

3-W 单声道D类音频放大器,此放大器具有 智能增益 SmartGain™ 自动增益控制(AGC)/动态范围压缩(DRC)

查询样品: TPA2029D1

特性

- 无滤波器D类架构
- 5 V 和 4 Ω 时,输出功率 3 W (10% 总谐波失 真+D)
- 3.6 V 和 8 Ω 时,输出功率 880 mW (10% 总谐 波失真+D)
- 电源范围: 2.5 V 至 5.5 V
- 3 个可选 AGC 功能
- 低电源电流: 1.8 mA
- 低关断电流 0.2 µA
- 高电源抑制比 (PSRR): 80 dB
- 快速启动时间: 5 ms
- AGC启用/禁用功能
- 限制器启用/禁用功能
- 短路和热保护
- 节省空间的
 - 1.63 mm × 1.63 mm 晶圆级芯片封装 (WCSP) (YZF)

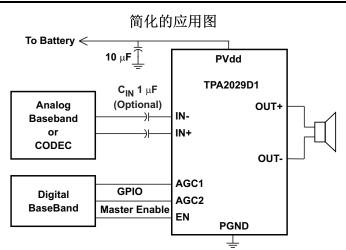
应用范围

- 无线或蜂窝手机及 PDA
- 便携式导航设备
- 便携式 DVD 播放器
- 笔记本电脑
- 便携式收音机
- 便携式游戏机
- 教育玩具
- USB 扬声器

说明

TPA2029D1 是一款单声道,无滤波器D类音频功率放 大器,此放大器具有动态范围压缩 (DRC) 和自动增益 控制 (AGC)。 它采用 1.63 mm x 1.63 mm WCSP 封 装。

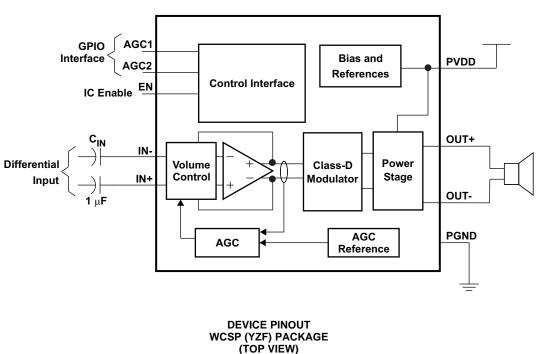
TPA2029D1 的 DRC/AGC 功能可被打开和关闭。 DRC/AGC 功能被配置为自动防止音频信号失真并且提高在正常情况下无法听见的静默信息的传输能力。 DRC/AGC 功能还可被配置为保护扬声器在高功率水平下不受损害并且压缩音乐的动态范围以适合扬声器的动态范围。TPA2029D1 能够在 5 V 时驱动 3 W 4Ω负载或者在 3.6 V 时驱动 880 mW 8Ω 负载。此器件特有一个使能引脚并提供过热和短路保护。


除了这些特性之外,一个快速启动时间和小封装尺寸使 得 TPA2029D1 成为笔记本个人电脑,PDA 和其它便 携式应用的理想选择。

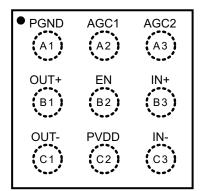
TPA2029D1 采用不同的默认 AGC/DRC 设置以满足多样的系统需求。要获得更多细节,请参见Table 2。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. 智能增益 SmartGain is a trademark of Texas Instruments.

ZHCS615A – DECEMBER 2011 – REVISED APRIL 2012



ZHCS615A - DECEMBER 2011 - REVISED APRIL 2012


www.ti.com.cn

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

FUNCTIONAL BLOCK DIAGRAM

ZHCS615A – DECEMBER 2011 – REVISED APRIL 2012

NSTRUMENTS

XAS

PIN FUNCTIONS				
I	PIN I/O/P		DESCRIPTION	
NAME	WCSP			
IN+	B3	I	Positive audio input	
IN-	C3	I	Negative audio input	
EN	B2	I	Enable terminal (active high)	
AGC2	A3	I	AGC select function pin 2	
AGC1	A2	I	AGC select function pin 1	
OUT+	B1	0	Positive differential output	
OUT-	C1	0	Negative differential output	
PVDD	C2	Р	Power supply	
PGND	A1	Р	Power ground	

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted).

			VALUE / UNIT
V _{DD}	Supply voltage	PVDD	–0.3 V to 6 V
	Input voltago	EN, INR+, INR-, INL+, INL-	–0.3 V to V _{DD} +0.3 V
	Input voltage	AGC1, AGC2	–0.3 V to 6 V
	Continuous total power dissip	ation	See Dissipation Ratings Table
T _A	Operating free-air temperatur	e range	–40°C to 85°C
TJ	Operating junction temperature	re range	–40°C to 150°C
T _{stg}	Storage temperature range		–65°C to 150°C
ESD	Electro-Static Discharge	Human Body Model (HBM)	2 KV
E3D	Tolerance, all pins	Charged Device Model (CDM)	500 V
R_{LOAD}	Minimum load resistance		3.6 Ω

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS TABLE⁽¹⁾

[PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 70°C	T _A = 85°C
	9-ball WCSP	1.19 W	9.52 mW/°C	0.76 W	0.62 W

(1) Dissipations ratings are for a 2-side, 2-plane PCB.

TPA2029D1

www.ti.com.cn

ZHCS615A – DECEMBER 2011 – REVISED APRIL 2012

AVAILABLE OPTIONS⁽¹⁾

T _A	PACKAGED DEVICES ⁽²⁾	PART NUMBER	SYMBOL			
40°C to 95°C	0 nin 1 62 mm + 1 62 mm WCCD	TPA2029D1YZFR	QWI			
–40°C to 85°C	9-pin, 1.63 mm × 1.63 mm WCSP	TPA2029D1YZFT	QWI			

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com

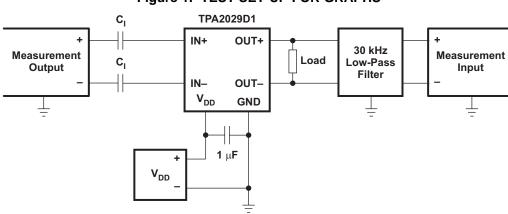
(2) The YZF packages are only available taped and reeled. The suffix R indicates a reel of 3000; the suffix T indicates a reel of 250.

RECOMMENDED OPERATING CONDITIONS

			MIN	MAX	UNIT
V_{DD}	Supply voltage	PVDD	2.5	5.5	V
V_{IH}	High-level input voltage	EN, AGC1, AGC2	1.3		V
VIL	Low-level input voltage	EN, AGC1, AGC2		0.6	V
T _A	Γ _A Operating free-air temperature			85	°C

ELECTRICAL CHARACTERISTICS

at T_A = 25°C, V_{DD} = 3.6 V, EN = 1.3 V, and R_L = 8 Ω + 33 μH (unless otherwise noted).


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{DD}	Supply voltage range		2.5	3.6	5.5	V
		EN = 0.35 V, V _{DD} = 2.5 V		0.1	1	
I _{SDZ}	Shutdown quiescent current	EN = 0.35 V, V _{DD} = 3.6 V		0.2	1	μA
		$EN = 0.35 V, V_{DD} = 5.5 V$		0.3	1	
		V _{DD} = 2.5 V		1.6	4.5	
I _{DD}	Supply current	V _{DD} = 3.6 V		1.8	4.7	mA
		V _{DD} = 5.5 V		2.1	5.5	
f _{SW}	Class D Switching Frequency		275	300	325	kHz
I _{IH}	High-level input current	V _{DD} = 5.5 V, EN = 5.8 V			1	μA
IIL	Low-level input current	$V_{DD} = 5.5 \text{ V}, \text{ EN} = -0.3 \text{ V}$	-1			μA
t _{START}	Start-up time	2.5 V \leq V _{DD} \leq 5.5 V no pop, C _{IN} \leq 1 μ F		5		ms
POR	Power on reset ON threshold			2	2.3	V
PUR	Power on reset hysteresis			0.2		V
CMRR	Input common mode rejection	R_L = 8 Ω,V_{icm} = 0.5 V and V_{icm} = V_{DD} – 0.8 V, differential inputs shorted		-75		dB
V _{oo}	Output offset voltage	V_{DD} = 3.6 V, A_V = 6 dB, R_L = 8 Ω , inputs ac grounded		1.5	10	mV
ZO	Output Impedance in shutdown mode	EN = 0.35 V		2		kΩ
	Gain accuracy	Compression and limiter disabled, Gain = 0 to 30 dB	-0.5		0.5	dB
PSRR	Power supply rejection ratio	V _{DD} = 2.5 V to 4.7 V		-80		dB

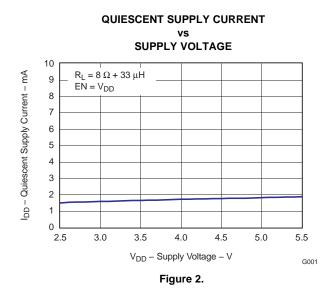
OPERATING CHARACTERISTICS

at $T_A = 25^{\circ}C$, $V_{DD} = 3.6V$, EN = 1.3 V, $R_L = 8 \Omega + 33 \mu$ H, and $A_V = 6 dB$ (unless otherwise noted).

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
k _{SVR}	power-supply ripple rejection ratio	V_{DD} = 3.6 Vdc with ac of 200 mV _{PP} at 217 Hz	-70		dB
		$f_{aud_{in}} = 1 \text{ kHz}; P_0 = 550 \text{ mW}; V_{DD} = 3.6 \text{ V}$	0.1%		
	Total harmonic distantian is noise	$f_{aud_{in}} = 1 \text{ kHz}; P_0 = 1.25 \text{ W}; V_{DD} = 5 \text{ V}$	0.1%		
THD+N	Total harmonic distortion + noise	$f_{aud_{in}} = 1 \text{ kHz}; P_0 = 710 \text{ mW}; V_{DD} = 3.6 \text{ V}$	1%		
		$f_{aud_{in}} = 1 \text{ kHz}; P_0 = 1.4 \text{ W}; V_{DD} = 5 \text{ V}$	1%		
Nr	Output integrated noise	Av = 6 dB	42		μV
		Av = 6 dB floor, A-weighted	30		μV
f	Frequency response	Av = 6 dB	20	20000	Hz
		THD+N = 10%, V_{DD} = 5 V, R_L = 8 Ω	1.72		W
		THD+N = 10%, V_{DD} = 3.6 V, R_L = 8 Ω	880		mW
P _{O(max)}	Maximum output power	THD+N = 1%, V_{DD} = 5 V, R_L = 8 Ω	1.4		W
		THD+N = 1% , V_{DD} = 3.6 V, R_L = 8 Ω	710		mW
		THD+N = 10% , V_{DD} = 5 V, R_L = 4 Ω	3		W
		THD+N = 1%, V_{DD} = 3.6 V, R_L = 8 Ω, P_O = 0.71 W	91%		
η	Efficiency	THD+N = 1%, V_{DD} = 5 V, R_{L} = 8 Ω, P_{O} = 1.4 W	93%		

Figure 1. TEST SET-UP FOR GRAPHS

- (1) All measurements were taken with a $1-\mu F C_1$ (unless otherwise noted.)
- (2) A 33-µH inductor was placed in series with the load resistor to emulate a small speaker for efficiency measurements.
- (3) The 30-kHz low-pass filter is required, even if the analyzer has an internal low-pass filter. An RC low-pass filter (1 k Ω 4.7 nF) is used on each output for the data sheet graphs.


ZHCS615A - DECEMBER 2011 - REVISED APRIL 2012

TYPICAL CHARACTERISTICS

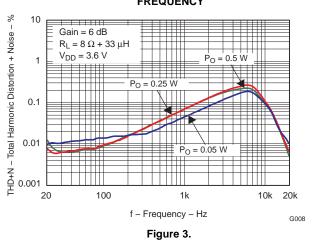
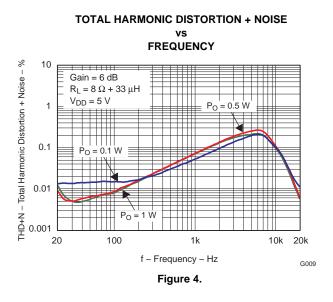
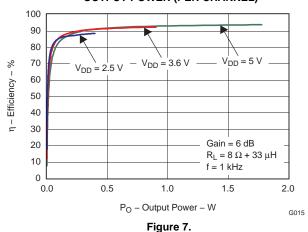

 $\label{eq:couple} \begin{array}{l} \mbox{with } C_{(\text{DECOUPLE})} = 1 \ \mu\text{F}, \ C_{\text{I}} = 1 \ \mu\text{F}. \\ \mbox{All THD + N graphs are taken with outputs out of phase (unless otherwise noted).} \\ \mbox{All data is taken on left channel.} \end{array}$

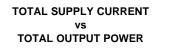
Table of Graphs


		FIGURE
Quiescent supply current	vs Supply voltage	Figure 2
Total harmonic distortion + noise	vs Frequency	Figure 3
Total harmonic distortion + noise	vs Frequency	Figure 4
Total harmonic distortion + noise	vs Output power	Figure 5
Supply ripple rejection ratio	vs Frequency	Figure 6
Efficiency	vs Output power (per channel)	Figure 7
Total power dissipation	vs Total output power	Figure 8
Total supply current	vs Total output power	Figure 9
Output power	vs Supply voltage	Figure 10, Figure 11
Shutdown time		Figure 12
Startup time		Figure 13

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

ZHCS615A – DECEMBER 2011 – REVISED APRIL 2012




vs OUTPUT POWER % 100 -----THD+N – Total Harmonic Distortion + Noise – Gain = 6 dB $R_L = 8 \Omega + 33 \mu H$ f = 1 kHz10 V_{DD} = 3.6 V 1 $V_{DD} =$ 5 0.1 0.01 0.01 0.1 1 3 Po - Output Power - W G012

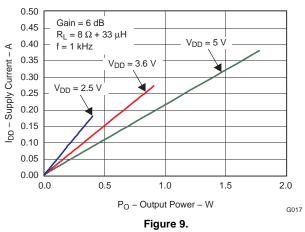
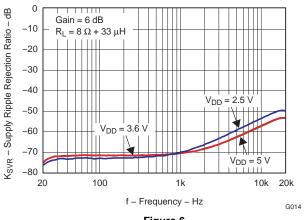
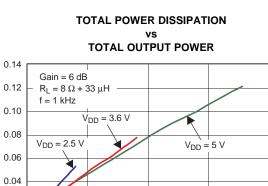

TOTAL HARMONIC DISTORTION + NOISE

Figure 5.


EFFICIENCY vs OUTPUT POWER (PER CHANNEL)



SUPPLY RIPPLE REJECTION RATIO

1.0

Po - Output Power - W

Figure 8.

1.5

2.0

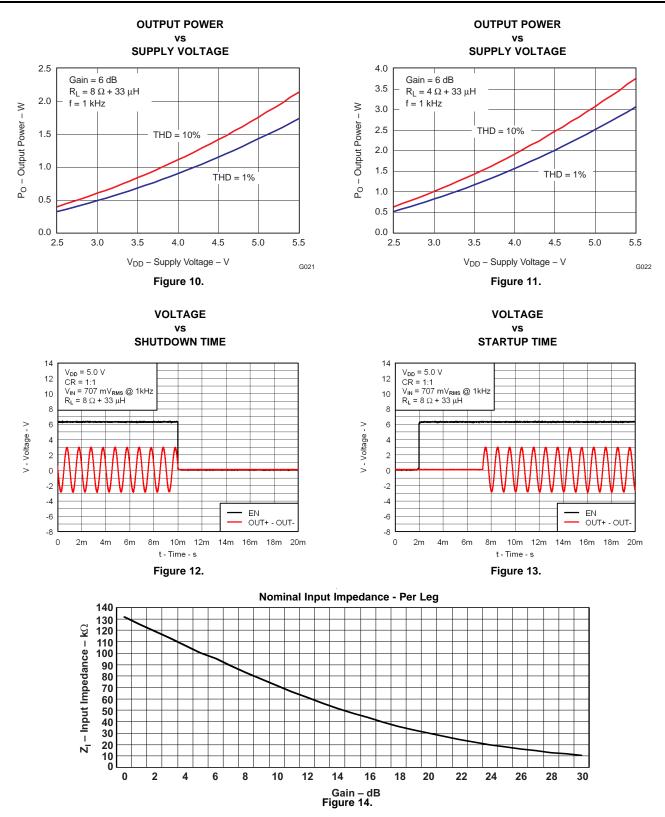
G016

P_D – Power Dissipation – W

0.02

0.00

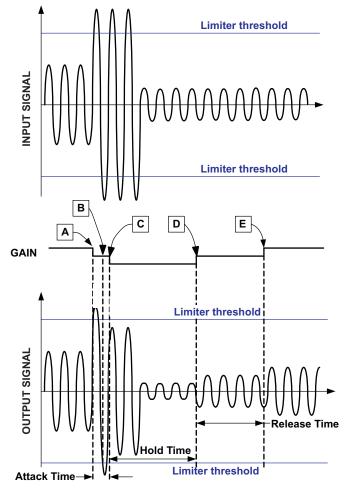
0.0


0.5

TPA2029D1

www.ti.com.cn

ZHCS615A – DECEMBER 2011 – REVISED APRIL 2012



APPLICATION INFORMATION

AUTOMATIC GAIN CONTROL

The Automatic Gain Control (AGC) feature provides continuous automatic gain adjustment to the amplifier through an internal PGA. This feature enhances the perceived audio loudness and at the same time prevents speaker damage from occurring (Limiter function).

The AGC works by detecting the audio input envelope. The gain changes depending on the amplitude, the limiter level, the compression ratio, and the attack and release time. The gain changes constantly as the audio signal increases and/or decreases to create the compression effect. The gain step size for the AGC is 0.5 dB. If the audio signal has near-constant amplitude, the gain does not change. Figure 15 shows how the AGC works.

- A. Gain decreases with no delay; attack time is reset. Release time and hold time are reset.
- B. Signal amplitude above limiter level, but gain cannot change because attack time is not over.
- C. Attack time ends; gain is allowed to decrease from this point forward by one step. Gain decreases because the amplitude remains above limiter threshold. All times are reset
- D. Gain increases after release time finishes and signal amplitude remains below desired level. All times are reset after the gain increase.
- E. Gain increases after release time is finished again because signal amplitude remains below desired level. All times are reset after the gain increase.

Figure 15. Input and Output Audio Signal vs Time

Since the number of gain steps is limited the compression region is limited as well. The following figure shows how the gain changes vs. the input signal amplitude in the compression region.

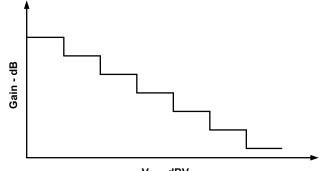


Figure 16. Input Signal Voltage vs Gain

Thus the AGC performs a mapping of the input signal vs. the output signal amplitude.

Pins AGC1 and AGC 2 are used to enable/disable the limiter, compression, and noise gate function. Table 1 shows each function.

Table 1. FUNCTION DEFINITION FOR AGC1 AND AGC2

AGC1	AGC2	Function
0	0 0 AGC Function disabled	
0	1	AGC Limiter Function enabled
1	0	AGC, Limiter, and Compression Functions enabled
1	1	AGC, Limiter, Compression, and Noise Gate Functions enabled

The default values for the TPA2029D1 AGC function are given in Table 2. The default values can be changed at the factory during production. Refer to the TI representative for assistance with different default value requests.

AGC Parameters	TPA2029D1
Attack Time	14.084 ms / 6 dB step
Release Time	822 ms/ 6 dB step
Hold Time	off
Fixed Gain	9 dB
NoiseGate Threshold	4 mV
Output Limiter Level	9 dBV
Max Gain	30 dB
Compression Ratio	2:1

Table 2. AGC DEFAULT VALUES

ZHCS615A – DECEMBER 2011 – REVISED APRIL 2012

$$f_{\rm C} = \frac{1}{(2\pi \times R_{\rm I} \times C_{\rm I})}$$

INPUT CAPACITORS (C₁)

Equation 1

The value of the input capacitor is important to consider as it directly affects the bass (low frequency) performance of the circuit. Speakers in wireless phones cannot usually respond well to low frequencies, so the corner frequency can be set to block low frequencies in this application. Not using input capacitors can increase output offset. Equation 2 is used to solve for the input coupling capacitance. If the corner frequency is within the audio band, the capacitors should have a tolerance of ±10% or better, because any mismatch in capacitance causes an impedance mismatch at the corner frequency and below.

$$C_{I} = \frac{1}{(2\pi \times R_{I} \times f_{C})}$$
(2)

COMPONENT LOCATION

Place all the external components very close to the TPA2029D1. Placing the decoupling capacitor, C_S, close to the TPA2029D1 is important for the efficiency of the Class-D amplifier. Any resistance or inductance in the trace between the device and the capacitor can cause a loss in efficiency.

EFFICIENCY AND THERMAL INFORMATION

The maximum ambient temperature depends on the heat-sinking ability of the PCB system. The derating factor for the packages are shown in the dissipation rating table. Converting this to θ_{IA} for the WCSP package: 4 4

$$\theta_{JA} = \frac{1}{\text{Derating Factor}} = \frac{1}{0.0095} = 105^{\circ}\text{C/W}$$

Given θ_{JA} of 100°C/W, the maximum allowable junction temperature of 150°C, and the maximum internal dissipation of 0.4 W for 3 W output power into 4- Ω load, 5-V supply, from Figure 7, the maximum ambient temperature can be calculated with the following equation.

$$T_AMax = T_IMax - \theta_{IA}P_{DMAX} = 150 - 105 (0.4) = 108^{\circ}C$$

Equation 4 shows that the calculated maximum ambient temperature is 108°C at maximum power dissipation with a 5-V supply and 4- Ω a load. The TPA2029D1 is designed with thermal protection that turns the device off when the junction temperature surpasses 150°C to prevent damage to the IC. Also, using speakers more resistive than 8- Ω dramatically increases the thermal performance by reducing the output current and increasing the efficiency of the amplifier.

OPERATION WITH DACS AND CODECS

12

In using Class-D amplifiers with CODECs and DACs, sometimes there is an increase in the output noise floor from the audio amplifier. This occurs when mixing of the output frequencies of the CODEC/DAC mix with the switching frequencies of the audio amplifier input stage. The noise increase can be solved by placing a low-pass filter between the CODEC/DAC and audio amplifier. This filters off the high frequencies that cause the problem and allow proper performance. See the functional block diagram.

The TPA2029D1 is a high-performance Class-D audio amplifier that requires adequate ng to ensure the efficiency is high and total harmonic distortion (THD) is low. For higher frequency nts. spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) 1-µF ceramic capacitor (typically) placed as close as possible to the device PVDD lead works best. Placing this decoupling capacitor close to the TPA2029D1 is important for the efficiency of the Class-D amplifier, because any resistance or inductance in the trace between the device and the capacitor can cause a loss in efficiency. For filtering lowerfrequency noise signals, a 4.7 µF or greater capacitor placed near the audio power amplifier would also help, but it is not required in most applications because of the high PSRR of this device.

The input capacitors and input resistors form a high-pass filter with the corner frequency, f_C, determined in

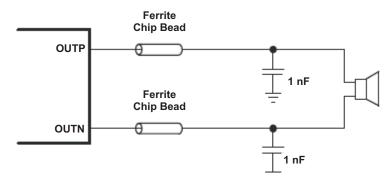
FXAS

(1)

(4)

(3)

www.ti.com.cn


NSTRUMENTS

FILTER FREE OPERATION AND FERRITE BEAD FILTERS

A ferrite bead filter can often be used if the design is failing radiated emissions without an LC filter and the frequency sensitive circuit is greater than 1 MHz. This filter functions well for circuits that just have to pass FCC and CE only test radiated emissions greater than 30 MHz. When choosing a ferrite bead, choose one with high impedance at high frequencies, and low impedance at low frequencies. In addition, select a ferrite bead with adequate current rating to prevent distortion of the output signal.

Use an LC output filter if there are low frequency (< 1 MHz) EMI sensitive circuits and/or there are long leads from amplifier to speaker. Figure 17 shows typical ferrite bead and LC output filters.

PACKAGE INFORMATION

Package Dimensions

The package dimensions for this YZF package are shown in the table below. See the package drawing at the end of this data sheet for more details.

Packaged Devices	D	E
TPA2029D1YZF	Min = 1594µm Max = 1654µm	Min = 1594µm Max = 1654µm

REVISION HISTORY

Changes from Revision December 2011 (*) to Revision A

Page

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TPA2029D1YZFR	ACTIVE	DSBGA	YZF	9	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	QWI	Samples
TPA2029D1YZFT	ACTIVE	DSBGA	YZF	9	250	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	QWI	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

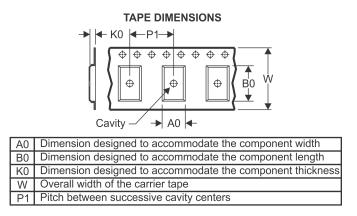
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

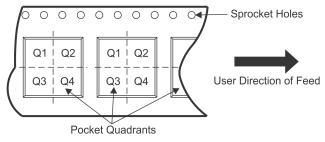
www.ti.com

PACKAGE OPTION ADDENDUM

10-Dec-2020

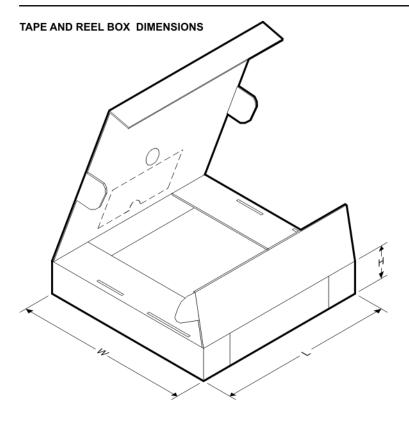

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPA2029D1YZFR	DSBGA	YZF	9	3000	180.0	8.4	1.71	1.71	0.81	4.0	8.0	Q1
TPA2029D1YZFT	DSBGA	YZF	9	250	180.0	8.4	1.71	1.71	0.81	4.0	8.0	Q1

TEXAS INSTRUMENTS

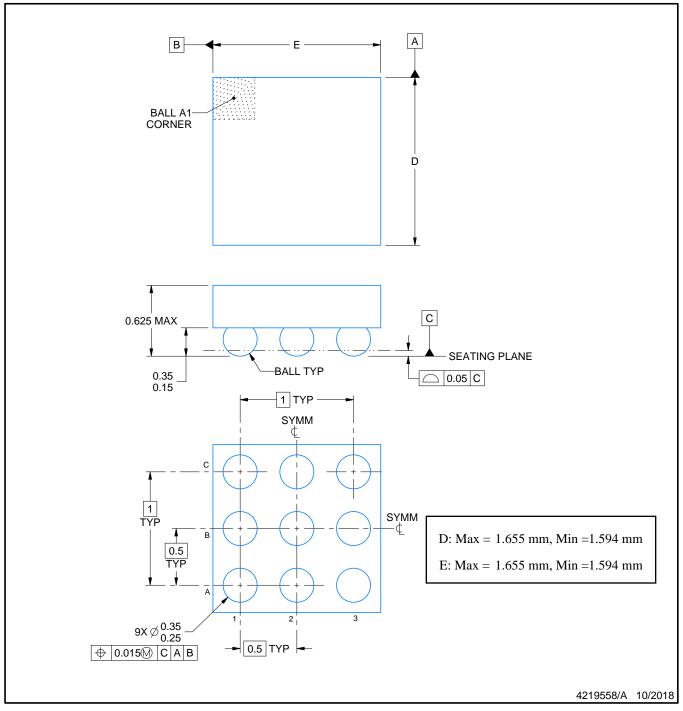
www.ti.com

PACKAGE MATERIALS INFORMATION

18-Jun-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPA2029D1YZFR	DSBGA	YZF	9	3000	182.0	182.0	20.0
TPA2029D1YZFT	DSBGA	YZF	9	250	182.0	182.0	20.0


YZF0009

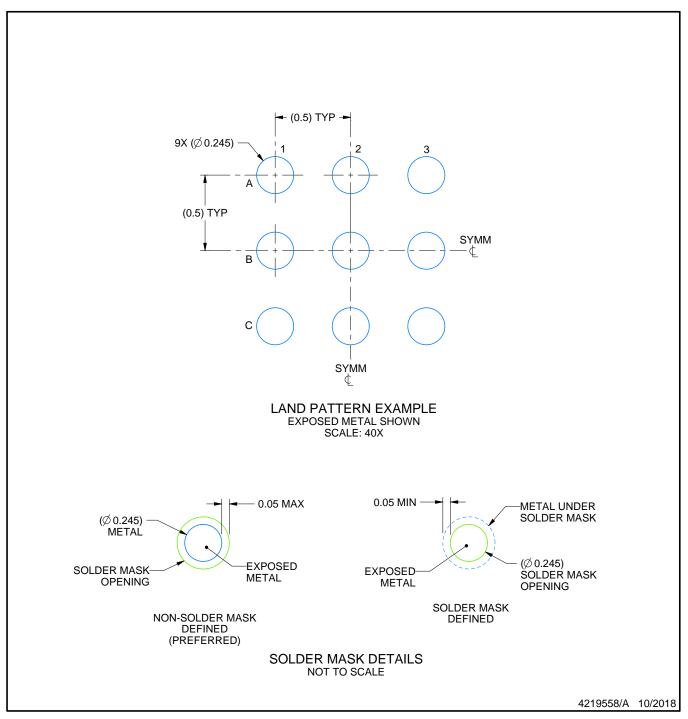
PACKAGE OUTLINE

DSBGA - 0.625 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



YZF0009

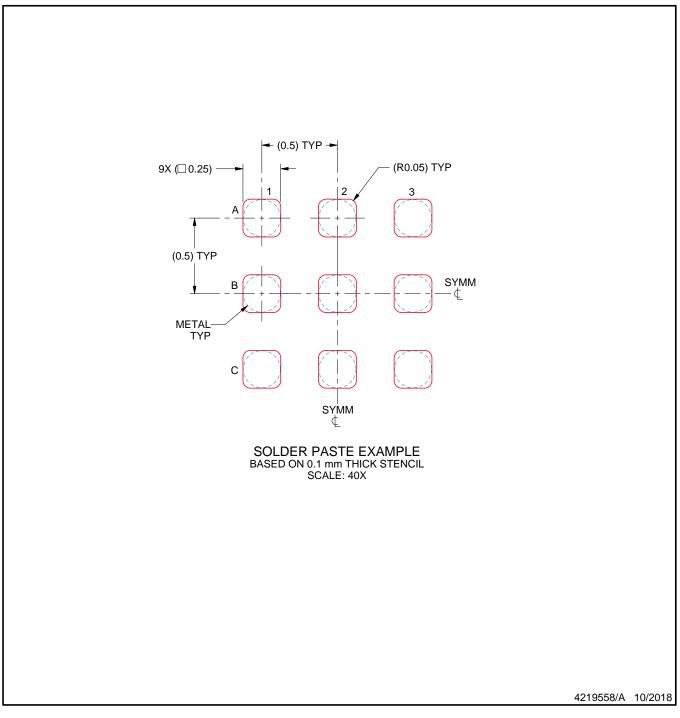
EXAMPLE BOARD LAYOUT

DSBGA - 0.625 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

 Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).



YZF0009

EXAMPLE STENCIL DESIGN

DSBGA - 0.625 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司