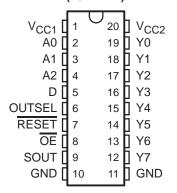
SN74LV8153 SERIAL-TO-PARALLEL INTERFACE

SCLS555 - JUNE 2004

DESCRIPTION


The SN74LV8153 is a serial-to-parallel data converter. It accepts serial input data and outputs 8-bit parallel data.

The automatic data-rate detection feature of the SN74LV8153 eliminates the need for an external oscillator and helps with cost and board real-estate savings.

The OUTSEL pin is used to choose between open collector and push-pull outputs. The open-collector option is suitable when this device is used in applications such as LED interface, where high drive current is required. SOUT is the output that acknowledges reception of the serial data.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC1} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

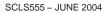
N OR PW PACKAGE (TOP VIEW)

FUNCTION TABLE (each buffer)

				,	
	INPUT	S	OUTPUT		
OUTSEL	RESET	OE Dn		Yn	STRUCTURE
L	Н	L	Н	L	
L	Н	L	L	Н	0
L	Χ	Н	X	Н	Open collector
L	L	Χ	X	Н	
Н	Н	L	Н	Н	
Н	Н	L	L	L	Duck sull
Н	X	Н	X	Z	Push-pull
Н	L	L	Χ	L	

In the open-collector mode (OUTSEL = L), the outputs are inverted, e.g., Y1 = I, when D1 = H

FEATURES


- Single-Wire Serial Data Input
- Compatible With UART Serial-Data Format
- Up to Eight Devices (64-Bit Parallel) Can Share the Same Bus by Using Different Combinations of A0, A1, A2
- Up to 40 mA Current Drive in Open-Collector Mode for Driving LEDs
- Outputs Can be Configured as Open-Collector or Push-Pull
- Internal Oscillator and Counter for Automatic Data-Rate Detection
- Output Levels Are Referenced to V_{CC2} and Can Be Configured From 3 V to 12 V
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 1000-V Charged-Device Model (C101)

SUMMARY OF RECOMMENDED OPERATING CONDITIONS

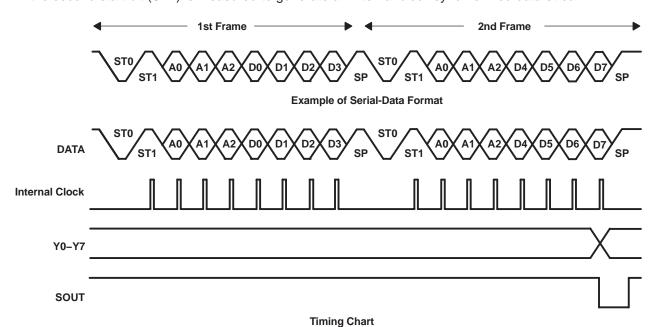
PARAMETER	
V _{CC1}	3 V to 5.5 V
V _{CC2}	3 V to 13.2 V
lOL	40 mA @ V _{CC2} = 4.5 V (open-collector mode)
ЮН	-24 mA @ V _{CC2} = 12 V (push-pull mode)
Maximum Data Rate	24 Kbps

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

TA	PACKAGE(1)		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	PDIP – N	Tube	SN74LV8153N	SN74LV8153N	
-40°C to 85°C	TSSOP – PW	Tube	SN74LV8153PW	11/0452	
	1330F - FVV	Tape and reel	SN74LV8153PWR	LV8153	

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

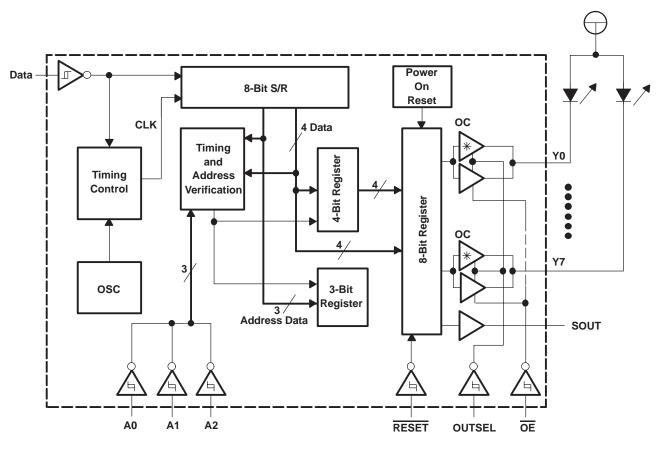

PIN DESCRIPTION

PIN#	PIN NAME	I/O	PIN FUNCTION
1	VCC1		Power-supply pin (all inputs and outputs except for Y0-Y7)
2-4	A0, A1, A2	In	The address pins are used to program the address of the device and allow up to eight devices to share the same bus.
5	D	In	Serial data input
6	OUTSEL	In	Choose between open-collector and push-pull type outputs (Y0-Y7).
7	RESET	In	Initialize register status
8	OE	In	Force Y0-Y7 to Hi-Z
9	SOUT	Out	Outputs a pulse when latch data is changed. Supplied by V _{CC1} .
12-19	Y0-Y7	Out	Push-pull or open collector parallel data outputs. Supplied by V _{CC2} .
20	V _{CC2}		Power-supply pin for outputs (Y0-Y7). V _{CC2} can range from 3 V to 13.2 V.

SCLS555 - JUNE 2004

data transmission protocol

- The serial data should be sent as 2START-3ADDRESS-4DATA-1STOP. Two consecutive serial-data frames transmit 8 bits of data. The first frame includes the lower four bits of data (D0-D3), and the second frame includes the upper four bits (D4-D7).
- The three address bits (in the consecutive frame) must be the same as those in the first frame;
 otherwise, the data will be dropped.
- The order of the two start bits must be 0, then 1 in any frame; otherwise, the data rate will not be detected correctly. The period between the falling edge of the first start bit (ST0) and the rising edge of the second start bit (ST1) is measured to generate an internal-clock synchronized data stream.



⁽¹⁾Internal clock cannot be observed.

⁽²⁾D0 is LSB and D7 is MSB. The data stream should be LSB first.

logic diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)(1)

Supply voltage range, V _{CC1}	–0.5 V to 7 V
Supply voltage range, V _{CC2}	
Input voltage range, $V_1^{(2)}$	–0.5 V to 7 V
Voltage range applied to any output in the high or low state, V _O (SOUT)(2)(3)	$-0.5 \text{ V to V}_{\text{CC1}} + 0.5 \text{ V}$
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (SOUT) ⁽²⁾	
Voltage range, applied to any output in the high or low state, V_O (Y0-Y7)(2)(3)	-0.5 V to V _{CC2} + 0.5 V
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (Y0-Y7) ⁽²⁾	–0.5 V to 14.5 V
Input clamp current, $I_{ K }(V_{ } < 0)$	–20 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	25 mA
Continuous current, I _O (OUTSEL = L, Y0-Y7 = L)	60 mA
Package thermal impedance, θ _{JA} ⁽⁴⁾ : N package	69°C/W
PW package	83°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽¹⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ The value of VCC is provided in the recommended operating operating condition table.

⁽³⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS555 - JUNE 2004

$recommended\ operating\ conditions \ ^{(1)}$

				V _{CC1}	V _{CC2}	MIN	MAX	UNIT	
VCC1	Supply voltage					3	5.5	V	
V _{CC2}	Supply voltage				3	13.2	V		
.,				3 V	3 V	V _{CC} ×0.7		.,	
V_{IH}	V _{IH} High-level input voltage				4.5 V	V _{CC} ×0.7		V	
17	V _{IL} Low-level input voltage				3 V		$V_{CC} \times 0.3$	V	
۷IL					4.5 V		$V_{CC} \times 0.3$	V	
٧ _I	Input voltage					0	5.5	V	
.,					4.5 V	0	5.5		
۷O	V _O Output voltage				12 V	0	13.2	V	
				3 V	3 V		-2		
		Yn	OUTSEL = H	4.5 V	4.5 V		-8	mA	
lOH	High-level output current			4.5 V	12 V		-24		
		COLIT		3 V	3 V		-4	A	
		SOUT		4.5 V	4.5 V		-8	mA	
			OUTOF! !!	3 V	3 V		2		
		V	OUTSEL = H	4.5 V	4.5 V		8		
1	Lave lavel autout aumant	Yn	OUTOFI	3 V	3 V		20		
IOL	I _{OL} Low-level output current		OUTSEL = L	4.5 V	4.5 V		40	mA	
		COLIT		3 V	3 V		4		
		SOUT		4.5 V	4.5 V		8		
TA	Operating free-air temperature					-40	85	°C	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETE	R	TEST CONDITIO	V _{CC1}	V _{CC2}	MIN	TYP	MAX	UNIT	
V _{T+}			3.3 V	3.3 V			2.31		
Positive-going input voltage	threshold	All inputs		5 V	5 V			3.5	V
V _{T-}	dhaa ah ah d			3.3 V	3.3 V	0.99			.,
Negative-going input voltage	tnresnoid	All inputs		5 V	5 V	1.5			V
ΔVT				3.3 V	3.3 V	0.33		1.32	
Hysteresis (V _{T+} - V _{T-})	All inputs		5 V	5 V	0.5		2	V
		I _{OH} = −2 mA		3 V	3 V	2.38			
	Yn	I _{OH} = -8 mA		4.5 V	4.5 V	3.8			
VOН		I _{OH} = -24 mA		4.5 V	12 V	11			V
_	2011	I _{OH} = -4 mA		3 V	3 V	2.38			
	SOUT	I _{OH} = -8 mA		4.5 V	4.5 V	3.8			
		I _{OL} = 2 mA (OUTSEL = H)		3 V	3 V			0.44	
	Yn	I _{OL} = 8 mA (OUTSEL = H)	4.5 V	4.5 V			0.44		
VOL		I _{OL} = 40 mA (OUTSEL = L)		4.5 V	4.5 V			0.5	V
_	2011	I _{OL} = 4 mA	3 V	3 V			0.44		
	SOUT	I _{OL} = 8 mA		4.5 V	4.5 V			0.44	
lį		V _I = 5.5 V or GND		0 to 5.5 V				±1	μΑ
loz		VO = VCC or GND (OUTSEL	. = H)	5.5 V	5.5 V			±5	μΑ
ЮН		V _O = 12 V (OUTSEL = L)	5.5 V	5.5 V			5	μΑ	
Icc		V _I = V _{CC} or GND, I _O = 0	5.5 V	5.5 V			5 20	mA	
I _{off} (except \$	SOUT)	V_{I} or $V_{O} = 0$ to 5.5 V, $V_{CC} =$	0	0	0			±50	μΑ
Ci	<u> </u>	$V_I = V_{CC}$ or GND		5 V	5 V		5		pF

switching characteristics over recommended operating free-air temperature range, $V_{CC1} = V_{CC2} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figures 1 and 2)

DADAMETER	FROM	то	LOAD	T	A = 25°C	;	BAINI	MAY	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
	D7	Υ			Pw/2	(1)			
t _{read}	D7	SOUT]		Pw/2	(1)			
^t pd	RESET	Υ						200	ns
	OE(2)	Y	C _L = 50 pF					200	
t _{en}	<u>OE</u> (3)	Υ						200	ns
^t dis	<u>OE</u> (3)	Y]					200	ns
t _W		SOUT			Pw	(4)			ns
Data rate							2	24	Kbps

⁽¹⁾ The t_{pd} is dependent on the data pulse width (Pw), and Y outputs are changed after one-half of Pw, because the internal clock is synchronized at the middle of the data pulse. Not tested, but specified by design.
(2) When outputs are open collector (OUTSEL = L)

⁽³⁾ When outputs are push-pull (OUTSEL = H)

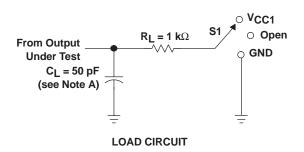
⁽⁴⁾ SOUT goes low when the data is received correctly and maintains a low level for one data-pulse period. Not tested, but specified by design.

SCLS555 - JUNE 2004

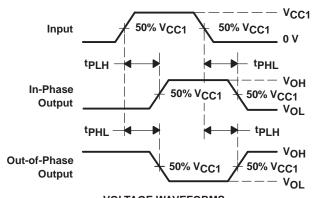
switching characteristics over recommended operating free-air temperature range, V_{CC1} = V_{CC2} = 5 V \pm 0.5 V (unless otherwise noted) (see Figures 1 and 2)

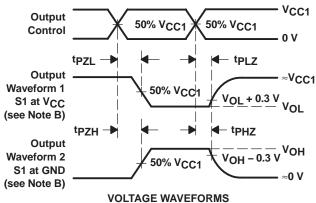
DADAMETER	FROM	то	LOAD	Т	A = 25°C		MIN	MAY	LINUT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
	D7	Y			Pw/2	(1)			
	D7	SOUT			Pw/2	(1)			
^t pd	RESET	Y						150	ns
	<u>OE</u> (2)	Y	C _L = 50 pF					150	
t _{en}	<u>OE</u> (3)	Y	3 <u>C</u> 33 F.					150	ns
^t dis	<u>OE</u> (3)	Y						150	ns
t _W		SOUT			Pw	(4)			ns
Data rate							2	24	Kbps

⁽¹⁾ The t_{pd} is dependent on the data pulse width (Pw), and Y outputs are changed after one-half of Pw, because the internal clock is synchronized at the middle of the data pulse. Not tested, but specified by design.


⁽²⁾ When outputs are open collector (OUTSEL = L)

⁽³⁾ When outputs are push-pull (OUTSEL = H)

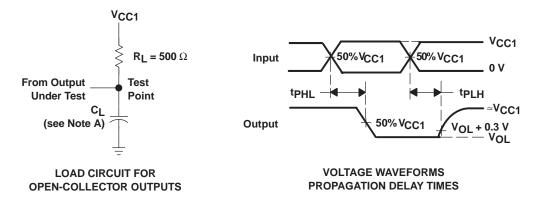

⁽⁴⁾ SOUT goes low when the data is received correctly and maintains a low level for one data-pulse period. Not tested, but specified by design.


PARAMETER MEASUREMENT INFORMATION (PUSH-PULL OUTPUT)

TEST	S 1
tPLH/tPHL	Open
tPLZ/tPZL	V _{CC1}
tPHZ/tPZH	GND

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING


NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: $Z_O = 50 \Omega$, $t_f \le 3$ ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzI and tpzH are the same as ten.
- G. tpHL and tpLH are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (OPEN-COLLECTOR OUTPUT)

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_\Gamma \leq 3$ ns, $t_f \leq$
- C. The outputs are measured one at a time, with one input transition per measurement.
- D. t_{PHL} and t_{PLH} are the same as t_{pd} .

Figure 2. Load Circuit and Voltage Waveforms

www.ti.com 13-Aug-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LV8153N	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74LV8153N	Samples
SN74LV8153NE4	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74LV8153N	Samples
SN74LV8153PW	ACTIVE	TSSOP	PW	20	70	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV8153	Samples
SN74LV8153PWR	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV8153	Samples
SN74LV8153PWRG4	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV8153	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

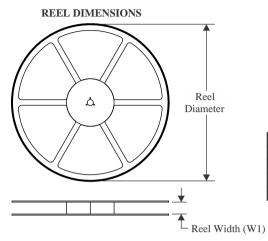
www.ti.com 13-Aug-2021

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LV8153:

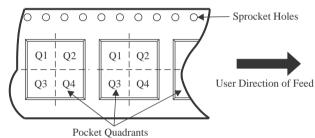
Automotive: SN74LV8153-Q1


NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

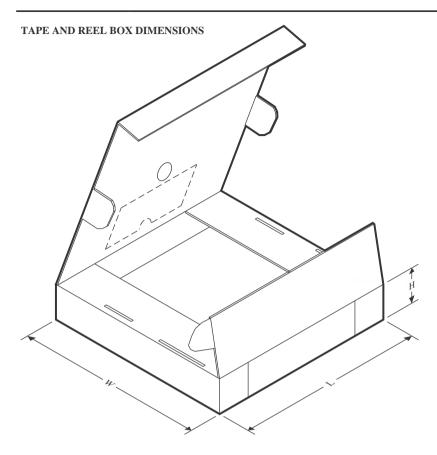
www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

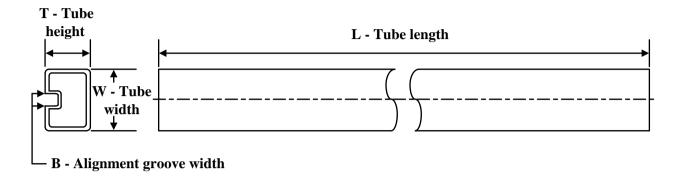


*All dimensions are nominal

Device	U	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV8153PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

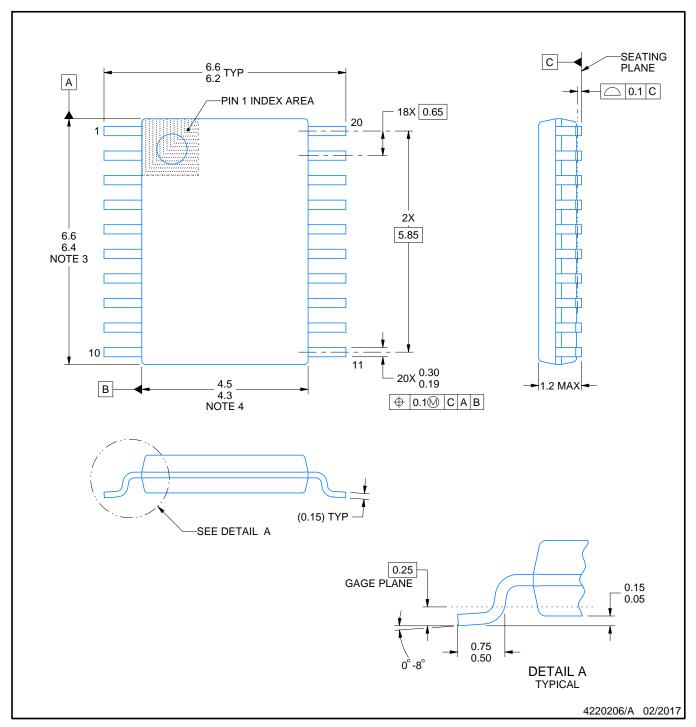

*All dimensions are nominal

	Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
I	SN74LV8153PWR	TSSOP	PW	20	2000	356.0	356.0	35.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

TUBE

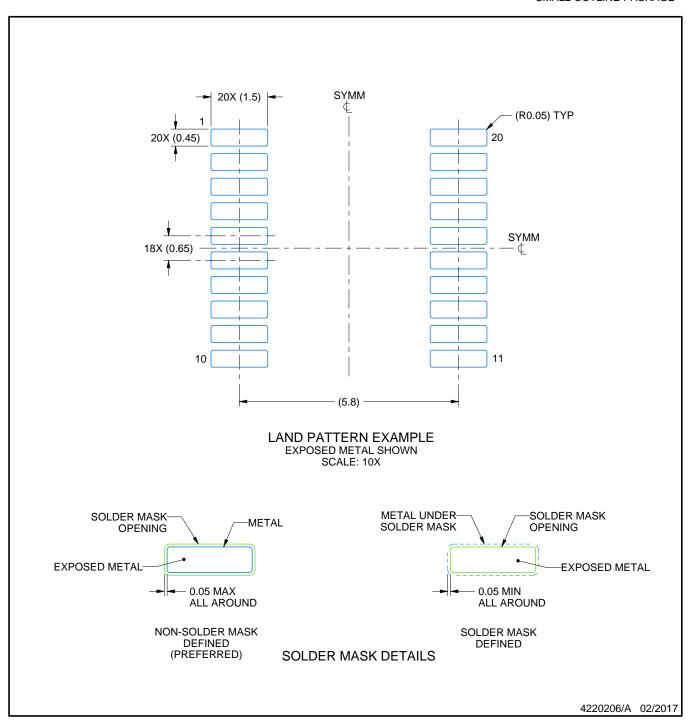


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74LV8153N	N	PDIP	20	20	506	13.97	11230	4.32
SN74LV8153NE4	N	PDIP	20	20	506	13.97	11230	4.32
SN74LV8153PW	PW	TSSOP	20	70	530	10.2	3600	3.5

SMALL OUTLINE PACKAGE

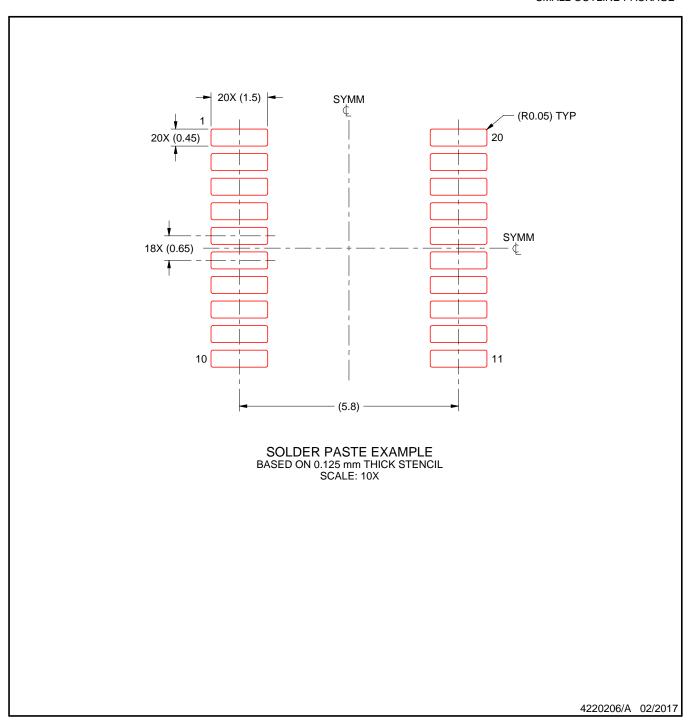
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

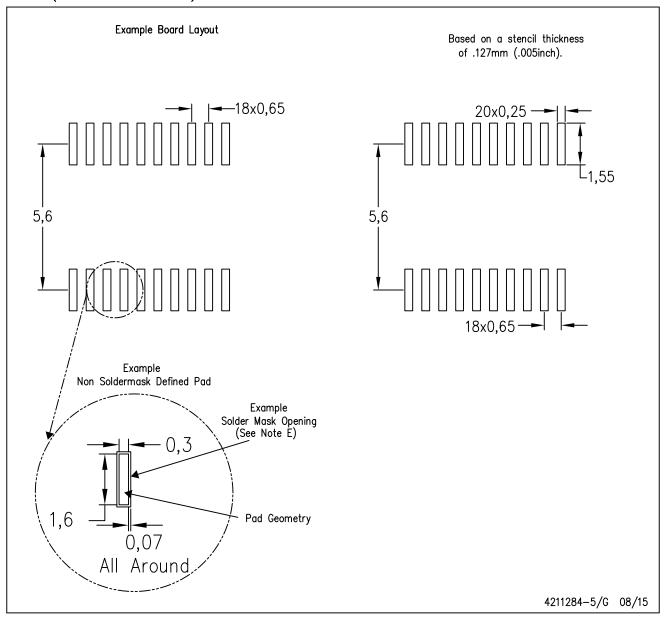
SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated