

www.ti.com

2.5-V PHASE-LOCKED-LOOP CLOCK DRIVER

FEATURES

- Spread-Spectrum Clock Compatible
- Operating Frequency: 60 MHz to 220 MHz
- Low Jitter (Cycle-Cycle): ±35 ps
- Low Static Phase Offset: ±50 ps
- Low Jitter (Period): ±30 ps
- 1-to-10 Differential Clock Distribution (SSTL2)
- Best in Class for V_{OX} = V_{DD}/2 ±0.1 V
- Operates From Dual 2.6-V or 2.5-V Supplies
- Available in a 40-Pin MLF Package, 48-Pin TSSOP Package, 56-Ball MicroStar Junior™ BGA Package
- Consumes < 100-μA Quiescent Current
- External Feedback Pins (FBIN, FBIN) Are Used to Synchronize the Outputs to the Input Clocks
- Meets/Exceeds JEDEC Standard (JESD82-1)
 For DDRI-200/266/333 Specification
- Meets/Exceeds Proposed DDRI-400 Specification (JESD82-1A)
- Enters Low-Power Mode When No CLK Input Signal Is Applied or PWRDWN Is Low

APPLICATIONS

- DDR Memory Modules (DDR400/333/266/200)
- Zero-Delay Fan-Out Buffer

DESCRIPTION

The CDCVF857 is a high-performance, low-skew, low-jitter, zero-delay buffer that distributes a differential clock input pair (CLK, CLK) to 10 differential pairs of clock outputs (Y[0:9], Y[0:9]) and one differential pair of feedback clock outputs (FBOUT, FBOUT). The clock outputs are controlled by the clock inputs (CLK, CLK), the feedback clocks (FBIN, FBIN), and the analog power input (AVDD). When PWRDWN is high, the outputs switch in phase and frequency with CLK. When PWRDWN is low, all outputs are disabled to a high-impedance state (3-state) and the PLL is shut down (low-power mode). The device also enters this low-power mode when the input frequency falls below a suggested detection frequency that is below 20 MHz (typical 10 MHz). An input frequency detection circuit detects the low frequency condition and, after applying a >20-MHz input signal, this detection circuit turns the PLL on and enables the outputs.

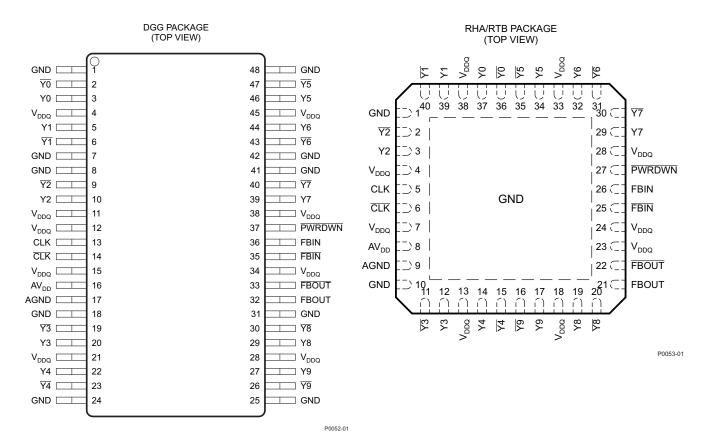
When AV_{DD} is strapped low, the PLL is turned off and bypassed for test purposes. The CDCVF857 is also able to track spread spectrum clocking for reduced EMI.

Because the CDCVF857 is based on PLL circuitry, it requires a stabilization time to achieve phase-lock of the PLL. This stabilization time is required following power up. The CDCVF857 is characterized for both commercial and industrial temperature ranges.

AVAILABLE OPTIONS

T _A	TSSOP (DGG)	40-Pin MLF	56-Ball BGA ⁽¹⁾
–40°C to 85°C	CDCVF857DGG	CDCVF857RTB	CDCVF857GQL
-40°C to 85°C		CDCVF857RHA	CDCVF857ZQL

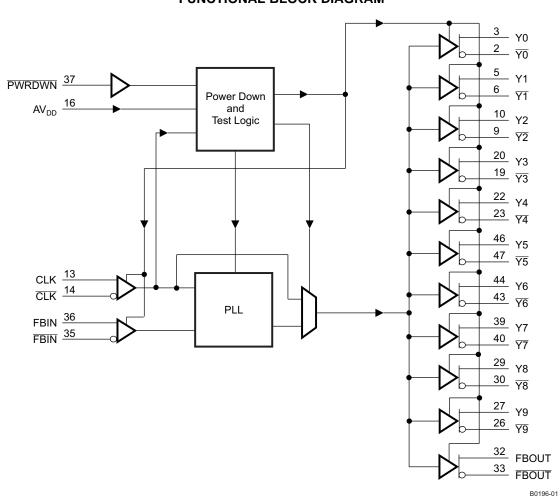
(1) Maximum load recommended is 12 pf for 200 MHz. At 12-pf load, maximum T_A allowed is 70°C.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

MicroStar Junior is a trademark of Texas Instruments.

FUNCTION TABLE (Select Functions)

	INP	UTS			OUT	PUTS		PLL
AVDD	PWRDWN	CLK	CLK	Y[0:9]	<u>Y[0:9]</u>	FBOUT	FBOUT	
GND	Н	L	Н	L	Н	L	Н	Bypassed/off
GND	Н	Н	L	Н	L	Н	L	Bypassed/off
Х	L	L	Н	Z	Z	Z	Z	Off
Х	L	Н	L	Z	Z	Z	Z	Off
2.5 V (nom)	Н	L	Н	L	Н	L	Н	On
2.5 V (nom)	Н	Н	L	Н	L	Н	L	On
2.5 V (nom)	X	<20 MHz	<20 MHz	Z	Z	Z	Z	Off


MicroStar Junior™ BGA (GQL/ZQL) PACKAGE (TOP VIEW) GND 2 Υ2 2 3 5 6 В <u>Y6</u> <u>Y1</u> -Υ1 Y6 NC NC GND GND GND GND (NC) NC Y7 $\frac{Y2}{Y2}$ 77 NB Ε **PWRDWN** $V_{DDQ} \ V_{DDQ}$ V_{DDQ} NB NB **FBIN** CLK CLK FBIN NC NC G $V_{\rm DDQ}$ $\begin{matrix} V_{DDQ} \\ A_{VDD} \end{matrix}$ FBOUT NC NC FBOUT AGND GND GND <u>78</u> Y3 Y3 Y8 Κ V_{DDQ} GND 7 74 V_{DDQ} 79 γ3

NB = No Ball NC = No Connection

P0054-01

FUNCTIONAL BLOCK DIAGRAM

Table 1. TERMINAL FUNCTIONS

	TE	ERMINAL		1/0	DESCRIPTION			
NAME	DGG	RHA/RTB	GQL/ZQL	1/0	DESCRIPTION			
AGND	17	9	H1	-	Ground for 2.5-V analog supply			
AV_{DD}	16	8	G2	_	2.5-V analog supply			
CLK, CLK	13, 14	5, 6	F1, F2	I	Differential clock input			
FBIN, FBIN	35, 36	25, 26	F5, F6	- 1	Feedback differential clock input			
FBOUT, FBOUT	32, 33	21, 22	H6, G5	0	Feedback differential clock output			
GND	1, 7, 8, 18, 24, 25, 31, 41, 42, 48	1, 10	A3, A4, C1, C2, C5, C6, H2, H5, K3, K4	-	Ground			
PWRDWN	37	27	E6	I	Output enable for Y and ₹			
V_{DDQ}	4, 11, 12, 15, 21, 28, 34, 38, 45	4, 7, 13, 18, 23, 24, 28, 33, 38	B3, B4, E1, E2, E5, G1, G6, J3, J4	_	2.5-V supply			
Y0, ₹0	3, 2	37, 36	A1, A2	0				
Y1, Y 1	5, 6	39, 40	B2, B1	0				
Y2, ₹ 2	10, 9	3, 2	D1, D2	0				
Y3, ₹3	20, 19	12,11	J2, J1	0				
Y4, ₹4	22, 23	14, 15	K1, K2	0	Buffered output copies of input clock, CLK, CLK			
Y5, ₹5	46, 47	34, 35	A6, A5	0	Burrered output copies of imput clock, CER, CER			
Y6, ₹6	44, 43	32, 31	B5, B6	0				
Y7, ₹ 7	39, 40	29, 30	D6, D5	0				
Y8, ₹8	29, 30	19, 20	J5, J6	0				
Y9, ▼ 9	27, 26	17, 16	K6, K5	0				

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) (1)

V_{DDQ} , AV_{DD}	Supply voltage range		0.5 V to 3.6 V
VI	Input voltage range (2)(3)		–0.5 V to V _{DDQ} + 0.5 V
Vo	Output voltage range (2)(3)		-0.5 V to V _{DDQ} + 0.5 V
I _{IK}	Input clamp current	$V_I < 0$ or $V_I > V_{DDQ}$	±50 mA
I _{OK}	Output clamp current	$V_O < 0$ or $V_O > V_{DDQ}$	±50 mA
Io	Continuous output current	$V_O = 0$ to V_{DDQ}	±50 mA
I _{DDC}	Continuous current to GND or V _{DDQ}		±100 mA
T _{stg}	Storage temperature range		−65°C to 150°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

R _{0JA} for	TSSOP (DGG) Pa	ackage ⁽¹⁾	$R_{ heta JA}$ for MLI	F (RHA/RTB) Package	$R_{\theta JA}$ for BGA	(GQL/ZQL) Package ⁽²⁾
Airflow	Low K	High K	Airflow	With 4 Thermal Vias	Airflow	High K
0 ft/min	89.1°C/W	70°C/W	0 ft/min	44.7°C/W	0 ft/min	132.2°C/W
150 ft/min	78.5°C/W	65.3°C/W	150 ft/min		150 ft/min	126.4°C/W

⁽¹⁾ The package thermal impedance is calculated in accordance with JESD 51.

⁽²⁾ The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

⁽³⁾ This value is limited to 3.6 V maximum.

⁽²⁾ Connecting the NC-balls (C3, C4, D3, D4, G3, G4, H3, H4) to a ground plane improves the θ_{JA} to 114.8°C/W (0 airflow).

RECOMMENDED OPERATING CONDITIONS

				MIN	NOM MAX	UNIT
	Cupply voltage	V_{DDQ}	PC1600 - PC3200	2.3	2.7	V
	Supply voltage	AVDD		V _{DDQ} - 0.12	2.7	V
\/	Low-level input voltage	CLK, CLK, I	FBIN, <u>FBIN</u>		$V_{DDQ}/2 - 0.18$	V
V_{IL}	Low-level input voltage	PWRDWN		-0.3	0.7	V
\/	Lligh lovel input veltage	CLK, CLK, I	FBIN, <u>FBIN</u>	VDDQ/2 + 0.18		V
V _{IH}	High-level input voltage	PWRDWN		1.7	V _{DDQ} + 0.3	V
	DC input signal voltage (1)			-0.3	$V_{DDQ} + 0.3$	V
\/	Differential input signal voltage (2)	DC	CLK, FBIN	0.36	$V_{DDQ} + 0.6$	V
V_{ID}	Differential input signal voltage (-)	AC	CLK, FBIN	0.7	$V_{DDQ} + 0.6$	V
V_{IX}	Input differential pair cross voltage (3)(4)			$V_{DDQ}/2 - 0.2$	$V_{DDQ}/2 + 0.2$	V
I _{OH}	High-level output current				-12	mA
I_{OL}	Low-level output current				12	mA
SR	Input slew rate			1	4	V/ns
T _A	Operating free-air temperature			-40	85	°C

- (1) The unused inputs must be held high or low to prevent them from floating.
- The dc input signal voltage specifies the allowable dc execution of the differential input.
- The differential input signal voltage specifies the differential voltage |VTR VCP| required for switching, where VTR is the true input level and VCP is the complementary input level.

 The differential cross-point voltage tracks variations of V_{CC} and is the voltage at which the differential signals must cross.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITION	ONS	MIN	TYP (1)	MAX	UNIT
V_{IK}	Input voltage, all inputs	$V_{DDQ} = 2.3 \text{ V}, I_{I} = -18 \text{ mA}$				-1.2	V
V	Lligh lovel output voltage	V_{DDQ} = min to max, I_{OH} = -	-1 mA	V _{DDQ} – 0.1			V
V _{OH}	High-level output voltage	$V_{DDQ} = 2.3 \text{ V}, I_{OH} = -12 \text{ m/s}$	$V_{\rm DDQ} = 2.3 \text{ V}, I_{\rm OH} = -12 \text{ mA}$				V
V	Low-level output voltage	$V_{DDQ} = min to max, I_{OL} = 1$	mA			0.1	V
V _{OL}	Low-level output voltage	$V_{DDQ} = 2.3 \text{ V}, I_{OL} = 12 \text{ mA}$				0.6	V
V_{OD}	Output voltage swing (2)	Differential outputs are tern	ainated with	1.1		$V_{DDQ} - 0.4$	V
V _{OX}	Output differential cross-voltage (3)	120 Ω , $C_L = 14 \text{ pF}$ (see Fig		$V_{DDQ}/2 - 0.1$	$V_{\rm DDQ}/2$	$V_{DDQ}/2 + 0.1$	V
I	Input current	$V_{DDQ} = 2.7 \text{ V}, V_{I} = 0 \text{ V to } 2$.7 V			±10	μΑ
I _{OZ}	High-impedance-state output current	$V_{DDQ} = 2.7 \text{ V}, V_{O} = V_{DDQ} \text{ o}$	$V_{DDQ} = 2.7 \text{ V}, V_O = V_{DDQ} \text{ or GND}$			±10	μΑ
I _{DDPD}	Power-down current on V _{DDQ} + AV _{DD}	CLK and $\overline{\text{CLK}} = 0 \text{ MHz}$; $\overline{\text{PV}}$ Low; Σ of I_{DD} and AI_{DD}	VRDWN =		20	100	μΑ
Λ1	Cumply ourrant on AV	f _O = 170 MHz			6	8	A
Al _{DD}	Supply current on AV _{DD}	f _O = 200 MHz			8	10	mA
C _I	Input capacitance	$V_{DDQ} = 2.5 \text{ V}, V_{I} = V_{DDQ} \text{ or}$	GND	2	2.5	3.5	pF
		Without load	f _O = 170 MHz		120	140	
		Williout loau	f _O = 200 MHz		125	150	
	DD Dynamic current on V _{DDQ}	Differential outputs	f _O = 170 MHz		220	270	
I _{DD}		terminated with 120 Ω , C _L = 0 pF	f _O = 200 MHz		230	280	mA
		Differential outputs	f _O = 170 MHz		280	330	
		terminated with 120 Ω , C _L = 14 pF	f _O = 200 MHz		300	350	

 ⁽¹⁾ All typical values are at nominal V_{DDQ}.
 (2) The differential output signal voltage specifies the differential voltage |VTR - VCP|, where VTR is the true output level and VCP is the complementary output level.

The differential cross-point voltage tracks variations of V_{DDQ} and is the voltage at which the differential signals must cross. (3)

ELECTRICAL CHARACTERISTICS (continued)

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾ MA)	UNIT
ΔC	Part-to-part input capacitance variation	$V_{DDQ} = 2.5 \text{ V}, V_{I} = V_{DDQ} \text{ or GND}$			pF
$C_{I(\Delta)}$	Input capacitance difference between CLK and CLK, FBIN, and FBIN	$V_{DDQ} = 2.5 \text{ V}, V_I = V_{DDQ} \text{ or GND}$		0.29	pF

TIMING REQUIREMENTS

over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	MIN	MAX	UNIT
4	Operating clock frequency	60	220	MHz
† _{CLK}	Application clock frequency	90	220	IVITZ
	Input clock duty cycle	40%	60%	
	Stabilization time (PLL mode) (1)		10	μs
	Stabilization time (bypass mode) (2)		30	ns

⁽¹⁾ The time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. For phase lock to be obtained, a fixed-frequency, fixed-phase reference signal must be present at CLK and V_{DD} must be applied. Until phase lock is obtained, the specifications for propagation delay, skew, and jitter parameters given in the switching characteristics table are not applicable. This parameter does not apply for input modulation under SSC application.

SWITCHING CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} ⁽¹⁾	Low-to-high level propagation delay time	Test mode/CLK to any output		3.5		ns
t _{PHL} ⁽¹⁾	High-to-low level propagation delay time	Test mode/CLK to any output		3.5		ns
. (2)	litter (period) and Figure 7	100 MHz (PC1600)	-65		65	
t _{jit(per)} (2)	Jitter (period), see Figure 7	133/167/200 MHz (PC2100/2700/3200)	-30		30	ps
(2)	Europe (mode to mode) and Figure 4	100 MHz (PC1600)	-50		50	
t _{jit(cc)} (2)	Jitter (cycle-to-cycle), see Figure 4	133/167/200 MHz (PC2100/2700/3200)	-35		35	ps
(2)	Half and addition and Figure 0	100 MHz (PC1600)	-100		100	
t _{jit(hper)} (2)	Half-period jitter, see Figure 8	133/167/200 MHz (PC2100/2700/3200)	-75		75	ps
t _{slr(o)}	Output clock slew rate, see Figure 9	Load: 120 Ω, 14 pF	1		2	V/ns
t _(ф)	Static phase offset, see Figure 5	100/133/167/200 MHz	-50		50	ps
t _{sk(o)}	Output skew, see Figure 6	Load: 120 Ω, 14 pF; 100/133/167/200 MHz			40	ps

⁽¹⁾ Refers to the transition of the noninverting output.

⁽²⁾ A recovery time is required when the device goes from power-down mode into bypass mode (AV_{DD} at GND).

⁽²⁾ This parameter is assured by design but cannot be 100% production tested.

PARAMETER MEASUREMENT INFORMATION

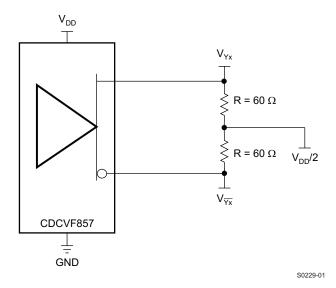


Figure 1. IBIS Model Output Load

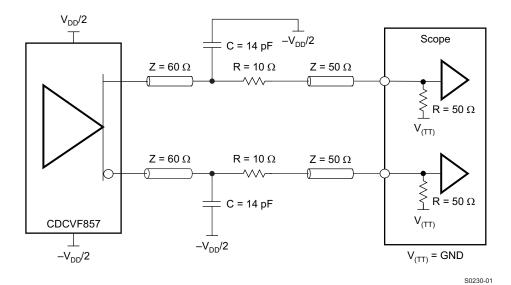


Figure 2. Output Load Test Circuit

PARAMETER MEASUREMENT INFORMATION (continued)

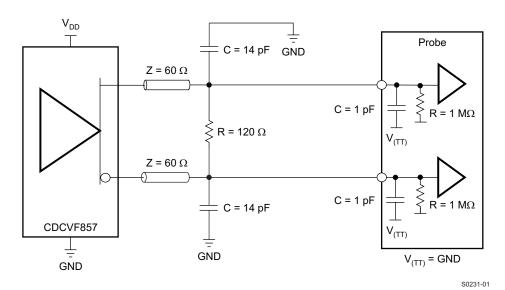


Figure 3. Output Load Test Circuit for Crossing Point

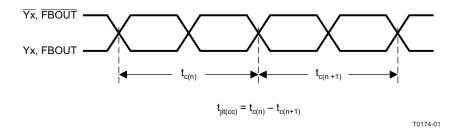


Figure 4. Cycle-to-Cycle Jitter

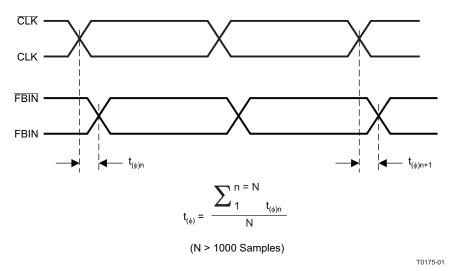
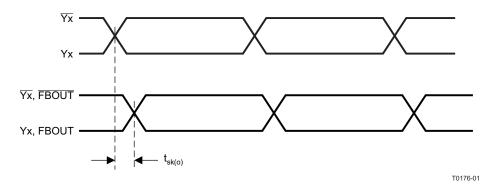
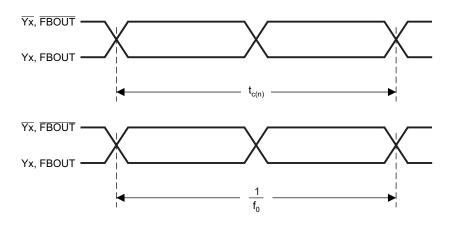
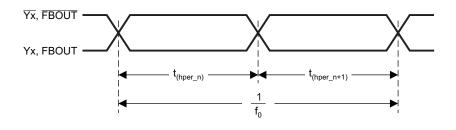


Figure 5. Phase Offset

PARAMETER MEASUREMENT INFORMATION (continued)


Figure 6. Output Skew

 $t_{\text{jit(per)}} = t_{\text{c(n)}} - \frac{1}{f_0}$ f_0 = Average Input Frequency Measured at CLK/ $\overline{\text{CLK}}$

T0177-01

Figure 7. Period Jitter

n = Any Half Cycle $t_{\text{jit(hper)}} = t_{\text{(hper_n)}} - \frac{1}{2 \times f_0}$ n = Any Half Cycle $f_0 = \text{Average Input Frequency Measured at CLK/CLK}$

T0178-01

Figure 8. Half-Period Jitter

PARAMETER MEASUREMENT INFORMATION (continued)

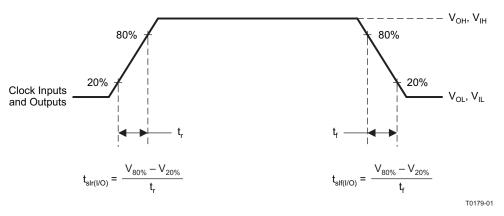
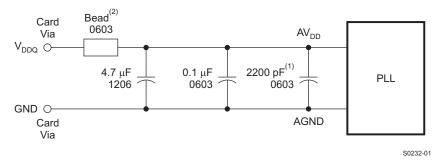



Figure 9. Input and Output Slew Rates

- (1) Place the 2200-pF capacitor close to the PLL.
- (2) Recommended bead: Fair-Rite P/N 2506036017Y0 or equilvalent (0.8 Ω dc maximum, 600 Ω at 100 MHz).

NOTE: Use a wide trace for the PLL analog power and ground. Connect PLL and capacitors to AGND trace and connect trace to one GND via (farthest from the PLL).

Figure 10. Recommended AV_{DD} Filtering

www.ti.com 19-Oct-2022

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CDCVF857DGG	ACTIVE	TSSOP	DGG	48	40	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCVF857	Samples
CDCVF857DGGR	ACTIVE	TSSOP	DGG	48	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCVF857	Samples
CDCVF857DGGRG4	ACTIVE	TSSOP	DGG	48	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCVF857	Samples
CDCVF857RHAT	ACTIVE	VQFN	RHA	40	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	CKVF857	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

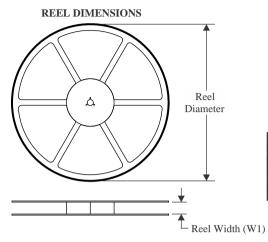
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

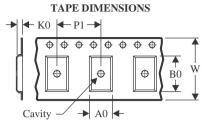
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

www.ti.com 19-Oct-2022


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

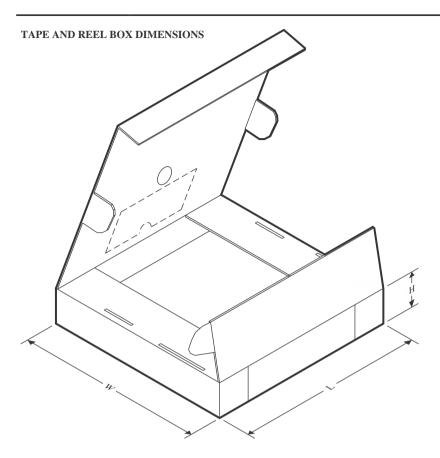

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022

TAPE AND REEL INFORMATION

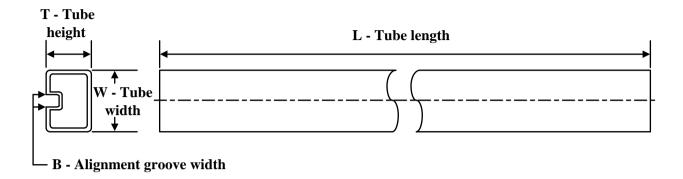
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDCVF857DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
CDCVF857RHAT	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2

www.ti.com 9-Aug-2022

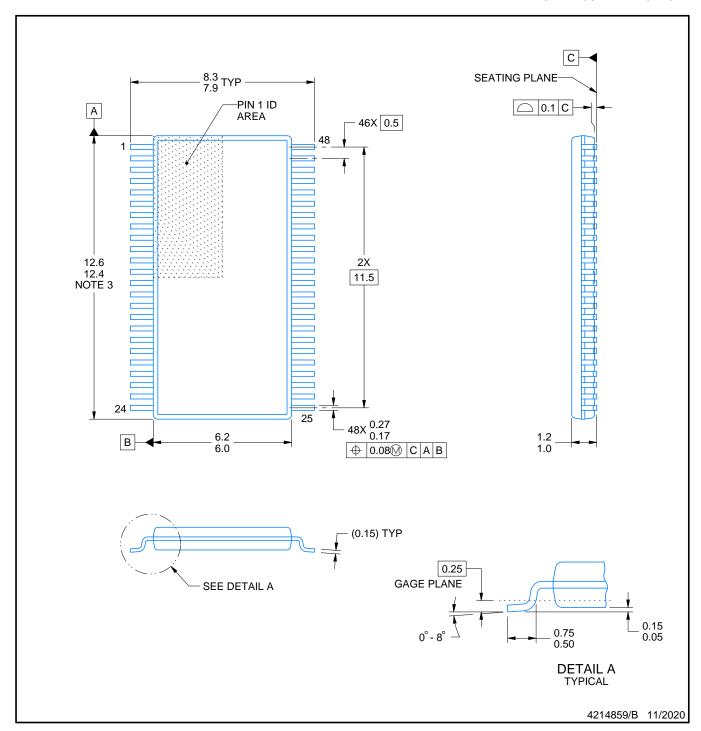

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
CDCVF857DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0	
CDCVF857RHAT	VQFN	RHA	40	250	210.0	185.0	35.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022

TUBE

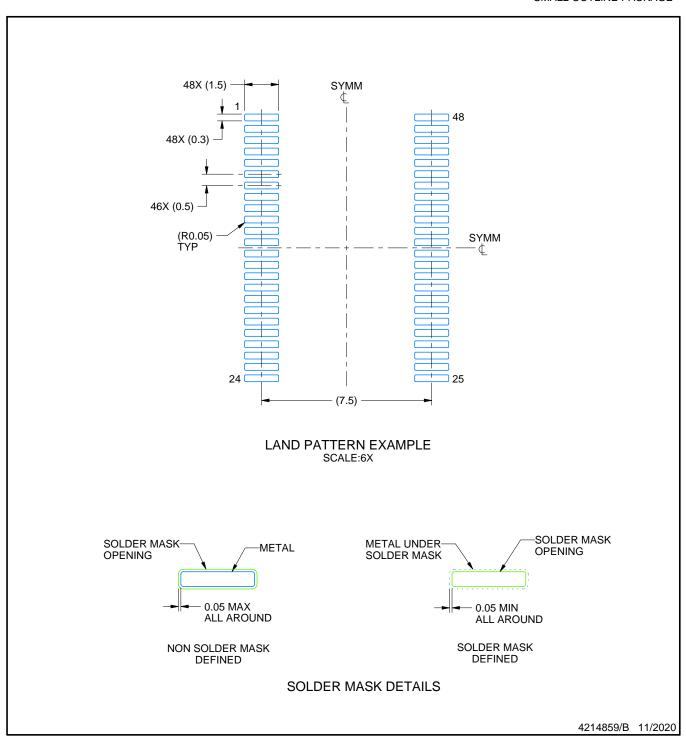


*All dimensions are nominal

Device Package Name		Package Type	ckage Type Pins		L (mm)	W (mm)	T (µm)	B (mm)	
	CDCVF857DGG	DGG	TSSOP	48	40	530	11.89	3600	4.9

SMALL OUTLINE PACKAGE

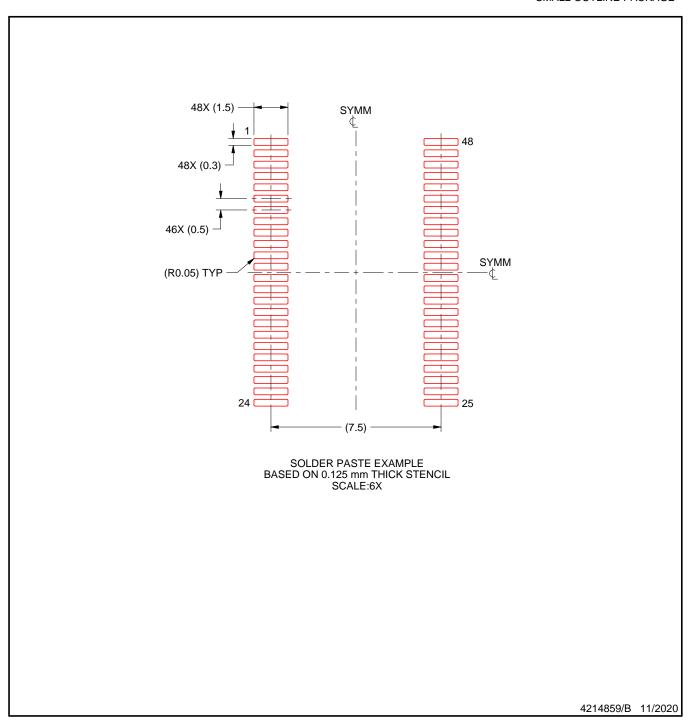
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

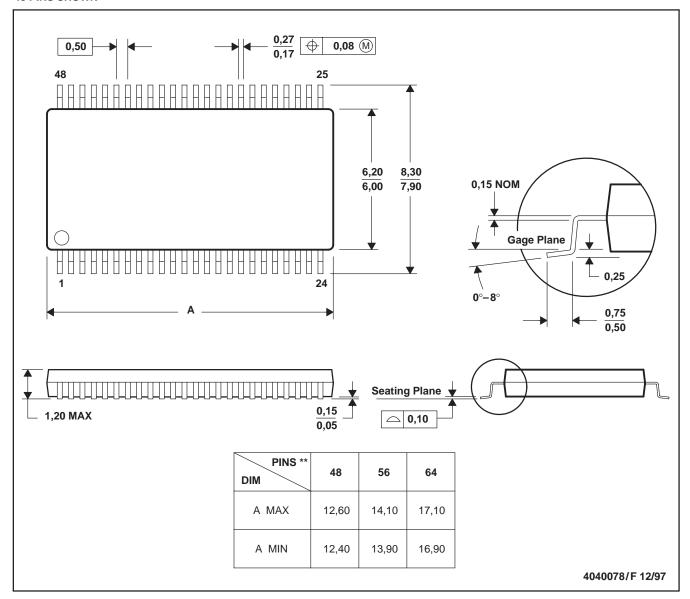


NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)


- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

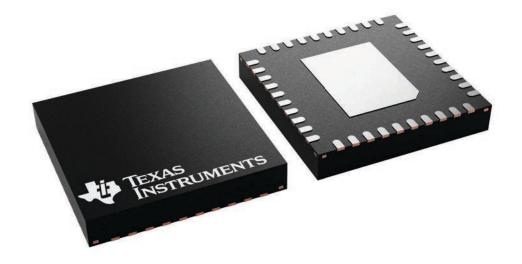
DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

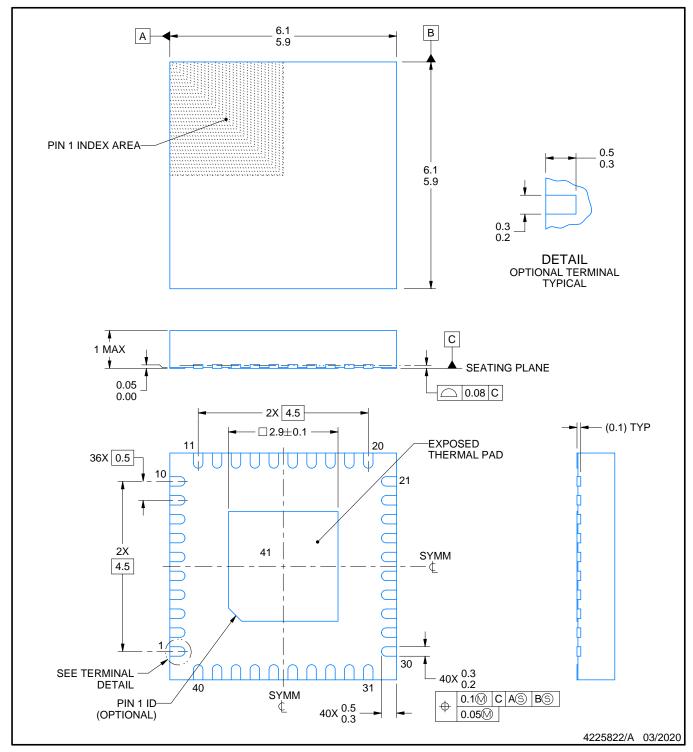
NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

6 x 6, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

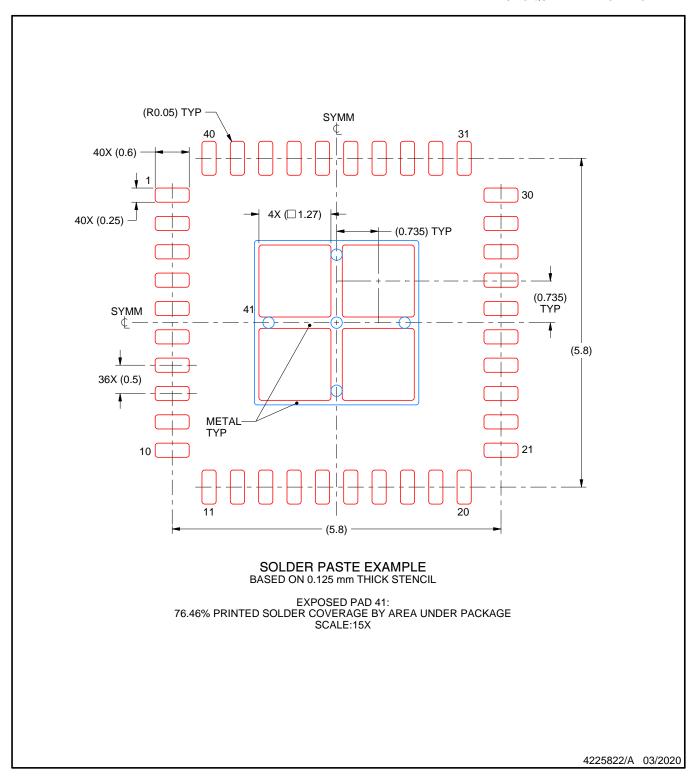
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated