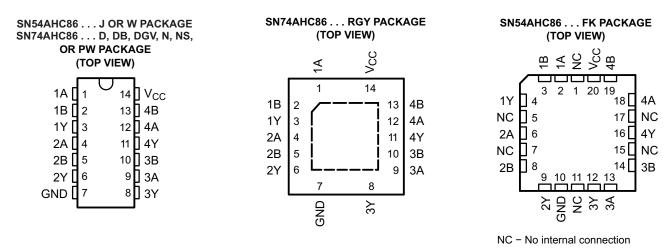


SN54AHC86 SN74AHC86

SCLS249J-OCTOBER 1995-REVISED JUNE 2013


QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

Check for Samples: SN54AHC86, SN74AHC86

FEATURES

www.ti.com

- Operating Range 2-V to 5.5-V V_{CC}
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

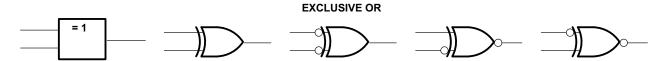
DESCRIPTION

The 'AHC86 devices are quadruple 2-input exclusive-OR gates. These devices perform the Boolean function $Y = A \oplus B$ or $Y = \overline{AB} + A\overline{B}$ in positive logic.

A common application is as a true/complement element. If one of the inputs is low, the other input is reproduced in true form at the output. If one of the inputs is high, the signal on the other input is reproduced inverted at the output.

-	FUNCTION TABLE (EACH GATE)											
INP	INPUTS OUTPUT											
Α	В	Y										
L	L	L										
L	Н	Н										
Н	L	Н										
Н	Н	L										

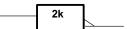
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


SN54AHC86 SN74AHC86 SCLS249J-OCTOBER 1995-REVISED JUNE 2013

www.ti.com

EXCLUSIVE-OR LOGIC

An exclusive-OR gate has many applications, some of which can be represented better by alternativelogic symbols.



These are five equivalent exclusive-OR symbols valid for an SN74AHC86 gate in positive logic; negation may be shown at any two ports.

LOGIC-IDENTITY ELEMENT

The output is active (low) if all inputs stand at the same

logic level (i.e., A = B).

EVEN-PARITY ELEMENT

The output is active (low) if an even number of inputs (i.e., 0 or 2) are active.

ODD-PARITY ELEMENT

The output is active (high) if an odd number of inputs (i.e., only 1 of the 2) are active.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		VALUE	UNIT
Supply voltage range, V _{CC}		-0.5 to 7	V
Input voltage range, VI ⁽²⁾		-0.5 to 7	V
Output voltage range, V _O ⁽²⁾		–0.5 to V _{CC} + 0.5	V
Input clamp current, I _{IK} (V _I < 0)		-20	mA
Output clamp current, I_{OK} (V _O < 0 or V _O	$\begin{array}{c} \mbox{trage range, V_1}^{(2)} \\ \mbox{roltage range, V_0}^{(2)} \\ \mbox{imp current, I_{IK} ($V_1 < 0$) \\ \mbox{clamp current, I_{OK} ($V_O < 0 or $V_O > V_{CC}) \\ \mbox{ous output current, I_O ($V_O = 0 to V_{CC}) \\ \mbox{ous current through V_{CC} or GND \\ \hline \end{tabular} \\ \hline \end{tabular} \\ \end{tabular} \\ \mbox{be thermal impedance, θ_{JA} \\ \hline \end{tabular} \\ $	±20	mA
$\begin{array}{c} \begin{array}{c} & \\ \text{pout voltage range, V_{I}^{(2)} \\ \\ \text{poutput voltage range, V_{O}^{(2)} \\ \\ \text{poutput clamp current, I_{IK} (V_{I} < 0) \\ \\ \\ \text{poutput clamp current, I_{OK} (V_{O} < 0 \text{ or } V_{O} > V_{CC}) \\ \\ \\ \text{continuous output current, I_{O} (V_{O} = 0 \text{ to } V_{CC}) \\ \\ \\ \text{continuous current through } V_{CC} \text{ or GND} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} D \text{ package}^{(3)} \\ \\ DB \text{ package}^{(3)} \\ \\ DGV \text{ package}^{(3)} \\ \\ \\ N \text{ package}^{(3)} \\ \\ \\ NS \text{ package}^{(3)} \\ \\ \\ \end{array} \\ \begin{array}{c} PW \text{ package}^{(3)} \\ \\ \\ PW \text{ package}^{(3)} \\ \\ \\ RGY \text{ package}^{(4)} \end{array} \end{array} \end{array}$	V _{CC})	±25	mA
ontinuous output current, I_0 ($V_0 = 0$ to V_{CC}) ontinuous current through V_{CC} or GND D package ⁽³⁾	±50	mA	
	D package ⁽³⁾	86	
	DB package ⁽³⁾	96	
	DGV package ⁽³⁾	127	
Package thermal impedance, θ_{JA}	N package ⁽³⁾	80	°C/W
	NS package ⁽³⁾	76	
	PW package ⁽³⁾	113	
tinuous current through V_{CC} or GND kage thermal impedance, θ_{JA}	RGY package ⁽⁴⁾	47	
Storage temperature range, T _{stg}		-65 to 150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The package thermal impedance is calculated in accordance with JESD 51-7.

(4) The package thermal impedance is calculated in accordance with JESD 51-5

www.ti.com

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			SN54AHC86 MIN MAX		SN74AH	C86	
		-	MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		2	5.5	2	5.5	V
		V _{CC} = 2 V	1.5		1.5		
V _{IH}	High-level input voltage	V _{CC} = 3V	2.1		2.1		V
		V _{CC} = 5.5 V	3.85		3.85		
		V _{CC} = 2 V		0.5		0.5	
V _{IL}	Low-level Input voltage	V _{CC} = 3 V		0.9		0.9	V
		V _{CC} = 5.5 V		1.65		1.65	
VI	Input voltage		0	5.5	0	5.5	V
Vo	Output voltage		0	V _{CC}	0	V _{CC}	V
		V _{CC} = 2 V		-50		-50	
I _{OH}	High-level output current	V_{CC} = 3.3 V ± 0.3 V		-4		-4	mA
		V_{CC} = 5 V ± 0.5 V		-8		-8	
		V _{CC} = 2 V		50		50	
I _{OL}	Low-level output current	V_{CC} = 3.3 V ± 0.3 V		4		4	mA
		V_{CC} = 5 V ± 0.5 V		8		8	
A # / A	land Transition size on fall sets	V_{CC} = 3.3 V ± 0.3 V		100		100	
Δt/Δv I	Input Transition rise or fall rate		20		20	ns/V	
T _A	Operating free-air temperature		-55	125	-40	125	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. SCLS249J-OCTOBER 1995-REVISED JUNE 2013

www.ti.com

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

						$T_{A} = -55^{\circ}$				T _A = -40° 125°C		
PARAMETER	TEST CONDITIONS	V _{cc}		T _A = 25°C	:	125°	85°C C86 SN74AHC86 MAX MIN MAX 1.9 2.9 4.4 2.48 3.8 0.1 0.01 0.1 0.1 0.1 0.1 0.5 0.4 0.4 1.4			Recommended		UNIT
						SN54AH	IC86	SN74AH	IC86	SN74AH	C86	1
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	-
		2 V	1.9	2		1.9		1.9		1.9		
	I _{OH} = -50 μA	3 V	2.9	3		2.9		2.9		2.9		
V _{OH}		4.5 V	4.4	4.5		4.4		4.4		4.4		V
	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		2.48		2.48		
	I _{OH} = -8 mA	4.5 V	3.94			3.8		3.8		3.8		
		2 V			0.1		0.1		0.1		0.1	
	I _{OL} = 50 μA	3 V			0.1		0.1		0.1		0.1	
V _{OL}		4.5 V			0.1		0.1		0.1		0.1	V
	I _{OH} = 4 mA	3 V			0.36		0.5		0.44		0.5	
	I _{OH} = 8 mA	4.5 V			0.36		0.5		0.44		0.5	
I _I	V _I = 5.5 V or GND	0 V to 5.5 V			±0.1		±1 ⁽¹⁾		±1		±1	μA
I _{CC}	$V_{I} = V_{CC} \text{ or } \qquad I_{O} = 0$ GND,	5.5 V			2		20		20		20	μA
Ci	$V_{I} = V_{CC}$ or GND	5 V		4	10				10			pF

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested at VCC = 0 V.

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1)

						$T_A = -5$		$T_A = -4$		T _A = -4 125			
PARAMETER	FROM (INPUT)	TO (OUTPUT)	-	LOAD CAPACITANCE	T _A = 2	5°C	125	°С	85	C	Recom	nended	UNIT
	(111 01)		C _L = 15 pF			SN54A	HC86	SN74A	HC86	SN74A	HC86		
				TYP	МАХ	MIN	MAX	MIN	MAX	MIN	MAX		
t _{PLH}	A or B	~		7 ⁽¹⁾	11 ⁽¹⁾	1 ⁽¹⁾	13 ⁽¹⁾	1	13	1	13	22	
t _{PHL}	AUB	ř		7 ⁽¹⁾	11 ⁽¹⁾	1 ⁽¹⁾	13 ⁽¹⁾	1	13	1	13	ns	
t _{PLH}	A or B	~	C = 50 pE	9.5	14.5	1	16.5	1	16.5	1	16.5	ns	
t _{PHL}	AUB	T	$C_L = 50 \text{ pF}$	$C_L = 50 \text{ pF}$	9.5	14.5	1	16.5	1	16.5	1	16.5	115

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1)

				_		T _A = -5: 125		T _A = -40 85°		T _A = -4 125		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	T _A = 25°C			-		-	Recom		UNIT
	. ,					SN54AHC86		SN74A	HC86	SN74AHC86		
				TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A or B	Y	$C_{L} = 15 \text{ pF}$ $C_{I} = 50 \text{ pF}$	4.8 ⁽¹⁾	6.8 ⁽¹⁾	1 ⁽¹⁾	8(1)	1	8	1	8	ns
t _{PHL}	AOLP	Т		4.8 ⁽¹⁾	6.8 ⁽¹⁾	1 ⁽¹⁾	8 ⁽¹⁾	1	8	1	8	115
t _{PLH}	A or B	Y		6.3	8.8	1	10	1	10	1	10	ns
t _{PHL}	7010	I	0 _L = 30 pr	6.3	8.8	1	10	1	10	1	10	115

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

www.ti.com

NOISE CHARACTERISTICS

$V_{cc} = 5 V_{c} C_{l} = 50 \text{ pE}$. $T_{b} = 25^{\circ} \text{C}^{(1)}$					
	V - 5 V	C .	- 50 nE	Т	-25° C ⁽¹⁾

	PARAMETER	SN	174AHC8	86	UNIT
	PARAMETER	MIN	TYP	MAX	
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.3	0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.3	-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}	4.4			V
V _{IH(D)}	High-level dynamic input voltage	3.5			V
V _{IL(D)}	Low-level dynamic input voltage			1.5	V

(1) Characteristics are for surface-mount packages only.

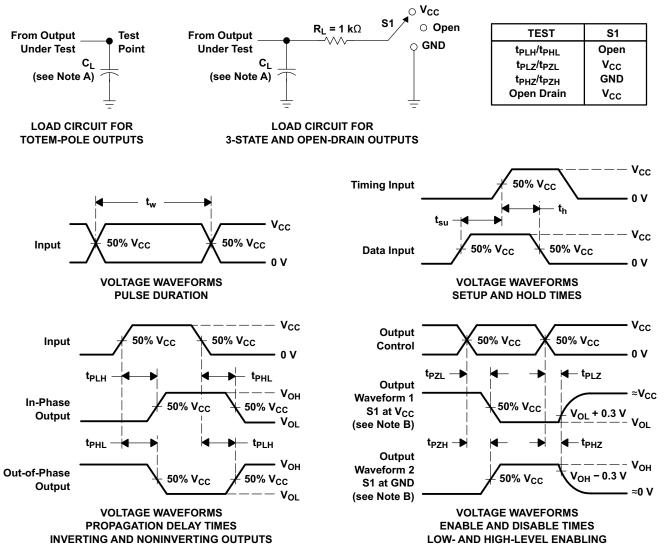
OPERATING CHARACTERISTICS

 $V_{CC} = 5 \text{ V}, \text{ } \text{T}_{A} = 25^{\circ}\text{C}$

	PARAMETER	TEST C	CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	18	pF

SN54AHC86

SN74AHC86


SCLS249J-OCTOBER 1995-REVISED JUNE 2013

SN54AHC86 SN74AHC86 SCLS249J-OCTOBER 1995-REVISED JUNE 2013

www.ti.com

PARAMETER MEASUREMENT INFORMATION

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_r \leq 3 ns, t_f \leq 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

6

REVISION HISTORY

Cł	nanges from Revision I (July 2003) to Revision J Pa	ge
•	Changed document format from Quicksilver to DocZone.	. 1
•	Extended operating temperature range to 125°C	. 3

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9681601Q2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9681601Q2A SNJ54AHC 86FK	Samples
5962-9681601QCA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9681601QC A SNJ54AHC86J	Samples
5962-9681601QDA	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9681601QD A SNJ54AHC86W	Samples
SN74AHC86D	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC86	Samples
SN74AHC86DBR	ACTIVE	SSOP	DB	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA86	Samples
SN74AHC86DGVR	ACTIVE	TVSOP	DGV	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA86	Samples
SN74AHC86DR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC86	Samples
SN74AHC86N	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 125	SN74AHC86N	Samples
SN74AHC86NSR	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC86	Samples
SN74AHC86PW	ACTIVE	TSSOP	PW	14	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA86	Samples
SN74AHC86PWR	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA86	Samples
SN74AHC86PWRG4	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA86	Samples
SN74AHC86RGYR	ACTIVE	VQFN	RGY	14	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	HA86	Samples
SNJ54AHC86FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9681601Q2A SNJ54AHC 86FK	Samples
SNJ54AHC86J	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9681601QC A SNJ54AHC86J	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SNJ54AHC86W	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9681601QD A SNJ54AHC86W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

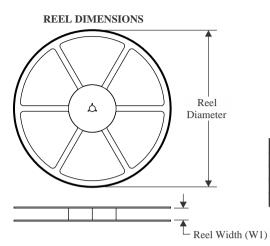
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

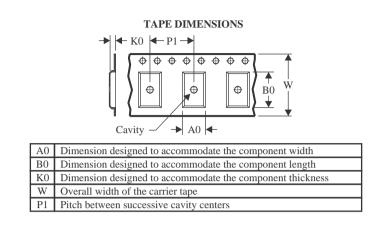
OTHER QUALIFIED VERSIONS OF SN54AHC86, SN74AHC86 :

• Catalog : SN74AHC86

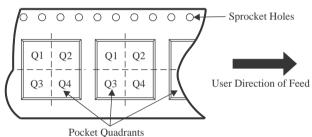
Military : SN54AHC86

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

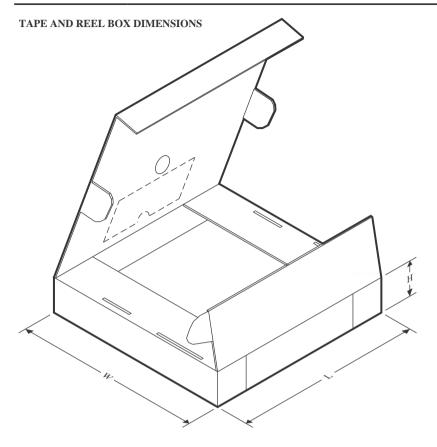


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

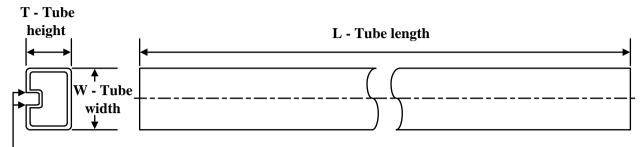

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC86DBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74AHC86DGVR	TVSOP	DGV	14	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
SN74AHC86DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74AHC86NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74AHC86PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AHC86RGYR	VQFN	RGY	14	3000	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

9-Aug-2022

*All dimensions are nominal	

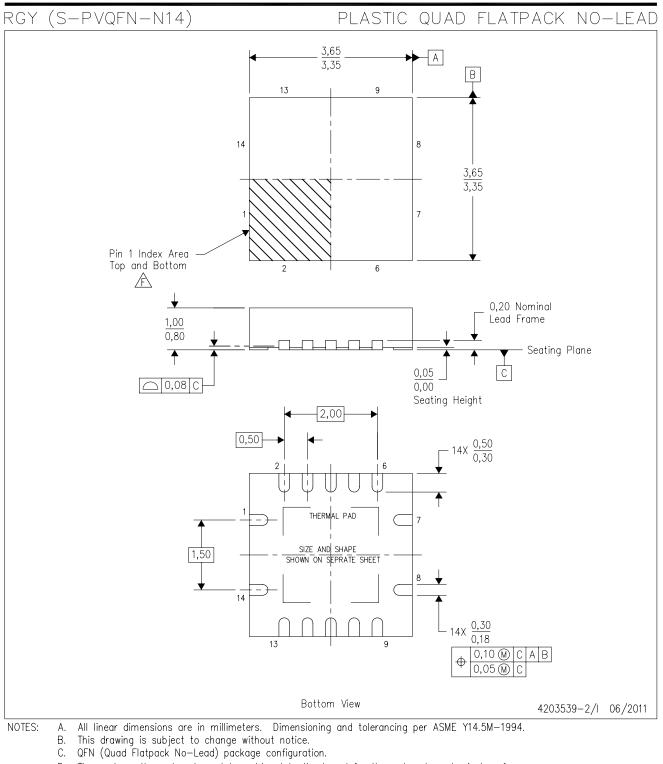

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC86DBR	SSOP	DB	14	2000	356.0	356.0	35.0
SN74AHC86DGVR	TVSOP	DGV	14	2000	356.0	356.0	35.0
SN74AHC86DR	SOIC	D	14	2500	356.0	356.0	35.0
SN74AHC86NSR	SO	NS	14	2000	356.0	356.0	35.0
SN74AHC86PWR	TSSOP	PW	14	2000	356.0	356.0	35.0
SN74AHC86RGYR	VQFN	RGY	14	3000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

9-Aug-2022

TUBE



- B - Alignment groove width

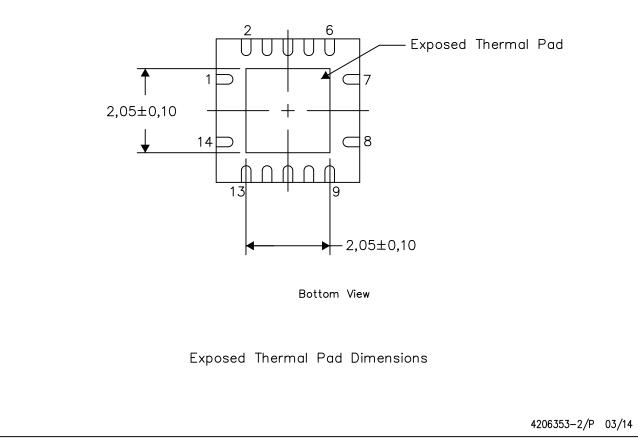
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
5962-9681601Q2A	FK	LCCC	20	1	506.98	12.06	2030	NA
5962-9681601QDA	W	CFP	14	1	506.98	26.16	6220	NA
SN74AHC86D	D	SOIC	14	50	506.6	8	3940	4.32
SN74AHC86N	N	PDIP	14	25	506	13.97	11230	4.32
SN74AHC86N	N	PDIP	14	25	506	13.97	11230	4.32
SN74AHC86PW	PW	TSSOP	14	90	530	10.2	3600	3.5
SNJ54AHC86FK	FK	LCCC	20	1	506.98	12.06	2030	NA
SNJ54AHC86W	W	CFP	14	1	506.98	26.16	6220	NA

MECHANICAL DATA

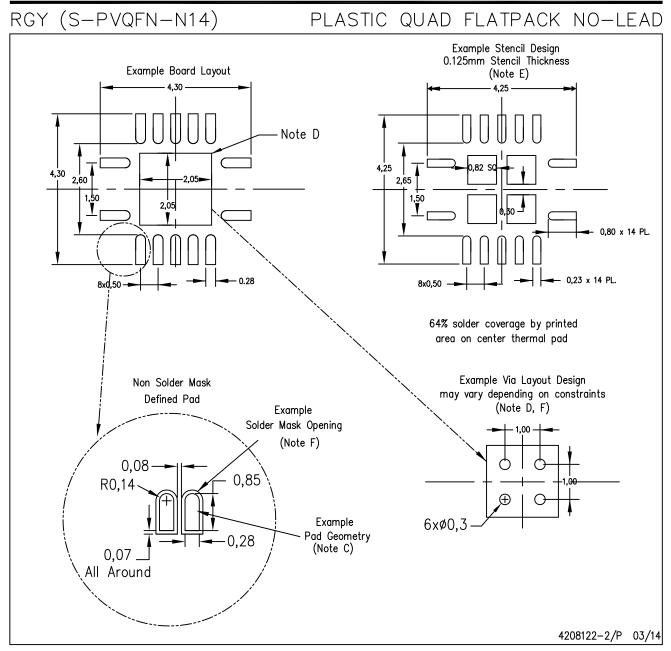
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- earrow Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.
- The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (S-PVQFN-N14)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.

D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.

- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

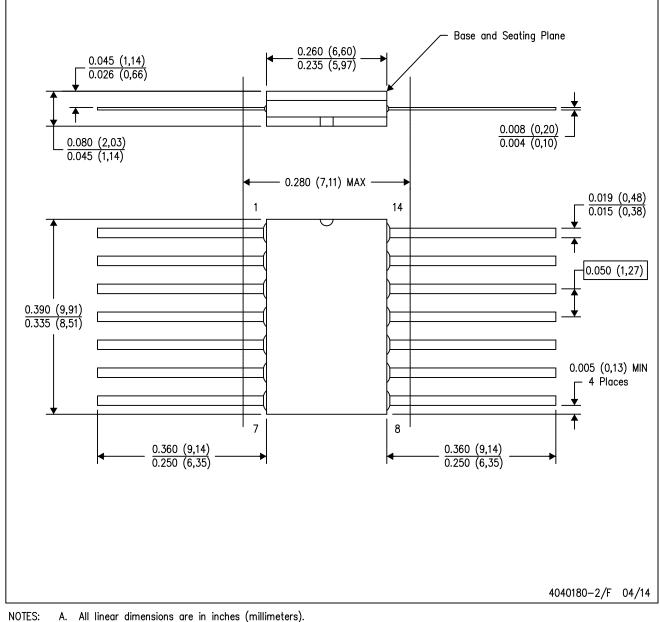
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

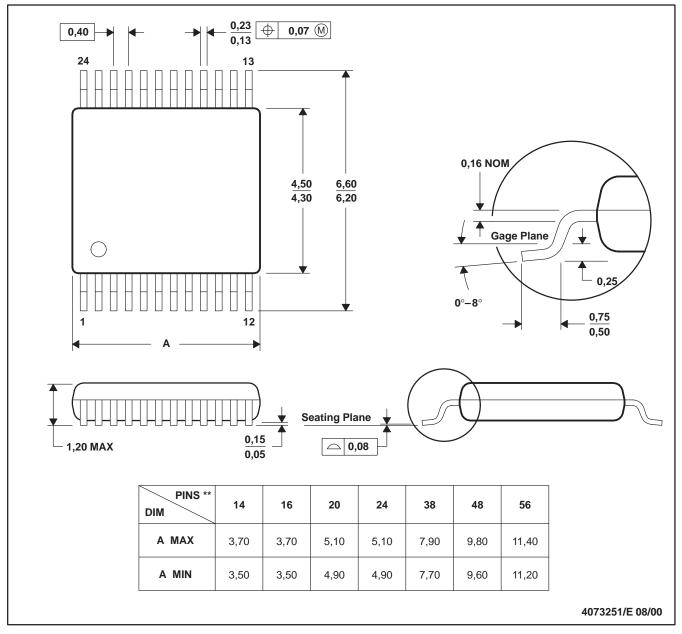

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

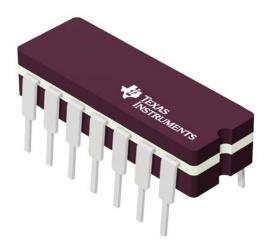
DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

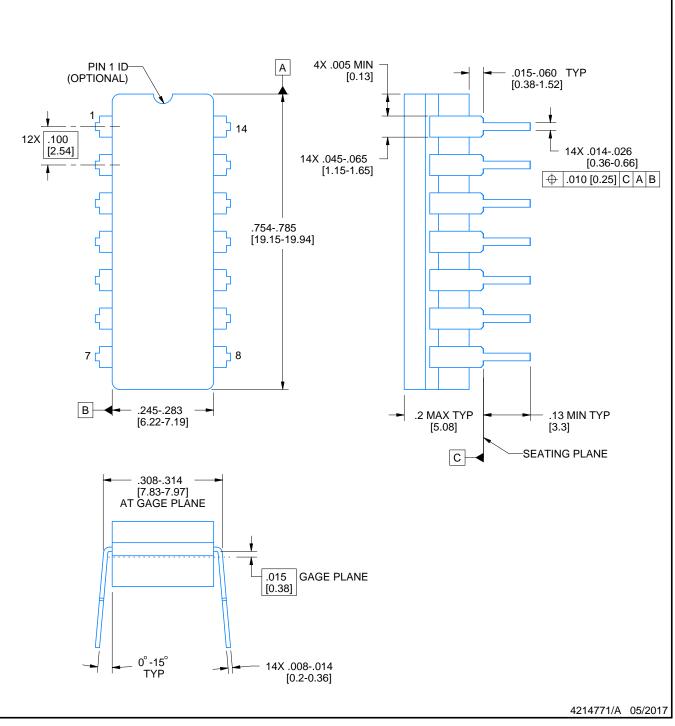

14/16/20/56 Pins – MO-194

GENERIC PACKAGE VIEW

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


J0014A

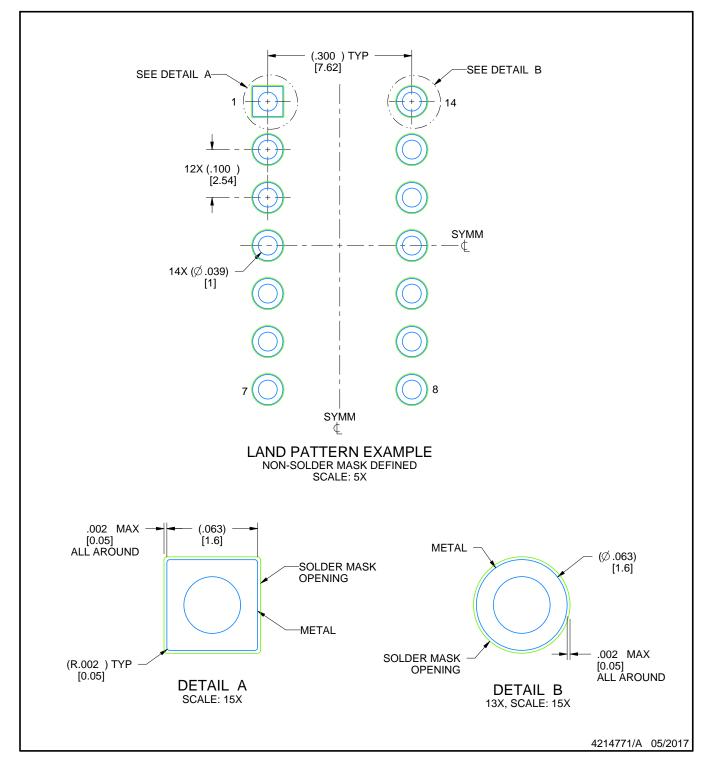
PACKAGE OUTLINE

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

NOTES:

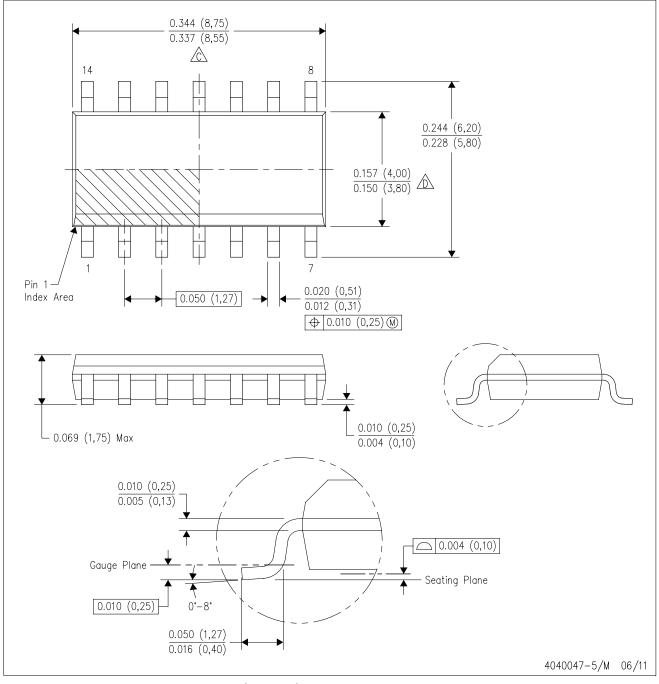
- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.



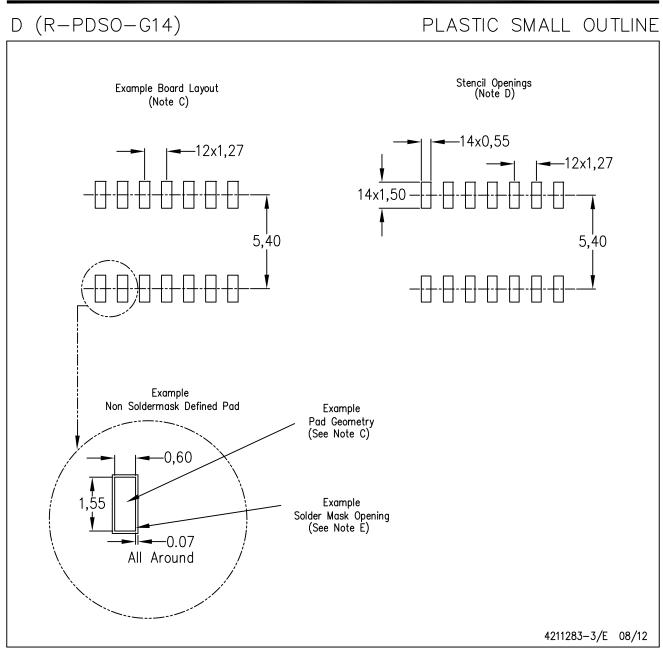
J0014A

EXAMPLE BOARD LAYOUT

CDIP - 5.08 mm max height

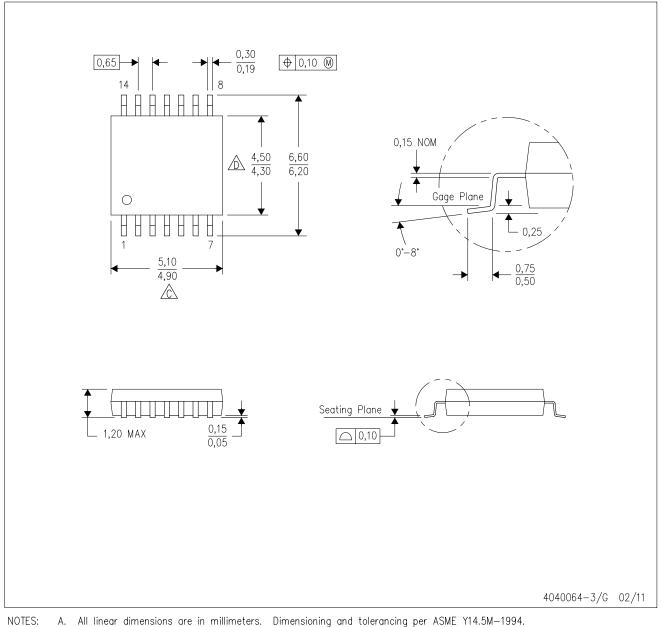

CERAMIC DUAL IN LINE PACKAGE

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

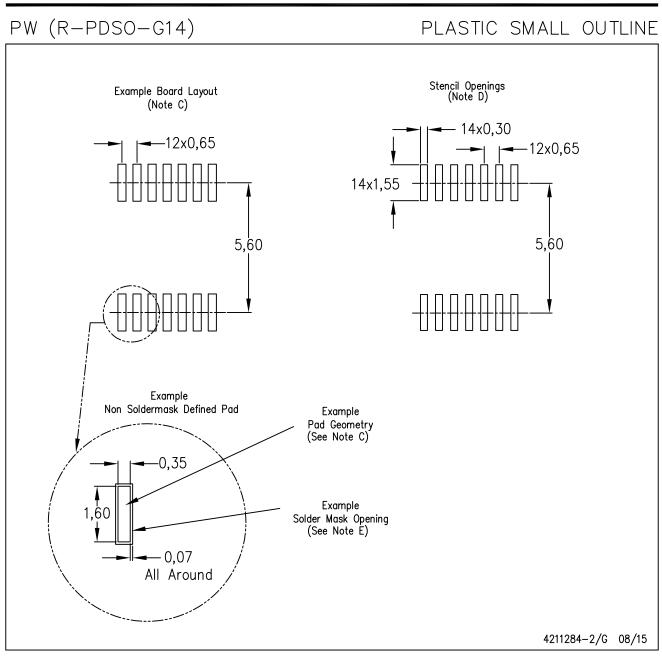
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

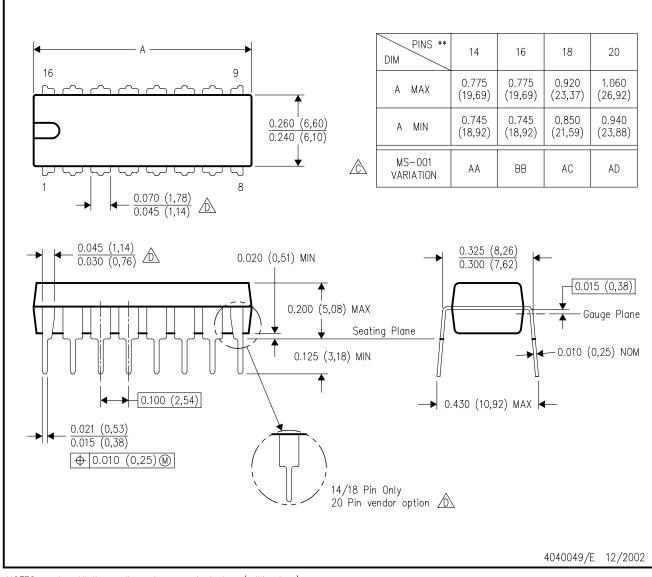

A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

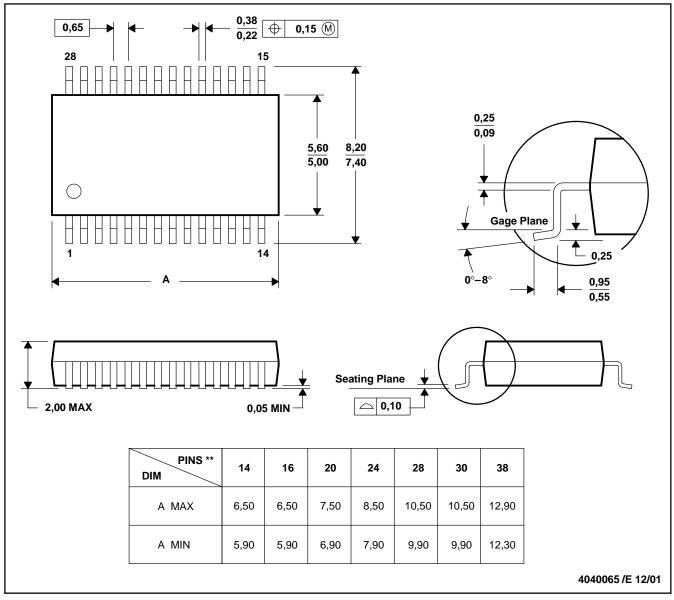
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated