

🕳 Order

Now

OPA2834

ZHCSJY2A – JUNE 2019 – REVISED SEPTEMBER 2019

OPA2834 50MHz、170µA、负电源轨输入、轨至轨输出、电压反馈放大器

Technical

Documents

1 特性

- 超低功耗:
 - 电源电压: 2.7V 至 5.4V
 - 静态电流 (I_Q): 170µA/ch (典型值)
- 带宽: 50MHz (G = 1V/V)
- 压摆率: 26V/µs
- 稳定时间 (0.1%): 88ns (2V_{STEP})
- HD₂、HD₃: 10kHz (2V_{PP}) 时分别为 –131dBc 和 -146dBc
- 输入电压噪声: 12nV/√Hz (f = 10kHz)
- 输入失调电压: 350µV(最大值为 ±1.9mV)
- 负电源轨输入,轨至轨输出 (RRO)
 输入中压范围
 0.2)(至 2.0)(
 - 输入电压范围: -0.2V 至 3.9V (5V 电源)
- 工作温度范围: -40℃ 至 +125℃
- 2 应用
- 电源电流检测
- 低功耗信号调节
- 电池供电 应用
- 便携式录音机
- 低功耗 SAR 和 Δ-Σ ADC 驱动器
- 便携式器件

🥭 Tools &

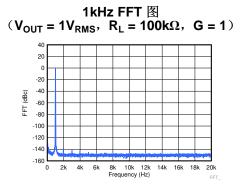
Software

OPA2834 是一款双通道超低功耗、轨至轨输出、负电源轨输入、电压反馈 (VFB) 运算放大器,设计的工作电源电压范围为 2.7V 至 5.4V(单电源)或 ±1.35V 至 ±2.7V(双电源)。这款放大器每通道仅消耗 170μA的电流,单位增益带宽为 50MHz,性能/功耗比处于轨至轨放大器的行业领先水平。

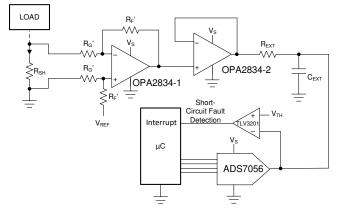
Support &

Community

22


对于 要求 低功耗的电池供电和便携式应用,OPA2834 可提供出色的带宽 l_Q 比。OPA2834 可提供极低的失 真,非常适用于数据采集系统和麦克风前置放大器。

请参见器件比较表,了解如何选择德州仪器 (TI) 提供的低功耗、低噪声 5V 放大器,以及 20MHz 至 300MHz 的增益带宽产品。


器件信息(1)

封装尺寸(标称值)										
3.00mm × 3.00mm										
3.0										

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

低侧电流分流监控

Page

Changes from Original (June 2019) to Revision A 已更改 将文档状态从 APL 更改为生产数据1

4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

目录

8.3

8.4

9.1

12.2

12.3

12.4

12.5

9

1	特性		1
2	应用	·	1
3	说明	·	1
4	修订	历史记录	2
5	Dev	ice Comparison Table	3
6	Pin	Configuration and Functions	3
7	Spe	cifications	4
	7.1	Absolute Maximum Ratings	4
	7.2	ESD Ratings	4
	7.3	Recommended Operating Conditions	4
	7.4	Thermal Information	4
	7.5	Electrical Characteristics: 3V to 5V	5
	7.6	Typical Characteristics: $V_s = 5 V$	6
	7.7	Typical Characteristics: V _S = 3.0 V	9
	7.8	Typical Characteristics: ±2.5-V to ±1.5-V Split	
		Supply 12	
8	Deta	ailed Description 15	5
	8.1	Overview 15	5

EXAS STRUMENTS

8.2 Functional Block Diagrams 15

Application and Implementation 20

Feature Description...... 15 Device Functional Modes...... 17

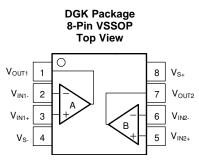
10 Power Supply Recommendations 25 11.1 Layout Guidelines 26 11.2 Layout Examples...... 26 12 器件和文档支持 27 12.1 文档支持...... 27

> 接收文档更新通知 27

> 商标......27

静电放电警告...... 27

13 机械、封装和可订购信息...... 27


www.ti.com.cn

5 Device Comparison Table

PART NUMBER	CHANNELS	A _v = +1 BANDWIDTH (MHz)	5-V I _Q (mA, Typ 25°C)	INPUT NOISE VOLTAGE (nV/√Hz)	2-V _{PP} THD (dBc, 100 kHz)	RAIL-TO-RAIL INPUT/OUTPUT	Single Channel
OPA2834	2	50	0.17	12		V _{S-} , output	—
OPA2835	2	56	0.25	9.4	-104	V _{S-} , output	OPA835
OPA2836	2	205	1.0	4.6	-118	V _{S-} , output	OPA836
OPA2837	2	105	0.6	4.7	-118	V _{S-} , output	OPA837
OPA838	1	—	0.96	1.9	-110	V _{S-} , output	—

6 Pin Configuration and Functions

Pin Functions

PIN		FUNCTION ⁽¹⁾	DESCRIPTION
NO.	NAME	FUNCTION	DESCRIPTION
1	V _{OUT1}	0	Amplifier 1 output pin
2	V _{IN1-}	I	Amplifier 1 inverting input pin
3	V _{IN1+}	I	Amplifier 1 noninverting input pin
4	V _{S-}	Р	Negative power-supply pin
5	V _{IN2+}	I	Amplifier 2 noninverting input pin
6	V _{IN2-}	I	Amplifier 2 inverting input pin
7	V _{OUT2}	0	Amplifier 2 output pin
8	V _{S+}	Р	Positive power-supply input

(1) I = input, O = output, and P = power.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V to V	Supply voltage (total bipolar supplies) ⁽²⁾		5.5	V
V_{S-} to V_{S+}	Supply turnon/off maximum dV/dT ⁽³⁾		1	V/µs
VI	Input voltage	V _{S-} – 0.5	V _{S+} + 0.5	V
V _{ID}	Differential input voltage		±1	V
l _l	Continuous input current ⁽⁴⁾		±10	mA
I _O	Continuous output current ⁽⁵⁾		±20	mA
	Continuous power dissipation	See Thermal	Information	
TJ	Maximum junction temperature		150	°C
T _A	Operating free-air temperature	-40	125	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) V_S is the total supply voltage given by $V_S = V_{S+} - V_{S-}$.

(3) Staying below this ± supply turnon edge rate prevents the edge-triggered ESD absorption device across the supply pins from turning on.

(4) Continuous input current limit for both the ESD diodes to supply pins and amplifier differential input clamp diodes. The differential input

clamp diodes limit the voltage across them to 1 V with this continuous input current flowing through them.

(5) Long-term continuous current for electromigration limits.

7.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22 ⁽²⁾	±1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{S+}	Single-supply positive voltage	2.7	5	5.4	V
T _A	Ambient temperature	-40	25	125	°C

7.4 Thermal Information

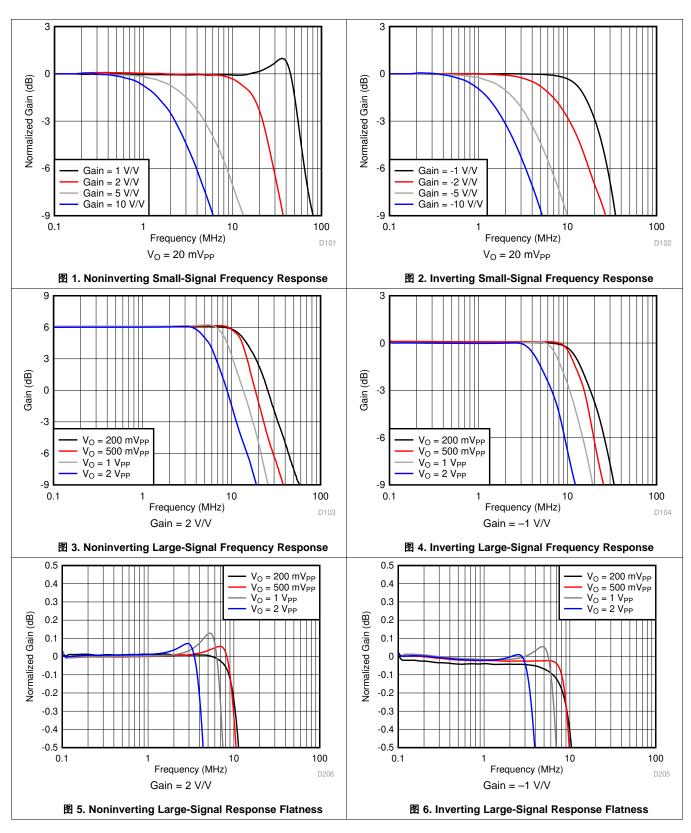
		OPA2834	
	THERMAL METRIC ⁽¹⁾	DGK (VSSOP)	UNIT
		8 PINS	
$R_{ hetaJA}$	Junction-to-ambient thermal resistance	192.6	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	79.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	114.3	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	15.7	°C/W
Y _{JB}	Junction-to-board characterization parameter	112.6	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics: 3V to 5V

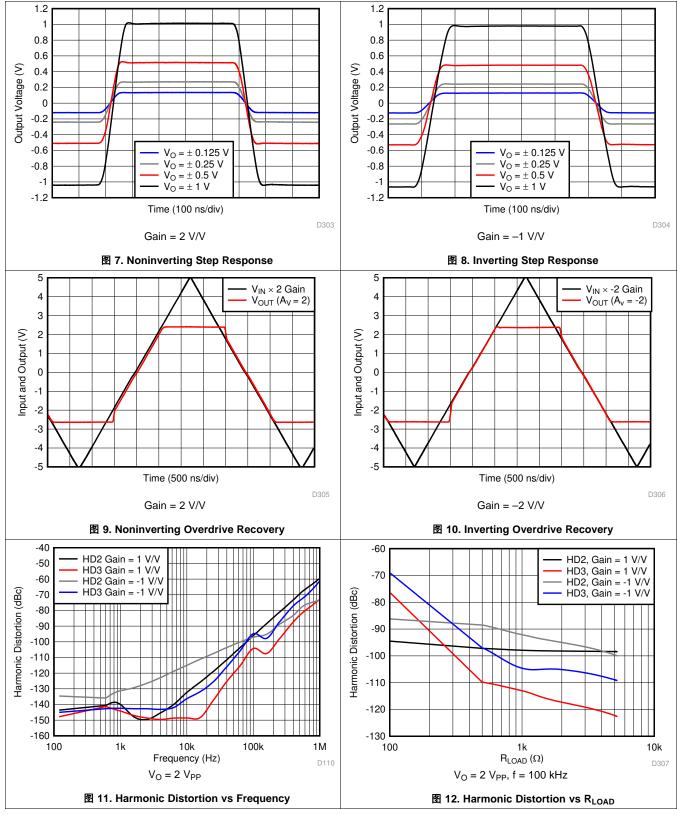
 $V_{S} = 3 \text{ V}$ to 5 V, $R_{F} = 0 \Omega$, $C_{L} = 4 \text{ pF}$, $R_{L} = 5 \text{ k}\Omega$ referenced to mid-supply, G = 1 V/V, input and output V_{CM} = mid-supply, and $T_{A} \approx 25^{\circ}\text{C}$ (unless otherwise noted)

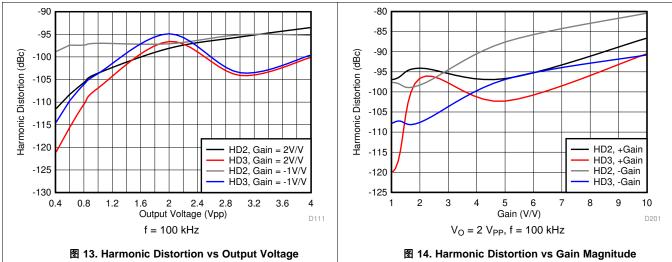
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
AC PER	FORMANCE					
SSBW	Small signal bandwidth	$V_O = 20 \text{ mV}_{PP}, G = 1, < 1 \text{ dB peaking}$		50		MHz
3300	Small-signal bandwidth	$V_{O} = 20 \text{ mV}_{PP}, \text{ G} = 2, \text{ R}_{F} = 3.65 \text{ k}\Omega$		20		IVITIZ
GBWP	Gain-bandwidth product			20		MHz
LSBW	Large-signal bandwidth	$V_O = 2 V_{PP}, V_S = 5 V$		6		MHz
LODVV		$V_O = 1 V_{PP, V_S} = 3 V$		9		
	Bandwidth for 0.1-dB flatness	$V_{O} = 200 \text{ mV}_{PP}, \text{ G} = 2, \text{ R}_{F} = 3.65 \text{ k}\Omega$		9		MHz
SR	Slew rate	$V_{\rm S}\text{=}$ 5V, $V_{\rm O}$ = 2–V step, 20% to 80%		26		V/µs
ÖN		$V_{S}\text{=}$ 3V, V_{O} = 1–V step, 20% to 80%		17		ν/μο
t _R , t _F	Rise, fall time	$V_O = 200-mV$ step, input $t_R = 1$ ns		16		ns
	Settling time to 0.1%	$V_O = 2-V$ step, input $t_R = 50$ ns		88		ns
	Settling time to 0.01%	$V_O = 2-V$ step, input $t_R = 50$ ns		110		110
	Over/Under Shoot	$V_{O} = 2-V$ step, input $t_{R} = 50$ ns		0.6		%
	Overdrive recovery time	G = 2, 2x output overdrive		240		ns
HD2	Second-order harmonic distortion	$f = 10 \text{ kHz}, V_0 = 2 V_{PP}$		-131		dBc
HD3	Third-order harmonic distortion	f = 10 kHz, V _O = 2 V _{PP}		-143		abo
e _N	Input voltage noise	f > 10 kHz , 1/f corner at 150 Hz		12		nV/√Hz
i _N	Input current noise	f > 10 kHz , 1/f corner at 900 Hz		0.2		pA/√Hz
	Channel-to-channel crosstalk	f = 100 kHz, V _O = 2 V _{PP}		-130		dBc
DC PER	FORMANCE					
A _{OL}	Open-loop voltage gain	$V_0 = \pm 1 V$	102	124		dB
V _{OS}	Input-referred offset voltage	ut-referred offset voltage $T_{A} = -40^{\circ}$ C to $+125^{\circ}$ C ⁽¹⁾ 0.5		1.9	mV	
.03		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C^{(1)}$		2.1		
	Input offset voltage drift	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C^{(1)}$		1.2	5	µV/°C
	Input bias current			50	90	nA
		$T_A = -40^{\circ}C$ to $+125^{\circ}C^{(1)}$		70	115	
	Input offset current			5	30	nA
INPUT						
VICR	Common-mode input range		V _{S-} - 0.2		V _{S+} -1.1	V
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C^{(1)}$	V _S 0.1		V _{S+} -1.1	
CMRR	Common-mode rejection ratio	$V_{CM} = V_{S-} - 0.2V$ to $V_{S+} - 1.1$ V	86	104		dB
	Common-mode input impedance			1050 1.1		MΩ∥pF
	Differential input impedance			1 0.2		
OUTPUT						
V _{OL}	Output voltage, low			V _{s-} +0.02	V _{s-} +0.05	V
V _{OH}	Output voltage, high		V _{s+} - 0.1	V _{s-} -0.05		
	Linear output drive	$V_{O}=\pm 1$ V, $\Delta V_{OS}<1$ mV , $V_{S}=5$ V	16	28		mA
	(sourcing/sinking)	V_{O} = ±1 V, ΔV_{OS} < 1 mV , V_{S} = 3 V	11	13.5		
ZO	Closed-loop output impedance	$G = 1$, $I_{OUT} = \pm 5$ mA DC		1.1		mΩ
	SUPPLY					
Vs	Specified operating voltage		2.7		5.4	V
lq	Quiescent current per amplifier			170	210	μA
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C^{(1)}$		220	290	•
PSRR	Power-supply rejection ratio	$\Delta V_{S} = 0.3 V$	86	103		dB


(1) Based on electrical characterization of 32 devices. Minimum and maximum values are not specified by final automated test equipment (ATE) nor by QA sample testing. Typical specifications are ±1 sigma. OPA2834 ZHCSJY2A – JUNE 2019 – REVISED SEPTEMBER 2019

www.ti.com.cn

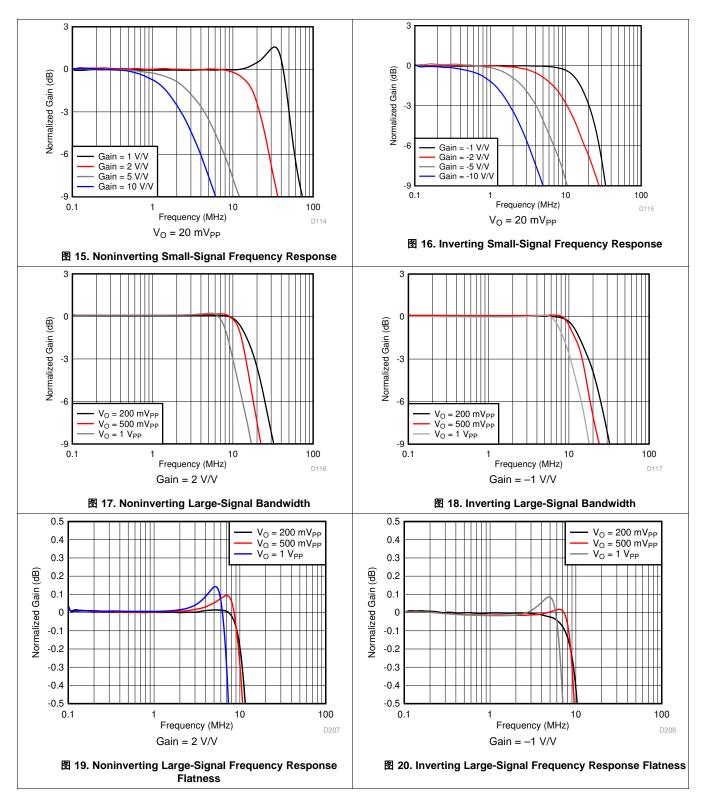
7.6 Typical Characteristics: V_s = 5 V

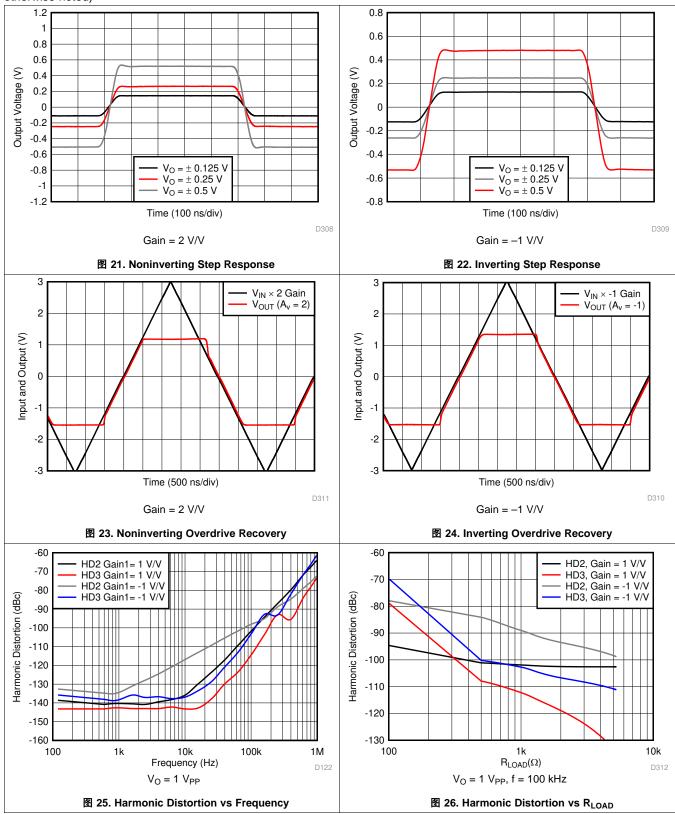

 $V_{S+} = 5 \text{ V}, V_{S-} = 0 \text{ V}, R_F = 0 \Omega, R_L = 5 \text{ k}\Omega, C_L = 4 \text{ pF}, \text{ input and output referenced to mid-supply, and } T_A \approx 25^{\circ}\text{C}$ (unless otherwise noted)


Typical Characteristics: V_s = 5 V (接下页)

 $V_{S+} = 5 \text{ V}, V_{S-} = 0 \text{ V}, R_F = 0 \Omega, R_L = 5 \text{ k}\Omega, C_L = 4 \text{ pF}, \text{ input and output referenced to mid-supply, and } T_A \approx 25^{\circ}\text{C}$ (unless otherwise noted)

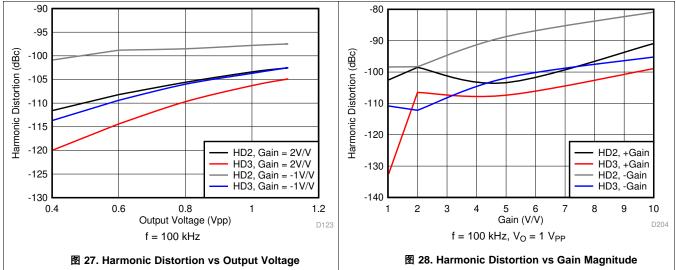
Typical Characteristics: $V_s = 5 V$ (接下页)

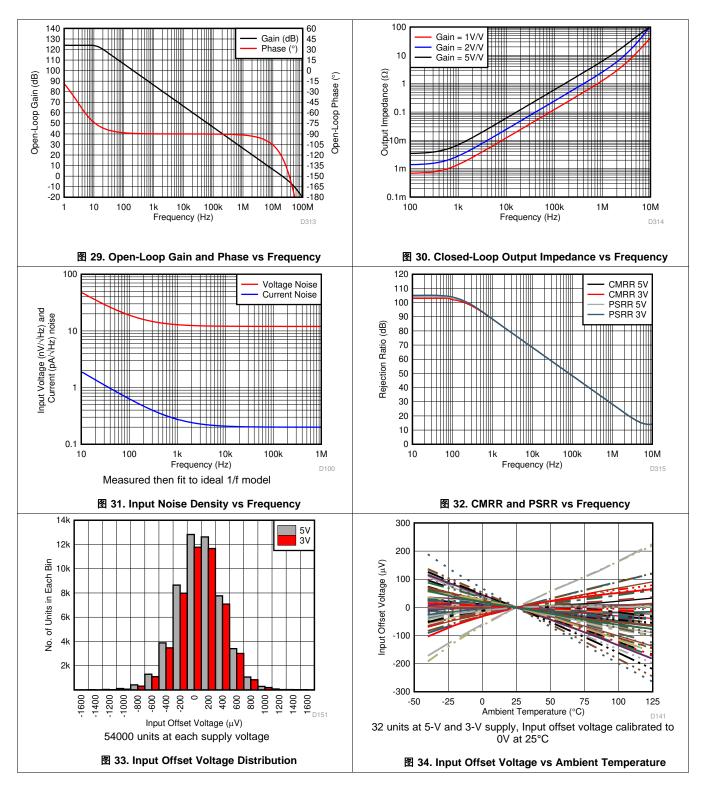

 $V_{S+} = 5 \text{ V}, V_{S-} = 0 \text{ V}, R_F = 0 \Omega, R_L = 5 \text{ k}\Omega, C_L = 4 \text{ pF}, \text{ input and output referenced to mid-supply, and } T_A \approx 25^{\circ}\text{C}$ (unless otherwise noted)


7.7 Typical Characteristics: V_s = 3.0 V

 $V_{S+} = 3 V$, $V_{S-} = 0 V$, $R_F = 0 \Omega$, $R_L = 5 k\Omega$, $C_L = 4 pF$, input and output referenced to mid-supply, and $T_A \approx 25^{\circ}C$ (unless otherwise noted)

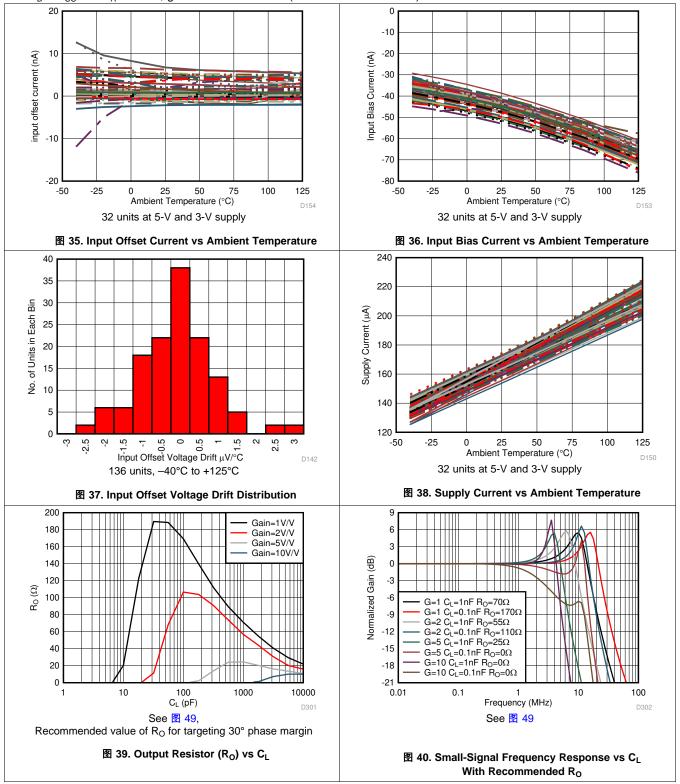
Typical Characteristics: V_s = 3.0 V (接下页)

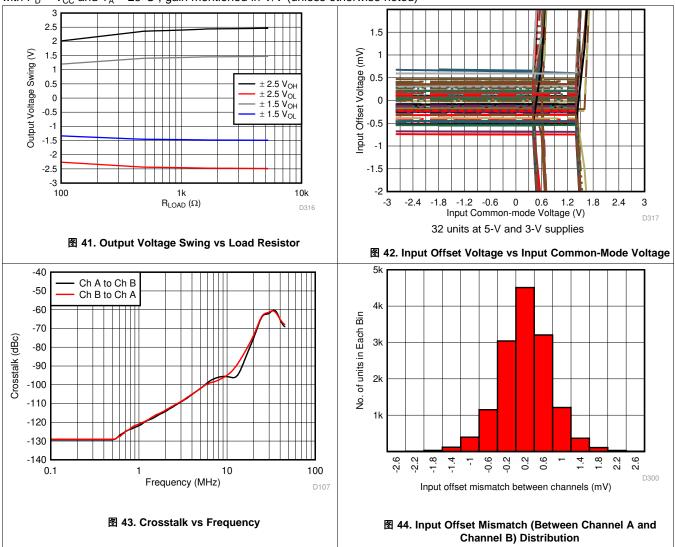

 $V_{S+} = 3 V$, $V_{S-} = 0 V$, $R_F = 0 \Omega$, $R_L = 5 k\Omega$, $C_L = 4 pF$, input and output referenced to mid-supply, and $T_A \approx 25^{\circ}C$ (unless otherwise noted)


Typical Characteristics: V_s = 3.0 V (接下页)

 $V_{S+} = 3 \text{ V}, V_{S-} = 0 \text{ V}, R_F = 0 \Omega, R_L = 5 \text{ k}\Omega, C_L = 4 \text{ pF}, \text{ input and output referenced to mid-supply, and } T_A \approx 25^{\circ}\text{C}$ (unless otherwise noted)

7.8 Typical Characteristics: ±2.5-V to ±1.5-V Split Supply


with $P_D = V_{CC}$ and $T_A \approx 25^{\circ}C$, gain mentioned in V/V (unless otherwise noted)


Typical Characteristics: ±2.5-V to ±1.5-V Split Supply (接下页)

with $P_D = V_{CC}$ and $T_A \approx 25^{\circ}C$, gain mentioned in V/V (unless otherwise noted)

Typical Characteristics: ±2.5-V to ±1.5-V Split Supply (接下页)

with $P_D = V_{CC}$ and $T_A \approx 25^{\circ}C$, gain mentioned in V/V (unless otherwise noted)

8 Detailed Description

8.1 Overview

The OPA2834 bipolar input operational amplifier offers an unity-gain bandwidth of 50 MHz with ultra-low HD2 and HD3 as shown in the *Electrical Characteristics: 3V to 5V*. The device can swing to within 100 mV of the supply rails while driving a 5-k Ω load. The input common-mode voltage of the amplifier can swing to 200 mV below the negative supply rail. This level of performance is achieved at 170 μ A of quiescent current per amplifier channel.

8.2 Functional Block Diagrams

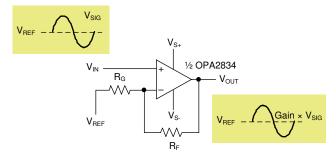
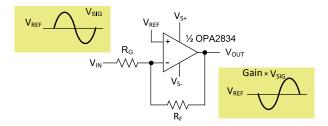



图 45. Noninverting Amplifier

8.3 Feature Description

8.3.1 Input Common-Mode Voltage Range

When the primary design goal is a linear amplifier circuit with high CMRR, it is important to not violate the input common-mode voltage range (V_{ICR}) of the op amp. The typical specifications for this device are 0.2 V below the negative rail and 1.1 V below the positive rail.

Assuming the op amp is in linear operation, the voltage difference between the input pins is small (ideally 0 V); and the input common-mode voltage is analyzed at either input pin with the other input pin assumed to be at the same potential. The voltage at V_{IN+} is simple to evaluate. In a noninverting configuration, as shown in \mathbb{S} 45, the input signal, V_{IN} , must not violate the V_{ICR} for this operation. In an inverting configuration, as shown in \mathbb{S} 46, the reference voltage, V_{REF} , must be within the V_{ICR} . Assuming V_{REF} is within V_{ICR} , the amplifier is always in the linear operation range irrespective of the amplitude of the input signal V_{IN} .

The input voltage limits have fixed headroom to the power rails and track the power-supply voltages. For a 5-V supply, the linear input voltage ranges from -0.2 V to 3.9 V and -0.2 V to 1.6 V for a 2.7-V supply. The delta headroom from each power-supply rail is the same in either case: -0.2 V and 1.1 V.

Feature Description (接下页)

8.3.2 Output Voltage Range

The OPA2834 is a rail-to-rail output (RRO) op amp. Rail-to-rail output typically means that the output voltage swings within a couple hundred millivolts of the supply rails. There are different ways to specify this parameter, one is with the output still in linear operation and another is with the output saturated. Saturated output voltages are closer to the power-supply rails than linear outputs, but the signal is not a linear representation of the input. Linear output is a better representation of how well a device performs when used as a linear amplifier. Saturation and linear operation limits are affected by the output current, where higher currents lead to lower headroom from either of the output rails.

The *Electrical Characteristics:* 3V to 5V list the saturated output voltage specifications with a 5-k Ω load. Given a light load, the output voltage limits have nearly constant headroom to the power rails and track the power-supply voltages. For example, with a 5-k Ω load and a single 5-V supply, the saturation output voltage ranges from 0.1 V to 4.95 V and ranges from 0.1 V to 2.65 V for a 2.7-V supply. 41 illustrates the saturated voltage-swing limits versus output load resistance.

With a device such as the OPA2834, where the input range is lower than the output range, typically the input limits the available signal swing only in a noninverting gain of 1. Signal swing in noninverting configurations in gains greater than +1 and inverting configurations in any gain is typically limited by the output voltage limits of the op amp.

8.3.3 Low-Power Applications and the Effects of Resistor Values on Bandwidth

Choosing the right value of feedback resistor (R_F) gives the lowest operating current, maximum bandwidth, lowest DC error, and the best pulse response. In this section for simplicity, the main focus of the signal chain design is assumed to be the total operating current. The feedback resistor used to set the gain value invariably loads the amplifier. For example, in a gain of 2 with $R_F = R_G = 3.6 \text{ k}\Omega$ (see \mathbb{R} 48) and $V_{OUT} = 4 \text{ V}$ (assumed), 555 μ A of current flows through the feedback path to ground. However, using a 3.6-k Ω resistor may not be practical in low-power applications.

In low-power applications, there is a tendency to reduce the current consumed by the amplifier by increasing the gain-setting resistor values in the feedback path. Using larger value gain resistors has two primary side effects (other than lower power), because of the interaction of the resistors with parasitic circuit capacitance. These large-value resistors:

- Lower the bandwidth as a result of the interaction with the parasitic capacitor
- Lower the phase margin by causing
 - Peaking in the frequency response
 - Overshoot and ringing in the pulse response

R 47 shows the small-signal frequency response for a noninverting gain of 2 with R_F and R_G equal to 2 kΩ, 5 kΩ, 10 kΩ, and 100 kΩ. The test was done with R_L = 5 kΩ. Peaking reduces with lower values of R_L.

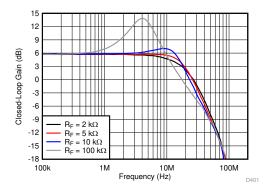
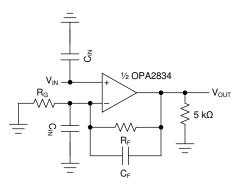
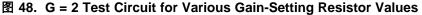


图 47. Frequency Response With Various Gain-Setting Resistor Values


As expected, larger value gain resistors result in gain peaking in the frequency response plots (peaking in the frequency response is synonymous with the reduced phase margin).



Feature Description (接下页)

However, there is a simple way to get the best of both worlds. An ideal application requires a high value of R_F for a particular gain to reduce the operating current but be limited by the reduced phase margin from the interaction of R_F and C_{IN}. The trick is simple: adding a capacitor in parallel with R_F helps compensate the phase margin and restores the flat frequency response (avoids gain peaking). The value of C chosen must be such that R_F × C_F = $C_{IN} \times R_G$. C_{IN} for the OPA2834 is 1.1 pF. This value of C_{IN} is listed in the *Electrical Characteristics: 3V to 5V* table as common-mode input impedance. For the case discussed here with a Gain = 2, R_F = R_G = 3.6 k\Omega, , C_{IN} = 1.1 pF, using a C_F equal to 1 pF is sufficient to reduce the gain peaking. Using a C_F equal to 1 pF enables users to increase the values of R_F and R_G to much higher values beyond 3.6 k\Omega to reduce the operational current consumed by the amplifier.

图 48 shows the test circuit.

8.3.4 Driving Capacitive Loads

The OPA2834 drives up to a nominal capacitive load of 10 pF on the output with no special consideration and without the need of R_0 . When driving capacitive loads greater than 10 pF, TI recommends using a small resistor (R_0) in series with the output as close to the device as possible. Without R_0 , output capacitance interacts with the output impedance (Z_0) of the amplifier causing phase shift in the feedback loop of the amplifier reducing the phase margin. This reduction in the phase margin causes peaking in the frequency response and overshoot and ringing in the pulse response. Interaction with other parasitic elements can lead to further instability or ringing. Inserting R_0 isolates the phase shift from the loop gain path and restores the phase margin; however R_0 can limit the bandwidth slightly. 49 shows a diagram of driving capacitive loads.

8 39 shows the test circuit and shows the recommended values of R_0 versus capacitive loads, C_L . See 8 40 for the frequency responses with various optimized values of R_0 with C_L .

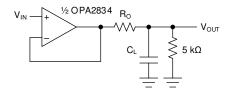


图 49. Driving Capacitive Loads With the OPA2834

8.4 Device Functional Modes

8.4.1 Split-Supply Operation (±1.35 V to ±2.7 V)

To facilitate testing with common lab equipment, the OPA2834EVM (see the *OPA2837DGK Evaluation Module* user guide) is built to allow split-supply operation. This configuration eases lab testing because the mid-point between the power rails is ground, and most signal generators, network analyzers, oscilloscopes, spectrum analyzers, and other lab equipment have inputs and outputs with a ground reference.

版权 © 2019, Texas Instruments Incorporated

Device Functional Modes (接下页)

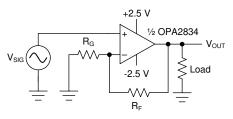
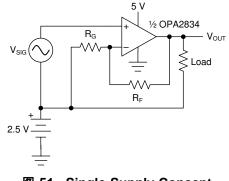



图 50. Split-Supply Operation

8.4.2 Single-Supply Operation (2.7 V to 5.4 V)

Often, newer systems use a single power supply to improve efficiency and reduce the cost of the power supply. The OPA2834 is designed for use with single-supply power operation and can be used with single-supply power with no change in performance from split supply, as long as the input and output are biased within the linear operation of the device.

To change the circuit from split-supply to single-supply, level shift all voltages by half the difference between the power-supply rails. For example, 851 shows changing from a ±2.5-V split supply to a 5-V single supply.

图 51. Single-Supply Concept

A practical circuit has an amplifier or some other circuit providing the bias voltage for the input, and the output of this amplifier stage provides the bias for the next stage.

Device Functional Modes (接下页)

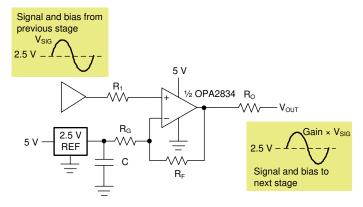


图 52. Noninverting Single-Supply Operation With Reference

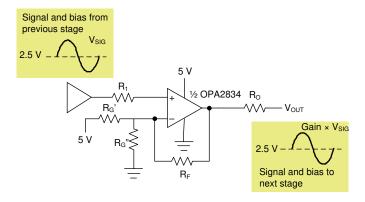
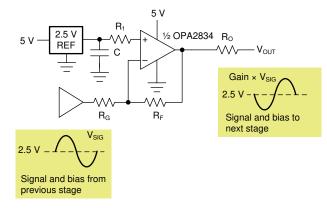



图 53. Noninverting Single-Supply Operation With Resistors

S4 shows a typical inverting-amplifier circuit. With a 5-V single-supply, a mid-supply reference generator is needed to bias the positive side through R₁. To cancel the voltage offset that is otherwise caused by the input bias currents, R₁ is selected to be equal to R_F in parallel with R_G. For example, if a gain of −2 is required and R_F = 3.6 kΩ, select R_G = 1.8 kΩ to set the gain and R₁ = 1.2 kΩ for bias current cancellation. The value for C is dependent on the reference, but TI recommends a value of at least 0.1 µF to limit noise into the op amp.

Device Functional Modes (接下页)

Is 55 illustrates a similar inverting single-supply scenario with the reference generator replaced by the Thevenin equivalent using resistors and the positive supply. R₁ and R₂ form a resistor divider from the 5-V supply and are used to bias the positive side. To cancel the voltage offset that is otherwise caused by the input bias currents, set the parallel sum of R₁ and R₂ equal to the parallel sum of R_F and R_G. C must be added to limit the coupling of noise into the positive input. For example, if a gain of −2 is required and R_F = 3.6 kΩ, select R_G = 1.8 kΩ to set the gain. R₁ = R₂ = 2.4 kΩ for the mid-supply voltage bias and for op-amp input-bias current cancellation. A good value for C is 0.1 µF. The resistor divider costs less than the 2.5-V reference in 55 but can increase the current from the 5-V supply.

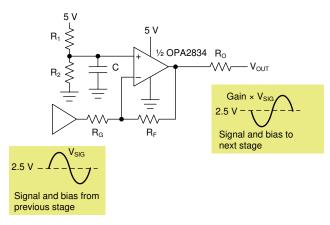


图 55. Inverting Single-Supply Operation With Resistors

9 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information 9.1

9.1.1 Noninverting Amplifier

The OPA2834 can be used as a noninverting amplifier with a signal input to the noninverting input, V_{IN+}. 图 45 illustrates a basic block diagram of the circuit.

The amplifier output can be calculated according to 公式 1 if $V_{IN} = V_{REF} + V_{SIG}$.

$$V_{OUT} = V_{SIG} \left(1 + \frac{R_F}{R_G} \right) + V_{REF}$$
(1)

 $G = 1 + \frac{R_F}{R_G}$, and V_{REF} provides a reference around which the input and output signals swing. Output signals are in-phase with the input signals.

The OPA2834 is designed for the nominal value of R_F to be 3.6 k Ω in gains other than +1. This value gives excellent distortion performance, maximum bandwidth, best flatness, and best pulse response. $R_F = 3.6 \text{ k}\Omega$ must be used as a default unless other design goals require changing to other values. All test circuits used to collect data for this document have $R_F = 3.6 \text{ k}\Omega$ for all gains other than +1. A gain of +1 is a special case where R_F is shorted and R_G is left open.

9.1.2 Inverting Amplifier

١

m

The OPA2834 can be used as an inverting amplifier with a signal input to the inverting input, V_{IN-}, through the gain-setting resistor R_G. 8 46 illustrates a basic block diagram of the circuit.

The output of the amplifier can be calculated according to 公式 2 if $V_{IN} = V_{REF} + V_{SIG}$.

 $G = \frac{-R_F}{R_F}$

$$V_{\text{OUT}} = V_{\text{SIG}} \left(\frac{-R_{\text{F}}}{R_{\text{G}}} \right) + V_{\text{REF}}$$
 (2)

The signal gain of the circuit is given by
$$R_G$$
 and V_{REF} provides a reference point around which the input and output signals swing. Output signals are 180° out-of-phase with the input signals. The nominal value of R_F must be 3.6 k Ω for inverting gains.

Typical Applications 9.2

9.2.1 Low-Side Current Sensing

Power stages use current feedback for phase current control and regulation. One of the commonly used methods for this current measurement is low-side current shunt monitoring. 图 56 shows a representative schematic of such a system. The use of the OPA2834 is described in this section for a low-side, current-shunt monitoring application.

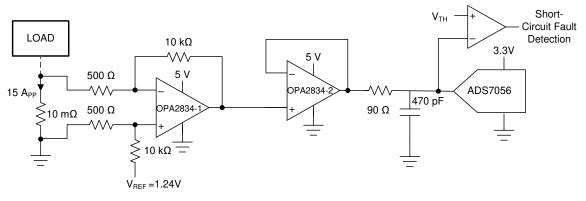


图 56. Low-Side Current Sensing

Typical Applications (接下页)

9.2.1.1 Design Requirements

The OPA2834 is used in a gain of 20 V/V followed by an OPA2834 used in a gain of 1 V/V for driving the input of the ADS7056 which is sampling at 1 MSPS. A comparator is connected to the ADC input for short-circuit fault detection. This design example is illustrated for the following specifications:

- Switching frequency: 50 kHz
- Shunt resistance: 10 mΩ
- Load current: 15 A_{PP}
- Output voltage: 3.0 V_{PP}
- Amplifier supply voltage: 5 V
- Data Acquisition: 1 MSPS with 0.1% accuracy
- Input spikes due to inductive kickbacks from the power plane: 10 V

9.2.1.2 Detailed Design Procedure

One of the channels of the OPA2834 is connected to the shunt resistor in $\[B]$ 56 in a 20-V/V difference amplifier configuration. $\[A] \pm 3$ gives the gain of this circuit. A well-known way to start the design of this signal chain is to start from fixating the value of R_G .

$$V_{OUT} = \left(\frac{R_F}{R_G}\right) \left(V_2 - V_1\right)$$

where

 R_F and R_G are the feedback and gain resistors for channel A of the OPA2834

(3)

The values of R_F and R_G depend on multiple factors. Using small resistors in the feedback network helps reduce output noise and improves measurement accuracy. Small feedback resistors result in larger power dissipation in the amplifier output stage. In order to reduce this power dissipation, large-value resistors reduce the phase margin and cause gain peaking; see \mathbb{R} 47. Select the values of R_F and R_G from the recommended range of values for this device. As given in $\Delta \mathfrak{A}$ 4, care must be taken to use a gain-resistor value large enough to limit the current through the input ESD diodes to within 10 mA for a 10-V input transient (as per the design targets) with the amplifier powered off a 5-V supply.

$$R_G = \frac{V_{IN} - V_D - V_S}{I_{D,Max}}$$

where

- V_{IN} is the input transient voltage
- V_D is the ESD diode forward voltage drop
- I_D is the current resulting from this input transient flowing through the ESD diode

(4)

A total gain of 20 V/V is required from the amplifier signal chain. We have chosen $R_G = 500 \Omega$ in this design, thus $R_F = 10 \ k\Omega$. A SAR ADC features a sampling capacitor at the input pin. At the end of every conversion cycle, the circuit driving this SAR ADC needs to replenish this capacitor. Using the analog calculator, the required bandwidth for the amplifier to drive the ADS7056 (sampling rate of 1MSPS and a clock frequency of 40 MHz) comes out to be at least 5 MHz. Because of this requirement, the two amplifier channels are configured in gains of 20 V/V and 1 V/V, respectively. The effective bandwidth of the amplifier set in a gain on 20 V/V comes out to be 20MHz/20 = 1MHz. The bandwidth of the second amplifier set in a gain of 1V/V, equals 50MHz. Thus the rise time and the settling time of the entire signal chain is decided by the first amplifier. Using an amplifier in the first stage of any lower bandwidth will result in a penalty in the settling time on the ADC. The 1.24-V reference voltage to the noninverting input of channel 1 sets the output common-mode voltage to 1.24 V. The two channels of the OPA2834 together provide a signal gain of 20 V/V. The first Amplifier's bandwidth is dedicated to gaining up the signal with a very low rise time whereas the function of the second amplifier is to utilize its bandwidth to drive the SAR ADC to achieve the required settling.

Typical Applications (接下页)

The ADS7056 samples at 1 MSPS with a 40-MHz clock which translates to an acquisition time of 550 nsec. This provides the dual amplifier 550 nsec to settle to the required accuracy. In this application, we target an accuracy of 0.1%. As the ADC is powered from a 3.3 V supply we have assumed the full scale to be 3 V.

An accuracy of 0.1% of 3 V = 3 mV. Thus the second OPA2834 should settle to ± 3 mV of its final intended value within 550 nsec. \boxtimes 57 shows the TINA simulation plots for the OPA2834 driving the ADS7056. Input voltage (red) is the signal swing across the shunt resistance, the error signal is the % error in the voltage across the sampling capacitor from its steady-state value (instantaneous value - final value). The input signal sharply transits from its lowermost point to the uppermost point at 600 nsec instant. This can be considered as a short circuit event or step increase due to a mosfet switching in real-world circuits. This acquisition window of the ADC as discussed earlier is 550 nsec. The details on how this time is decided by the ADC can be found from the ADS7056 datasheet. Thus the % error signal (blue) must settle down to less than 0.1 % before the end of this 550 nsec window. The output signal comfortably settles to the final value with an error % of -0.05% which is well within the 0.1% accuracy. Hence the dual OPA2834 settles to 0.1% accuracy within 550 ns with a worst-case, 0 to 3-V full-scale transient output that too in a gain configuration of 20 V/V as shown in the \boxtimes 57.

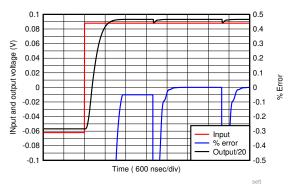


图 57. OPA2834 Settling Performance With the ADS7056

Another way to look at the signal chain is using the SNR and THD numbers. A 2 kHz tone is input to the first OPA2834 shown in 图 56. This signal is gained up by 20 V/V and fed to the ADS7056. The results are compared to the specifications given in the ADS7056 datasheet.

Parameter	OPA2834 + ADS7056	Ideal Opamp + ADS7056
ENOB	11.2	12.16
SNR (dB)	69.3	75.15
THD (dB)	-87.89	-90.13

表 1. OPA2834 based signal-chain comparison

TEXAS INSTRUMENTS

www.ti.com.cn

Using a slower clock with the ADC and the same sampling rate causes the ENOB to reduce as the amplifier has reduced time available to settle. This reduction in ENOB is restored with a lower sampling frequency or use of wider bandwidth amplifiers from the OPA83x family of products.

9.2.2 Field Transmitter Sensor Interface

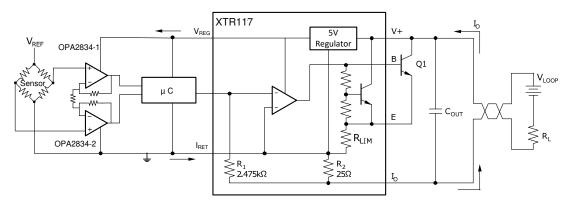


图 58. Field Transmitter Sensor Interface Block Diagram

9.2.3 Ultrasonic Flow Meters

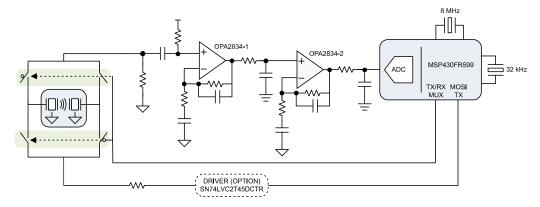


图 59. Ultrasonic Flow Meters Gain Stage

9.2.4 Microphone Pre-Amplifier

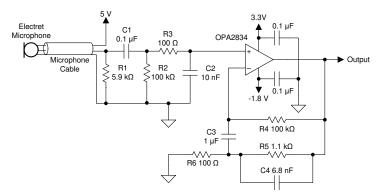


图 60. Low-Power Microphone Pre-Amplifier

 \begin{aligned}
 A 0 shows an example circuit of the audio pre-amplifier application using OPA2834. The excellent distortion performance and the ultra-low quiescent current, make OPA2834 a very attractive solution for the portable and handheld audio instruments.
 \begin{aligned}
 & 60 circuit is a bandpass filter with frequency cutoff at 5 Hz and 180 kHz. The OPA2834 is connected to a positive 3.3 V and a negative 1.8 V supply. the primary reason for the skew in the power supply is to enable the maximum dynamic range possible to the user. The V_{ICR} of OPA2834 mentioned in *Electrical Characteristics: 3V to 5V* is 1.1 V from the positive rail. Thus having a skewed power supply like in
 <u>8</u> 60 gives a common-mode input range from -2 V up to 2.2 V.

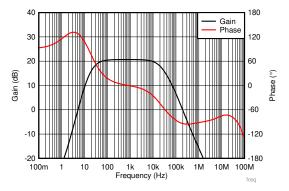
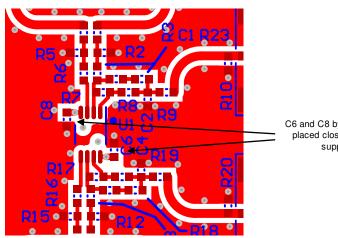


图 61. Frequency Response of Microphone Pre-Amplifier

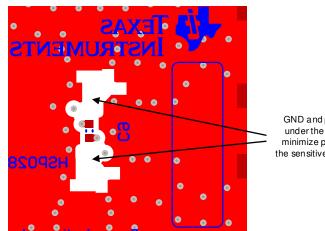
10 Power Supply Recommendations

The OPA2834 is intended to work in a nominal supply range of 3.0 V to 5.0 V. Supply-voltage tolerances are supported with the specified operating range of 2.7 V (-10% on a 3-V supply) and 5.4 V (8% on a 5-V supply). Good power-supply bypassing is required. Minimize the distance (< 0.1 inch) from the power-supply pins to high-frequency, 0.1- μ F decoupling capacitors. A larger capacitor (2.2 μ F is typical) is used along with a high-frequency, 0.1- μ F, supply-decoupling capacitor at the device supply pins. For single-supply operation, only the positive supply has these capacitors. When a split supply is used, use these capacitors for each supply to ground. If necessary, place the larger capacitors further from the device and share these capacitors among several devices in the same area of the printed circuit board (PCB). Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. An optional supply decoupling capacitor across the two power supplies (for bipolar operation) reduces second-order harmonic distortion.


11 Layout

11.1 Layout Guidelines

The *OPA2837EVM* can be used as a reference when designing the circuit board. TI recommends following the EVM layout of the external components near to the amplifier, ground plane construction, and power routing as closely as possible. Follow these general guidelines:


- 1. Signal routing must be direct and as short as possible into and out of the op amp.
- 2. The feedback path must be short and direct avoiding vias if possible, especially with G = 1 V/V.
- 3. Ground or power planes must be removed from directly under the negative input and output pins of the amplifier.
- 4. TI recommends placing a series output resistor as close to the output pin as possible.
- 5. See ₹ 40 for recommended values for the expected capacitive load. These values are derived targeting a 30° phase margin to the output of the op amp.
- 6. A 2.2-µF power-supply decoupling capacitor must be placed within two inches of the device and can be shared with other op amps. For split supply, a capacitor is required for both supplies.
- 7. A 0.1-µF power-supply decoupling capacitor must be placed as close to the supply pins as possible, preferably within 0.1 inch. For split supply, a capacitor is required for both supplies.

11.2 Layout Examples

C6 and C8 bypass capacitors placed close to the device supply pins.

图 62. EVM Layout Top Layer

GND and power planes removed under the device pins in order to minimize parasitic capacitance on the sensitive input and output nodes.

图 63. EVM Layout Bottom Layer

12 器件和文档支持

12.1 文档支持

12.1.1 相关文档

请参阅如下相关文档:

- 德州仪器 (TI), 《OPA2837DGK 评估模块》 用户指南
- 德州仪器 (TI), 《ADS7046 12 位、3MSPS、单端输入、小尺寸、低功耗 SAR ADC》数据表
- 德州仪器 (TI), 《单电源运算放大器设计技术》应用报告
- 德州仪器 (TI), 《高速运算放大器噪声分析》应用报告
- 德州仪器 (TI),《TIDA-01565 有线 OR 多路复用器以及 PGA 参考设计》设计指南
- 德州仪器 (TI), TINA 模型与仿真工具

12.2 接收文档更新通知

要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.3 社区资源

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更, 恕不另行通知, 且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
OPA2834IDGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAUAG SN	Level-2-260C-1 YEAR	-40 to 125	2834	Samples
OPA2834IDGKT	ACTIVE	VSSOP	DGK	8	250	RoHS & Green	NIPDAUAG SN	Level-2-260C-1 YEAR	-40 to 125	2834	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

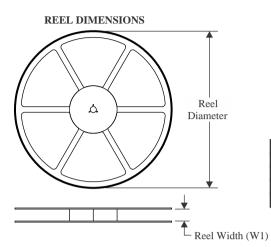
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

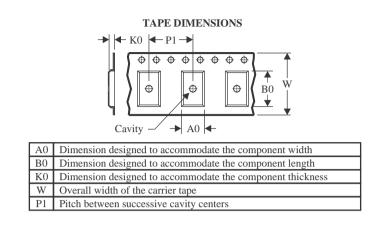
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM



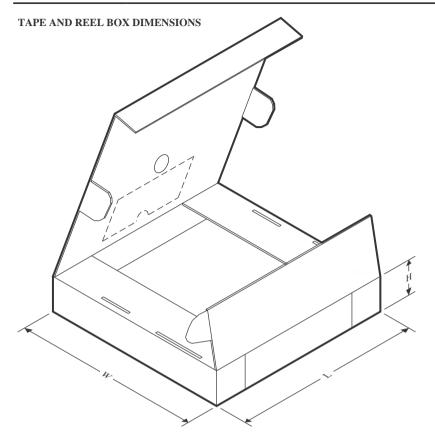

Texas

*All dimensions are nominal

STRUMENTS

TAPE AND REEL INFORMATION

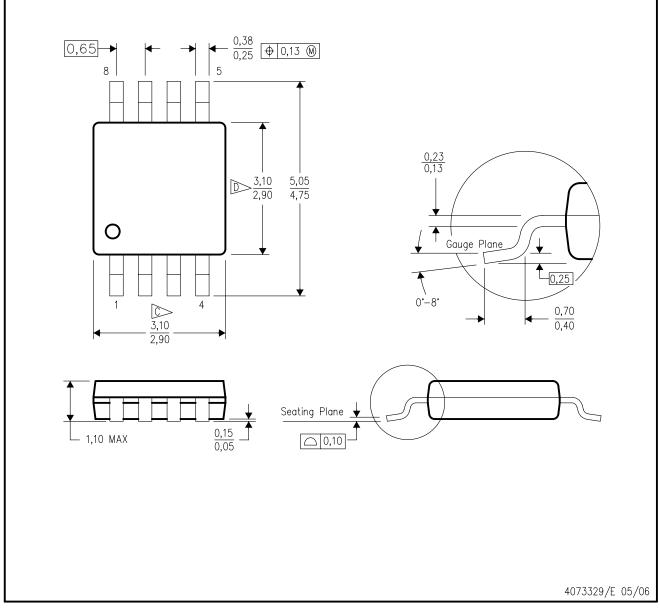
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA2834IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2834IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2834IDGKT	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2834IDGKT	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

4-Nov-2022



*All dimensions are nominal

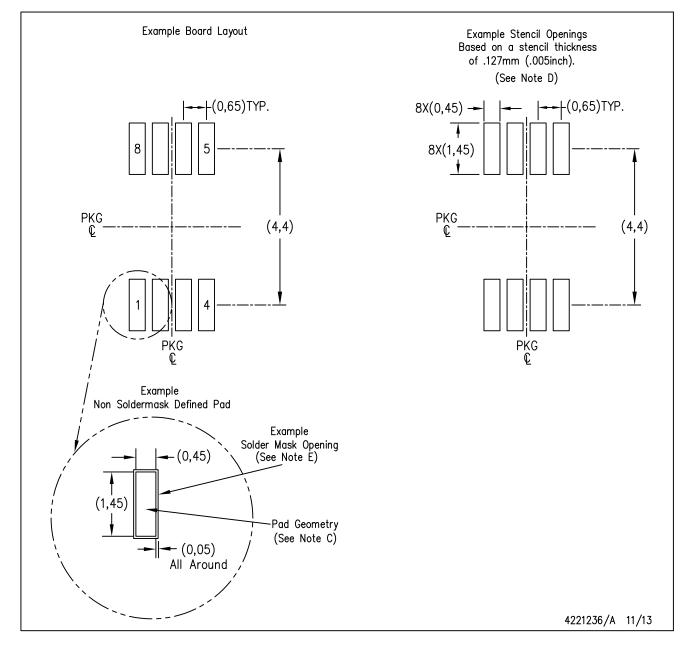
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA2834IDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
OPA2834IDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
OPA2834IDGKT	VSSOP	DGK	8	250	366.0	364.0	50.0
OPA2834IDGKT	VSSOP	DGK	8	250	366.0	364.0	50.0

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司