
2	Reserved
3	Reserved

Table 10. XLSYNC Output Signal (XLSYNC_SEL = 1)

SLOW TRANSFER CLOCK SETTING (XST, XSHn, XCLR)

XST, XSHn (where n = 1 to 4), and XCLR are slow transfer clocks that can be configured by setting the initial polarity and toggle points. As shown in Table 11, the predetermined number of toggle points is different for each signal. Because the two toggles generate one pulse, the number of pulses is half the number of toggles.

SIGNAL	TOGGLE	PULSE
XST	8	4
XSHn	16	8
XCLR	48	24

Table 11. Toggle Number and Generated Pulse

VSP5610 VSP5611 VSP5612 ZHCS260 – JUNE 2011

www.ti.com.cn

Each toggle position is defined by a register that is exclusive for each signal. The toggle position is synchronized with LS and the gap between the toggle position and the LS falling edge. The LS falling edge is defined in terms of t_{MCLK} , the cycle period of MCLK. This gap is set by register settings and is defined by Equation 4:

 $t = (Xn_T(k) + 1) \times t_{MCLK}$

where:

- n = ST, SHn, CLR
- k = 0 to 7 (XST); k = 0 to 15 (XSHn); k = 0 to 47 (XCLR)

Xn_T(k) is less than LINT and is the register value of the toggle setting

(4)

The toggle for each signal can be disabled with register settings. To make the toggle active, Xn_TGL_EN should be set to '1'. However, because XST shares a pin with GPIO3, pin function should be configured with the GPIO3_XST_SEL register. Figure 18 shows the configuration regarding the slow transfer clock.

(1) If Xn_Tn is set to '0', the toggle position is ignored (except for Xn_T0).

(2) The period between the toggle position and LS falling edge = $(Xn_T(k) + 1) \times t_{MCLK}$.

(3) The following requirement must be satisfied: $Xn_T(k) < Xn_T(k + 1)$.

(4) The signal is set to the desired polarity settings at the falling edge of LS.

Figure 18. Slow Transfer Gate Signal Setting for XST, XSHn, and XCLR

FAST TRANSFER CLOCK PULSE SETTING

XP1/2, X1L, X2L, XRS, XCP, and XP3/4 are fast transfer clock signals with rising and falling edges that are configurable via register settings. Figure 19 shows the block diagram of the fast clock configuration. In Figure 19, the *DLL Tap Selector* is used to select both the rising and the falling edges of each signal from among 48 tap positions.

The XP2 clock signal is an inverse of XP1 and shares rising and falling edge settings. Similarly, XP4 is an inverse of XP3 and likewise shares rising and falling edge settings. The other signals have individual configuration registers for setting the position of both edges.

In addition, it is possible to change the clock rate of each signal with register settings. The clock rate is based on the frequency of MCLK. XP1 and XP2 can select x1, x2, or x4 modes with common settings. XP3 and XP4 can also select x1, x2, or x4 modes with common settings. The other signals can choose between the x1 and x2 rate settings.

Note that two independent sets of registers are available to set the clock rate, the clock rising edge, and the clock falling edge for operation in x1-mode and x2-mode.

Figure 19. Fast Transfer Clock Pulse Generator

VSP5610 VSP5611 VSP5612 ZHCS260-JUNE 2011

Texas INSTRUMENTS

www.ti.com.cn

Fast Transfer Clock Pulse Timing

XRS pulse width

This section describes the timing of the fast transfer clock pulse for XRS (Figure 20), XCP (Figure 21), XP1 and XP2 (Figure 22), XP3 and XP4 (Figure 23), and X1L and X2L (Figure 24).

Figure 20. XRS Fast Transfer Clock Pulse Setting

Table 12. Timing Requirements for Figure 20								
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNI		
		VSP5610	1		11.66	MHz		
f _{MCLK}	MCLK frequency	VSP5611	1		16.66	MHz		
		VSP5612	1		23.33	MHz		
t _{MCLK}	MCLK period		1/f _{MCLK}			ns		
t _{MCKD}	MCLK to MCK delay			2		ns		
	VPC paried	x1 mode	t _{MCLK}			ns		
^t RS	XRS period	x2 mode	t _{MCLK} × 1/2			ns		
	VDC rising adapt dates from MOK	x1 mode	0	t _{MCLK}	× 47/48	ns		
^T TR_RS	KRS rising edge delay from MCK	x2 mode	0	t _{MCLK}	× 23/24	ns		
	VDC falling adapt datas from MCK	x1 mode	0	t _{MCLK}	× 47/48	ns		
^I TF_RS	ARS failing edge delay from MCK	x2 mode	0	t _{MCLK}	× 23/24	ns		
		x1 mode	2	t	_{MCLK} – 2	ns		

x2 mode

Table 12. 1	Timing	Requirements	for	Figure	20
-------------	--------	--------------	-----	---------------	----

 $t_{MCLK} \times 1/2 - 2$

ns

2

 t_{W_RS}

Figure 21. XCP Fast Transfer Clock Pulse Setting

Table 13. Timing Requirements	for	Figure 21
-------------------------------	-----	-----------

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
		VSP5610	1	11.66	MHz
f _{MCLK}	MCLK frequency	VSP5611	1	16.66	MHz
-		VSP5612	1	23.33	MHz
t _{MCLK}	MCLK period			1/f _{MCLK}	ns
t _{MCKD}	MCLK to MCK delay			2	ns
	YCD paried	x1 mode		ns	
^L CP	XCP period	x2 mode	t _{MO}	_{CLK} × 1/2	ns
	YCD rising adapt dalay from MCK	x1 mode	0	t _{MCLK} × 47/48	ns
ITR_CP	ACP IIsing edge delay from MCK	x2 mode	0	t _{MCLK} × 23/24	ns
	VCD falling adds datay from MCK	x1 mode	0	t _{MCLK} × 47/48	ns
^I TF_CP	ACP failing edge delay from MCK	x2 mode	0	t _{MCLK} × 23/24	ns
	YCD pulse width	x1 mode	2	t _{MCLK} – 2	ns
W_CP	XCP pulse width	x2 mode	2	t _{MCLK} × 1/2 – 2	ns

VSP5610 VSP5611 VSP5612 ZHCS260 – JUNE 2011

TEXAS INSTRUMENTS

www.ti.com.cn

Figure 22. XP1 and XP2 Fast Transfer Clock Pulse Setting

Table 14. Timing Requirements for Figure 22

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
		VSP5610	1	11.66	MHz
f _{MCLK}	MCLK frequency	VSP5611	1	16.66	MHz
		VSP5612	1	23.33	MHz
t _{MCLK}	MCLK period			1/f _{MCLK}	ns
t _{MCKD}	MCLK to MCK delay			2	ns
		x1 mode		t _{MCLK}	ns
t _{Pn}	XP1, XP2 period	x2 mode	tr	_{//CLK} × 1/2	ns
		x4 mode	tr	_{MCLK} × 1/4	ns
t _{TR_P_x1}		x1 mode	0	t _{MCLK} × 47/48	ns
t _{TR_P_x2}	XP1, XP2 rising edge delay from MCK	x2 mode	0	t _{MCLK} × 23/24	ns
t _{TR_P_x3}		x4 mode	0	t _{MCLK} × 11/12	ns
t _{TF_P_x1}		x1 mode	0	t _{MCLK} × 47/48	ns
t _{TF_P_x2}	XP1, XP2 falling edge delay from MCK	x2 mode	0	t _{MCLK} × 23/24	ns
t _{TF_P_x3}		x4 mode	0	t _{MCLK} × 11/12	ns
		x1 mode	2	t _{MCLK} – 2	ns
t _{W_P1}	XP1, XP2 pulse width	x2 mode	2	t _{MCLK} × 1/2 – 2	ns
		x4 mode	2	t _{MCLK} × 1/4 – 2	ns

VSP5610 VSP5611 VSP5612 ZHCS260 – JUNE 2011

TEXAS INSTRUMENTS

www.ti.com.cn

Figure 23. XP3 and XP4 Fast Transfer Clock Pulse Setting

Table 15. Timing Requirements for Figure 23

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
		VSP5610	1	11.66	MHz
f _{MCLK}	MCLK frequency	VSP5611	1	16.66	MHz
		VSP5612	1	23.33	MHz
t _{MCLK}	MCLK period			1/f _{MCLK}	ns
t _{MCKD}	MCLK to MCK delay			2	ns
		x1 mode		t _{MCLK}	ns
t _{P3}	XP3, XP4 period	x2 mode		t _{MCLK} × 1/2	ns
		x4 mode		t _{MCLK} × 1/4	ns
t _{TR_P3_x1}		x1 mode	0	t _{MCLK} × 47/48	ns
t _{TR_P3_x2}	XP3, XP4 rising edge delay from MCK	x2 mode	0	t _{MCLK} × 23/24	ns
t _{TR_P3_x3}		x4 mode	0	t _{MCLK} × 11/12	ns
t _{TF_P3_x1}		x1 mode	0	t _{MCLK} × 47/48	ns
t _{TF_P3_x2}	XP3, XP4 falling edge delay from MCK	x2 mode	0	t _{MCLK} × 23/24	ns
t _{TF_P3_x3}		x4 mode	0	t _{MCLK} × 11/12	ns
		x1 mode	2	t _{MCLK} – 2	ns
t _{W_P3}	XP3, XP4 pulse width	x2 mode	2	t _{MCLK} × 1/2 – 2	ns
		x4 mode	2	t _{MCLK} × 1/4 – 2	ns

...

Texas Instruments

Figure 24. X1L and X2L Fast Transfer Clock Pulse Setting

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
		VSP5610	1	11.66	MHz
f _{MCLK}	MCLK frequency	VSP5611	1	16.66	MHz
		VSP5612	1	23.33	MHz
t _{MCLK}	MCLK period			1/f _{MCLK}	ns
t _{MCKD}	MCLK to MCK delay			2	ns
	XLn period	x1 mode		ns	
Ľn	(n = 1,2)	x2 mode	t _N	ns	
+	XLn rising edge delay from MCK	x1 mode	0	t _{MCLK} × 47/48	ns
'TR_Ln	(n = 1,2)	x2 mode	0	t _{MCLK} × 23/24	ns
	XLn falling edge delay from MCK	x1 mode	0	t _{MCLK} × 47/48	ns
^I TF_Ln	(n = 1,2)	x2 mode	0	t _{MCLK} × 23/24	ns
+	XLn pulse width	x1 mode	2	t _{MCLK} – 2	ns
W_Ln	(n = 1,2)	x2 mode	2	t _{MCLK} × 1/2 – 2	ns

Table 16. Timing Requirements for Figure 24

SERIAL INTERFACE

All device functions and settings are controlled through the serial interface. The serial interface consists of three signals (SCLK, SEN, and SDI) for register writing, and a fourth signal (SDO) for readback. SDO shares the terminal with the GPIO signal; thus, a register setting is required to activate the SDO function. Other signals are assigned to individual terminals.

Serial data are composed of 30 bits total, as shown in Figure 25. 10 bits are assigned for the register address and 20 bits for register data. The input serial data at SDI are sequentially stored in a shift register at the SCLK rising edge. Data shift operation is performed at the SCLK rising edges with SEN low. All 30 input data bits are loaded to a parallel latch in an internal register at the rising edge of SEN.

This device has two modes: read and write. The mode selection can be made via the SPL_RW internal register, located at bit 0 of address 0. SPL_RW = 0 implies a write mode and SPL_RW = 1 implies read mode.

	10-	-Bit Addro	ess		20-Bit Data					
A9	A8		A1	A0	D19	D18		D1	D0	
MSB ← LSB										

Figure 25. Serial I/F Data Format

WRITE MODE (SPI_RW = 0, Default)

Normally, one serial interface command is sent by one address and data combination. The address should be sent MSB first. Data are stored into the respective register, as indicated by the address. If the serial data at the end of the data stream are less than 30 bits, the last incomplete serial data are discarded. Figure 26 shows the SPI signal flow while in write mode.

Figure 26. SPI Signal Flow of Write Mode

ASIC/CPU

READ MODE (SPI_RW = 1)

In read mode, two types of connections are possible between the AFE and external systems such as an ASIC or CPU. One connection is the four-wire connection in which the SDI and SDO pins are separately connected to the system as shown in Figure 27a.

The other connection is a three-wire connection in which only the SDI pin is connected to the bidirectional I/O port of the external system, as shown in Figure 27b. In this case, SDI_BUFF_CTRL should be set to '1' to create an SPI bidirectional port. The bit flow of the four-wire connection is shown in Figure 28. The bit flow of the three-wire connection is shown in Figure 29. As shown in Figure 29, SDI changes from an input to an output at the SCLK falling edge after the end of the A[9:0] input. Because the SDI port is always in pull down mode, the external pull down resistance is unnecessary.

Device

SDC

a) Four-Wire Connection SDI Input Port: SDI_BUFF_CTRL = 0

SEN

SCLK

SDIO

SEN

SCLK

SDI

SDI Bidirectional Port: SDI_BUFF_CTRL = 1

Figure 29. SPI Signal Flow of Read Mode for Three-Wire Connection

重要声明

德州仪器(TI)及其下属子公司有权在不事先通知的情况下,随时对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权随时中止提供任何产品和服务。客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的 销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI保证其所销售的硬件产品的性能符合TI标准保修的适用规范。仅在TI保证的范围内,且TI认为有必要时才会使用测试或其它质量控制技术。除非政府做出了硬性规定,否则没有必要对每种产品的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用TI 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全措施。

TI不对任何TI专利权、版权、屏蔽作品权或其它与使用了TI产品或服务的组合设备、机器、流程相关的TI知识产权中授予的直接 或隐含权限作出任何保证或解释。TI所发布的与第三方产品或服务有关的信息,不能构成从TI获得使用这些产品或服务的许可、授 权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是TI的专利权或其它知识产权方面的许可。

对于TI的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。在复制信息的过程中对内容的篡改属于非法的、欺诈性商业行为。TI对此类篡改过的文件不承担任何责任。

在转售TI产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关TI产品或服务的明示或暗示授权,且这是非法的、 欺诈性商业行为。TI对此类虚假陈述不承担任何责任。

TI 产品未获得用于关键的安全应用中的授权,例如生命支持应用(在该类应用中一旦TI产品故障将预计造成重大的人员伤亡),除 非各方官员已经达成了专门管控此类使用的协议。购买者的购买行为即表示,他们具备有关其应用安全以及规章衍生所需的所有专业 技术和知识,并且认可和同意,尽管任何应用相关信息或支持仍可能由TI 提供,但他们将独力负责满足在关键安全应用中使用其产品及TI 产品所需的所有法律、法规和安全相关要求。此外,购买者必须全额赔偿因在此类关键安全应用中使用TI产品而对TI 及其代表造成的损失。

TI 产品并非设计或专门用于军事/航空应用,以及环境方面的产品,除非TI 特别注明该产品属于"军用"或"增强型塑料"产品。只有TI 指定的军用产品才满足军用规格。购买者认可并同意,对TI 未指定军用的产品进行军事方面的应用,风险由购买者单独承担, 并且独力负责在此类相关使用中满足所有法律和法规要求。

TI 产品并非设计或专门用于汽车应用以及环境方面的产品,除非TI 特别注明该产品符合ISO/TS 16949 要求。购买者认可并同意,如果他们在汽车应用中使用任何未被指定的产品,TI 对未能满足应用所需要求不承担任何责任。

可访问以下URL 地址以获取有关其它TI 产品和应用解决方案的信息:

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	http://www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	http://www.ti.com.cn/dataconvert ers	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	http://www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	http://www.ti.com.cn/clockandtim ers	医疗电子	www.ti.com.cn/medical
接口	http://www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	http://www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	http:///www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	http://www.ti.com.cn/microcontroll ers	无线通信	www.ti.com.cn/wireless
RFID 系统	http://www.ti.com.cn/rfidsys		
RF/IF 和 ZigBee® 解决方案	www.ti.com.cn/radiofre		
	TI E2E 工程师社区	http://e2e.ti.com/cn/	

邮寄地址: 上海市浦东新区世纪大道 1568 号,中建大厦 32 楼 邮政编码: 200122 Copyright © 2011 德州仪器 半导体技术(上海)有限公司

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
VSP5610RSHR	ACTIVE	VQFN	RSH	56	2500	RoHS & Green	NIPDAU	Level-3-260C-168 HR	0 to 85	VSP 5610	Samples
VSP5611RSHR	ACTIVE	VQFN	RSH	56	2500	RoHS & Green	NIPDAU	Level-3-260C-168 HR	0 to 85	VSP 5611	Samples
VSP5612RSHR	ACTIVE	VQFN	RSH	56	2500	RoHS & Green	NIPDAU	Level-3-260C-168 HR	0 to 85	VSP 5612	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

10-Dec-2020

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

RSH (S-PVQFN-N56)

PLASTIC QUAD FLATPACK NO-LEAD

NOTE: All linear dimensions are in millimeters

RSH (S-PVQFN-N56)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

重要声明和免责声明

Ⅱ 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、 验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用 所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI所提供产品均受TI的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司