

Sample &

Buy

Reference Design

HDC1080

ZHCSET2A - NOVEMBER 2015-REVISED JANUARY 2016

Support &

Community

2.2

HDC1080 具有温度传感器的低功耗、高精度数字湿度传感器

Technical

Documents

特性 1

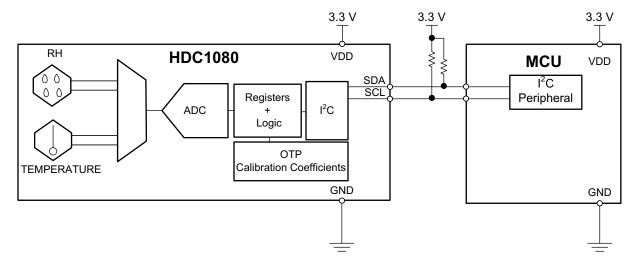
- 相对湿度精度为 ±2% (典型值)
- 温度精度为 ±0.2℃(典型值)
- 高湿度下具有出色的稳定性 •
- 14 位测量分辨率
- 睡眠模式的电流为 100nA .
- 平均电源电流:
 - 1sps、11 位相对湿度 (RH) 测量时为 710nA
 - 1sps、11 位 RH 与温度测量时为 1.3µA
- 电源电压范围: 2.7V 至 5.5V
- 3mm x 3mm 小型器件封装
- I²C 接口

2 应用

• 制热、通风与空调控制 (HVAC)

Tools &

Software


- 智能温度调节装置和室温监视器 •
- 大型家用电器 •
- 打印机 •
- 手持式计量表 •
- 医疗设备
- 无线传感器(TIDA: 00374、00484、00524) ٠

3 说明

HDC1080 是一款具有集成温度传感器的数字湿度传感 器,其能够以超低功耗提供出色的测量精度。 HDC1080 支持较宽的工作电源电压范围,并且相比竞 争解决方案,该器件可为各类常见应用提供低成本和低 功耗 优势。湿度和温度传感器均经过出厂校准。

	器件信息 ⁽¹⁾			
部件号 封装 封装尺寸(标称值)				
HDC1080	PWSON(6 引脚)DMB	3.00mm x 3.00mm		

(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

典型应用 4

目录

1	特性							
2	应用							
3	说明	说明1						
4	典型	应用1						
5	修订	历史记录						
6	Pin	Configuration and Functions 3						
7	Spe	cifications 4						
	7.1	Absolute Maximum Ratings 4						
	7.2	ESD Ratings 4						
	7.3	Recommended Operating Conditions 4						
	7.4	Thermal Information 4						
	7.5	Electrical Characteristics 5						
	7.6	I2C Interface Electrical Characteristics						
	7.7	I2C Interface Timing Requirements 6						
	7.8	Typical Characteristics						
8	Deta	ailed Description						
	8.1	Overview						
	8.2	Functional Block Diagram9						
	8.3	-						

5 修订历史记录

2

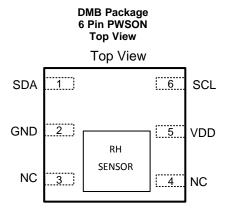
HDC1080

Changes from Original (November 2015) to Revision A

• "产品预览"至"量产数据版本" 1

	8.4	Device Functional Modes
	8.5	Programming 10
	8.6	Register Map 14
9	Appl	ication and Implementation 17
	9.1	Application Information 17
	9.2	Typical Application 17
	9.3	Implementation and Usage Recommendations 18
10	Pow	er Supply Recommendations 19
11	Layo	out
	11.1	Layout Guidelines 19
	11.2	Layout Example 19
12	器件	和文档支持 21
	12.1	文档支持21
	12.2	社区资源 21
	12.3	商标
	12.4	静电放电警告 21
	12.5	Glossary 21
13	机械	、封装和可订购信息21

Texas Instruments


www.ti.com.cn

Page

HDC1080 ZHCSET2A – NOVEMBER 2015–REVISED JANUARY 2016

6 Pin Configuration and Functions

Pin Functions

PIN		I/O TYPE ⁽¹⁾	DESCRIPTION	
NAME	NO.	VO TTPE //	DESCRIPTION	
SDA	1	I/O	Serial data line for I2C, open-drain; requires a pull-up resistor to VDD	
GND	2	G	Ground	
NC	3,4	-	These pins may be left floating, or connected to GND	
VDD	5	Р	Supply Voltage	
SCL	6	I	Serial clock line for I2C, open-drain; requires a pull-up resistor to VDD	
DAP	DAP	-	Die Attach Pad. Should be left floating. (On bottom of the device, not shown in the figure)	

(1) P=Power, G=Ground, I=Input, O=Output

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

		MIN	MAX	UNIT
	VDD	-0.3	6	
Input Voltage	SCL	-0.3	6	V
	SDA	-0.3	6	
Storage Temperature	T _{STG}	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{DD}	Supply Voltage	2.7	3	5.5	V
T _A , Temperature sensor	Ambient Operating Temperature	-40		125	°C
T _A , Humidity sensor ⁽¹⁾	Ambient Operating Temperature	-20		70	°C
T _A , Humidity sensor ⁽¹⁾	Functional Operating Temperature	-20		85	°C

(1) See Figure 2.

7.4 Thermal Information

		HDC1080	
	THERMAL METRIC ⁽¹⁾	PWSON (DMB)	UNIT
		6 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	49.4	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	29.8	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	23.1	°C/W
ΨJT	Junction-to-top characterization parameter	3.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	23.1	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	4.2	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics⁽¹⁾

The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. $T_A = 30^{\circ}C$, RH = 40%, and $V_{DD} = 3V$.

	PARAMETER	TEST CONDITION ⁽²⁾	MIN ⁽³⁾	TYP ⁽⁴⁾	MAX ⁽³⁾	UNIT
POWER C	ONSUMPTION					
I _{DD}	Supply Current	RH measurement, bit 12 of 0x02 register = $0^{(5)}$		190	220	μA
		Temperature measurement, bit 12 of 0x02 register = $0^{(5)}$		160	185	μA
		Sleep Mode		100	200	nA
		Average @ 1 measurement/second, RH (11 bit), bit 12 of 0x02 register = $0^{(5)(6)}$		710		nA
		Average @ 1 measurement/second, Temp (11 bit), bit 12 of 0x02 register = $0^{(5)(6)}$		590		nA
		Average @ 1 measurement/second, RH (11bit) +temperature (11 bit), bit 12 of 0x02 register = $1^{(5)(6)}$		1.3		μA
		Startup (average on Start-up time)		300		μA
I _{HEAT}	Heater Current ⁽⁷⁾	Peak current		7.2		mA
		Average @ 1 measurement/second, RH (11bit) +temperature (11 bit), bit 12 of 0x02 register = $1^{(5)(6)}$		50		μA
RELATIVE	HUMIDITY SENSOR				, ,	
RH _{ACC}	Accuracy	Refer to Figure 2 in Typical Characteristics section.		±2		%RH
RH _{REP}	Repeatability ⁽⁷⁾	14 bit resolution		±0.1		%RH
RH _{HYS}	Hysteresis ⁽⁸⁾	10% ≤ RH ≤ 70%		±1		%RH
RH _{RT}	Response Time ⁽⁹⁾	t ₆₃ % ⁽¹⁰⁾		15		S
RH _{CT}	Conversion Time ⁽⁷⁾	8 bit resolution		2.50		ms
		11 bit resolution		3.85		ms
		14 bit resolution		6.50		ms
RH _{OR}	Operating Range ⁽¹¹⁾	Non-condensing	0		100	%RH
RH _{LTD}	Long Term Drift ⁽¹²⁾			±0.25		%RH/yr
TEMPERA	TURE SENSOR					
TEMP _{ACC}	Accuracy ⁽⁷⁾	5°C < T _A < 60°C		±0.2	±0.4	°C
$TEMP_{REP}$	Repeatability ⁽⁷⁾	14 bit resolution		±0.1		°C
TEMP _{CT}	Conversion Time ⁽⁷⁾	11 bit accuracy		3.65		ms
		14 bit accuracy		6.35		ms

(1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.

(2) Register values are represented as either binary (b is the prefix to the digits), or hexadecimal (0x is the prefix to the digits). Decimal values have no prefix.

(3) Limits are ensured by testing, design, or statistical analysis at 30°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

(4) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

(5) I²C read/write communication and pull-up resistors current through SCL and SDA not included.

(6) Average current consumption while conversion is in progress.

(7) This parameter is specified by design and/or characterization and it is not tested in production.

- (8) The hysteresis value is the difference between an RH measurement in a rising and falling RH environment, at a specific RH point.
- (9) Actual response times will vary dependent on system thermal mass and air-flow.

(10) Time for the RH output to change by 63% of the total RH change after a step change in environmental humidity.

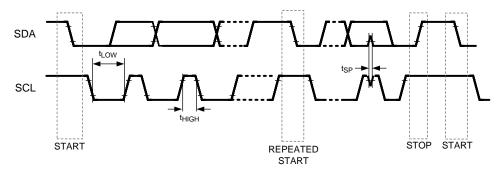
(11) Recommended humidity operating range is 10% to 70% RH. Prolonged operation outside this range may result in a measurement offset. The measurement offset will decrease after operating the sensor in this recommended operating range.

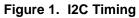
(12) Drift due to aging effects at typical conditions (30°C and 20% to 50% RH). This value may be impacted by dust, vaporized solvents, outgassing tapes, adhesives, packaging materials, etc.

7.6 I2C Interface Electrical Characteristics

At $T_A=30^{\circ}C$, $V_{DD}=3V$ (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	TYP MAX	UNIT
I2C INTE	ERFACE VOLTAGE LEVEL				
VIH	Input High Voltage		0.7xV _{DD}		V
VIL	Input Low Voltage			0.3xV _{DD}	V
VOL	Output Low Voltage	Sink current 3mA		0.4	V
HYS	Hysteresis ⁽¹⁾		0.1xV _{DD}		V
CIN	Input Capacitance on all digital pins			0.5	pF

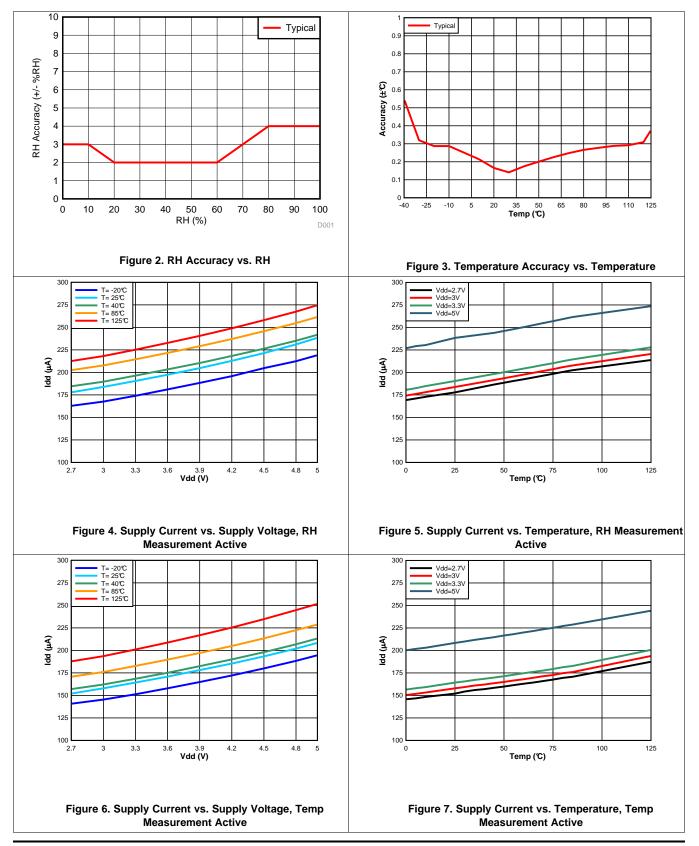

(1) This parameter is specified by design and/or characterization and it is not tested in production.


7.7 I2C Interface Timing Requirements

	0 1					
	PARAMETER	TEST CONDITION	MIN	NOM	MAX	UNIT
I2C INTE	2C INTERFACE VOLTAGE LEVEL					
f _{SCL}	Clock Frequency		10		400	kHz
t _{LOW}	Clock Low Time		1.3			μs
t _{HIGH}	Clock High Time		0.6			μs
t _{SP}	Pulse width of spikes that must be suppressed by the input filter ⁽¹⁾				50	ns
t _{START}	Device Start-up time	From $V_{DD} \ge 2.7$ V to ready for a conversion ⁽¹⁾⁽²⁾		10	15	ms

(1) This parameter is specified by design and/or characterization and it is not tested in production.

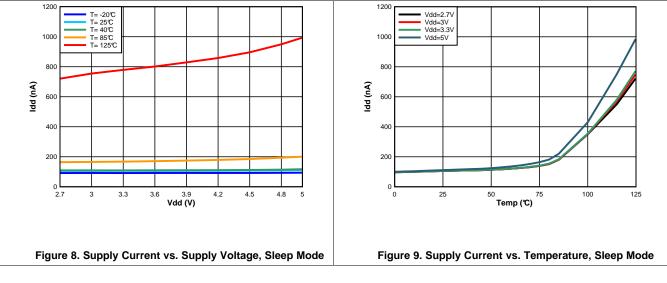
(2) Within this interval it is not possible to communicate to the device.



HDC1080 ZHCSET2A – NOVEMBER 2015 – REVISED JANUARY 2016

www.ti.com.cn

7.8 Typical Characteristics

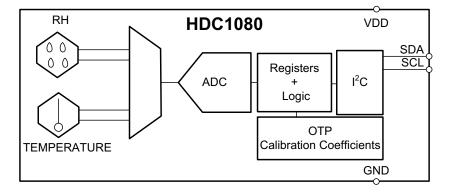

Unless otherwise noted. $T_A = 30^{\circ}C$, $V_{DD} = 3V$.

ZHCSET2A-NOVEMBER 2015-REVISED JANUARY 2016

Typical Characteristics (continued)

Unless otherwise noted. $T_A = 30^{\circ}C$, $V_{DD} = 3V$.

www.ti.com.cn


HDC1080 ZHCSET2A – NOVEMBER 2015 – REVISED JANUARY 2016

8 Detailed Description

8.1 Overview

The HDC1080 is a digital humidity sensor with integrated temperature sensor that provides excellent measurement accuracy at very low power. The sensing element of the HDC1080 is placed on the top part of the device. Measurement results can be read out through the I2C compatible interface. Resolution is based on the measurement time and can be 8, 11, or 14 bits for humidity; 11 or 14 bits for temperature.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Power Consumption

One of the key features of the HDC1080 is its low power consumption, which makes the device suitable in battery or power harvesting applications. In these applications the HDC1080 spends most of the time in sleep mode: with a typical 100nA of current consumption in sleep mode, the averaged current consumption is minimal. Its low consumption in measurement mode minimizes any self-heating.

8.3.2 Voltage Supply Monitoring

The HDC1080 monitors the supply voltage level and indicates when the voltage supply of the HDC1080 is less than 2.8V. This information is useful in battery-powered systems in order to inform the user to replace the battery. This is reported in the BTST field (register address 0x02:bit[11]) which is updated after POR and after each measurement request.

8.3.3 Heater

The heater is an integrated resistive element that can be used to test the sensor or to drive condensation off the sensor. The heater can be activated using HEAT, bit 13 in the Configuration Register. The heater helps in reducing the accumulated offset after long exposure at high humidity conditions.

Once enabled the heater is turned on only in the measurement mode. To accelerate the temperature increase it is suggested to increase the measurement data rate.

8.4 Device Functional Modes

The HDC1080 has two modes of operation: sleep mode and measurement mode. After power up, the HDC1080 is in sleep mode. In this mode, the HDC1080 waits for I2C input including commands to configure the conversion times, read the status of the battery, trigger a measurement, and read measurements. Once it receives a command to trigger a measurement, the HDC1080 moves from sleep mode to measurement mode. After completing the measurement the HDC1080 returns to sleep mode.

8.5 Programming

8.5.1 I2C Interface

The HDC1080 operates only as a slave device on the I2C bus interface. It is not allowed to have on the I2C bus multiple devices with the same address. Connection to the bus is made via the open-drain I/O lines, SDA, and SCL. The SDA and SCL pins feature integrated spike-suppression filters and Schmitt triggers to minimize the effects of input spikes and bus noise. After power-up, the sensor needs at most 15 ms, to be ready to start RH and temperature measurement. During this power-up time the HDC1080 is only able to provide the content of the serial number registers (0xFB to 0xFF) if requested. After the power-up the sensor is in the sleep mode until a communication or measurement is performed. All data bytes are transmitted MSB first.

8.5.1.1 Serial Bus Address

To communicate with the HDC1080, the master must first address slave devices via a slave address byte. The slave address byte consists of seven address bits, and a direction bit that indicates the intent to execute a read or write operation. The I2C address of the HDC1080 is 1000000 (7-bit address).

8.5.1.2 Read and Write Operations

To access a particular register on the HDC1080, write the desired register address value to the Pointer Register. The pointer value is the first byte transferred after the slave address byte with the R/W bit low. Every write operation to the HDC1080 requires a value for the pointer register (refer to Figure 10).

When reading from the HDC1080, the last value stored in the pointer by a write operation is used to determine which register is accessed by a read operation. To change the pointer register for a read operation, a new value must be written to the pointer register. This transaction is accomplished by issuing the slave address byte with the R/W bit low, followed by the pointer byte. No additional data is required (refer to Figure 11).

The master can then generate a START condition and send the slave address byte with the R/W bit high to initiate the read command. Note that register bytes are sent MSB first, followed by the LSB. A write operation in a read-only register such as (DEVICE ID, MANUFACTURER ID, SERIAL ID) returns a NACK after each data byte; read/write operation to unused address returns a NACK after the pointer; a read/write operation with incorrect I2C address returns a NACK after the I2C address.

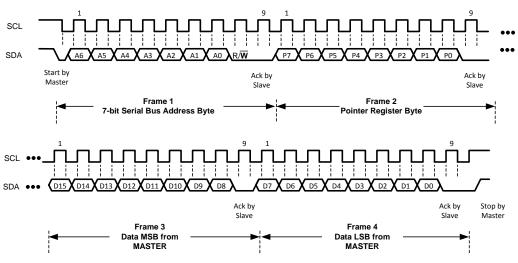


Figure 10. Writing Frame (Configuration Register)

Programming (continued)

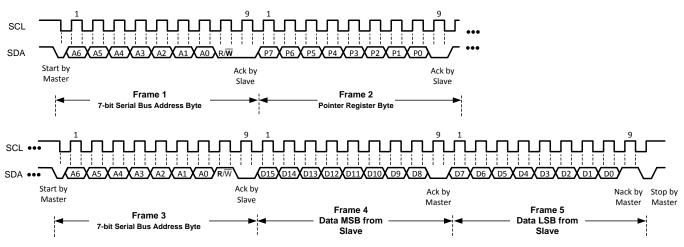


Figure 11. Reading Frame (Configuration Register)

8.5.1.3 Device Measurement Configuration

By default the HDC1080 will first perform a temperature measurement followed by a humidity measurement. On power-up, the HDC1080 enters a low power sleep mode and is not actively measuring. Use the following steps to perform a measurement of both temperature and humidity and then retrieve the results:

- 1. Configure the acquisition parameters in register address 0x02:
 - (a) Set the acquisition mode to measure both temperature and humidity by setting Bit[12] to 1.
 - (b) Set the desired temperature measurement resolution:
 - Set Bit[10] to 0 for 14 bit resolution.
 - Set Bit[10] to 1 for 11 bit resolution.
 - (c) Set the desired humidity measurement resolution:
 - Set Bit[9:8] to 00 for 14 bit resolution.
 - Set Bit[9:8] to 01 for 11 bit resolution.
 - Set Bit[9:8] to 10 for 8 bit resolution.
- 2. Trigger the measurements by executing a pointer write transaction with the address pointer set to 0x00. Refer to Figure 12.
- 3. Wait for the measurements to complete, based on the conversion time (refer to *Electrical Characteristics*⁽¹⁾ for the conversion time).
- 4. Read the output data:

Read the temperature data from register address 0x00, followed by the humidity data from register address 0x01 in a single transaction as shown in Figure 14. A read operation will return a NACK if the contents of the registers have not been updated as shown in Figure 13.

To perform another acquisition with the same measurement configuration simply repeat steps 2 through 4.

If only a humidity or temperature measurement is desired, the following steps will perform a measurement and retrieve the result:

- 1. Configure the acquisition parameters in register address 0x02:
 - (a) Set the acquisition mode to independently measure temperature or humidity by setting Bit[12] to 0.
 - (b) For a temperature measurement, set the desired temperature measurement resolution:
 - Set Bit[10] to 0 for 14 bit resolution.
 - Set Bit[10] to 1 for 11 bit resolution.
- (1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.

Copyright © 2015-2016, Texas Instruments Incorporated

Programming (continued)

- (c) For a humidity measurement, set the desired humidity measurement resolution:
 - Set Bit[9:8] to 00 for 14 bit resolution.
 - Set Bit[9:8] to 01 for 11 bit resolution.
 - Set Bit[9:8] to 10 for 8 bit resolution.
- 2. Trigger the measurement by executing a pointer write transaction. Refer to Figure 12
 - Set the address pointer to 0x00 for a temperature measurement.
 - Set the address pointer to 0x01 for a humidity measurement.
- 3. Wait for the measurement to complete, based on the conversion time (refer to *Electrical Characteristics*⁽¹⁾ for the conversion time).
- 4. Read the output data:

Retrieve the completed measurement result from register address 0x00 or 0x01, as appropriate, as shown in Figure 11. A read operation will return a NACK if the measurement result is not yet available, as shown in Figure 13.

To perform another acquisition with the same measurement configuration repeat steps 2 through 4.

It is possible to read the output registers (addresses 0x00 and 0x01) during a Temperature or Relative Humidity measurement without affecting any ongoing measurement. Note that a write to address 0x00 or 0x01 while a measurement is ongoing will abort the ongoing measurement.

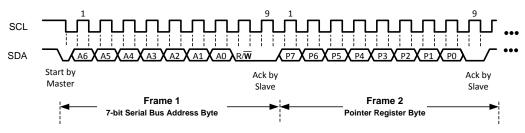


Figure 12. Trigger Humidity/Temperature Measurement

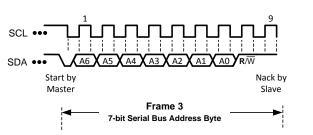


Figure 13. Read Humidity/Temperature Measurement (Data Not Ready)

Programming (continued)

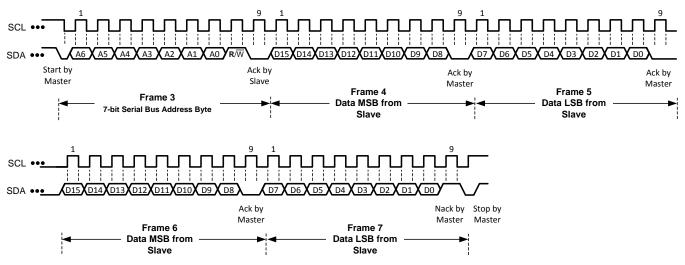


Figure 14. Read Humidity and Temperature Measurement (Data Ready)

8.6 Register Map

The HDC1080 contains data registers that hold configuration information, temperature and humidity measurement results, and status information.

Pointer	Name	Reset value	Description
0x00	Temperature	0x0000	Temperature measurement output
0x01	Humidity	0x0000	Relative Humidity measurement output
0x02	Configuration	0x1000	HDC1080 configuration and status
0xFB	Serial ID	device dependent	First 2 bytes of the serial ID of the part
0xFC	Serial ID	device dependent	Mid 2 bytes of the serial ID of the part
0xFD	Serial ID	device dependent	Last byte bit of the serial ID of the part
0xFE	Manufacturer ID	0x5449	ID of Texas Instruments
0xFF	Device ID	0x1050	ID of the device

Table 1. Register Map

Registers addresses 0x03 to 0xFA are reserved and should not be written.

The HDC1080 has an 8-bit pointer used to address a given data register. The pointer identifies which of the data registers should respond to a read or write command on the two-wire bus. This register is set with every write command. A write command must be issued to set the proper value in the pointer before executing a read command. The power-on reset (POR) value of the pointer is 0x00, which selects a temperature measurement.

8.6.1 Temperature Register

The temperature register is a 16-bit result register in binary format (the 2 LSBs D1 and D0 are always 0). The result of the acquisition is always a 14 bit value. The accuracy of the result is related to the selected conversion time (refer to *Electrical Characteristics*⁽¹⁾). The temperature can be calculated from the output data with:

 $Temperature(^{\circ}C) = \left(\frac{TEMPERATURE[15:00]}{2^{16}}\right) * 165^{\circ}C - 40^{\circ}C$

Name	Bits	B Description						
TEMPERATURE	[15:02]	Temperature	Temperature measurement (read only)					
	[01:00]	Reserved	Reserved, always 0 (read only)					

(1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.

8.6.2 Humidity Register

The humidity register is a 16-bit result register in binary format (the 2 LSBs D1 and D0 are always 0). The result of the acquisition is always a 14 bit value, while the accuracy is related to the selected conversion time (refer to *Electrical Characteristics*⁽¹⁾). The humidity can be calculated from the output data with:

Relative Humidity(% RH) = $\left(\frac{\text{HUMIDITY}[15:00]}{2^{16}}\right)^* 100\%$ RH

Name	Bits		Description						
HUMIDITY	[15:02]	Relative Humidity	Relative Humidity measurement (read only)						
	[01:00]	Reserved	Reserved, always 0 (read only)						

Table 3. Humidity Register Description (0x01)

(1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.

8.6.3 Configuration Register

This register configures device functionality and returns status.

NAME	Bits		DESCRIPTION					
RST	[15]	Software reset	0	Normal Operation, this bit self clears				
		bit	1	Software Reset				
Reserved	[14]	Reserved	0	Reserved, must be 0				
HEAT	[13]	Heater	0	Heater Disabled				
			1	Heater Enabled				
MODE	[12]	Mode of	0	Temperature or Humidity is acquired.				
		acquisition	1	Temperature and Humidity are acquired in sequence, Temperature first.				
BTST	[11]	Battery Status	0	Battery voltage > 2.8V (read only)				
			1	Battery voltage < 2.8V (read only)				
TRES	[10]	Temperature	0	14 bit				
		Measurement Resolution	1	11 bit				
HRES	[9:8]	Humidity	00	14 bit				
		Measurement Resolution	01	11 bit				
		Resolution	10	8 bit				
Reserved	[7:0]	Reserved	0	Reserved, must be 0				

Table 4. Configuration Register Description (0x02)

8.6.4 Serial Number Registers

These registers contain a 40bit unique serial number for each individual HDC1080.

Table 5. Serial Number Register Description (0xFB)

Name	Bits		Description						
SERIAL ID[40:25]	[15:0]	Serial Id bits	Serial Id bits Device Serial Number bits from 40 to 25 (read only)						
Table 6. Serial Number Register Description (0xFC)									
Name	Bits	Description							
SERIAL ID[24:9]	[15:0]	Serial Id bits	Device Serial Number bits from 24 to 9(read only)						
		Table 7. Serial N	Number Register Description (0xFD)						
Name	Bits		Description						
SERIAL ID[8:0]	[15:7]	Serial Id bits	Device Serial Number bits from 8 to 0 (read only)						

8.6.5 Manufacturer ID Register

[6:0]

Reserved

This register contains a factory-programmable identification value that identifies this device as being manufactured by Texas Instruments. This register distinguishes this device from other devices that are on the same I2C bus. The manufacturer ID reads 0x5449.

Reserved, always 0 (read only)

Table 8. Manufacturer ID Register Description (0xFE)

Name	Bits	Description							
MANUFACTURER ID	[15:0]	Manufacturer ID	0x5449	Texas instruments ID (read only)					

8.6.6 Device Register ID

This register contains a factory-programmable identification value that identifies the device. This register distinguishes this device from other devices that are on the same I2C bus. A reading of the Device ID register returns 0x1050.

Table 9. Device ID Register Description (0xFF)

Name	Bits		Description						
DEVICE ID	[15:0]	Device ID	0x1050	Device ID (read only)					

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

An HVAC system thermostat control is based on environmental sensors and a micro-controller. The microcontroller acquires data from humidity sensors and temperature sensors and controls the heating/cooling system. The collected data are then shown on a display that can be easily controlled by the micro controller. Based on data from the humidity and temperature sensor, the heating/cooling system then maintains the environment at customer-defined preferred conditions.

9.2 Typical Application

In a battery-powered HVAC system thermostat, one of the key parameters in the selection of components is the power consumption. The HDC1080, with 1.3μ A of current consumption (average consumption over 1s for RH and Temperature measurements), in conjunction with an MSP430, represents an excellent choice for low power consumption, which extends the battery life. A system block diagram of a battery powered thermostat is shown in Figure 15.

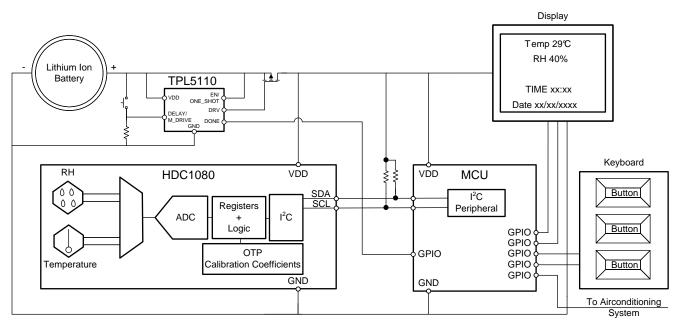


Figure 15. Typical Application Schematic HVAC

9.2.1 Design Requirements

In order to correctly sense the ambient temperature and humidity, the HDC1080 should be positioned away from heat sources on the PCB. Generally, it should not be close to the LCD and battery. Moreover, to minimize any self-heating of the HDC1080 it is recommended to acquire at a maximum sample rate of 1sps (RH + Temp). In home systems, humidity and the temperature monitoring rates of less than 1sps (even 0.5sps or 0.2sps) can be still effective.

Typical Application (continued)

9.2.2 Detailed Design Procedure

When a circuit board layout is created from the schematic shown in Figure 15 a small circuit board is possible. The accuracy of a RH and temperature measurement depends on the sensor accuracy and the setup of the sensing system. The HDC1080 samples relative humidity and temperature in its immediate environment, it is therefore important that the local conditions at the sensor match the monitored environment. Use one or more openings in the physical cover of the thermostat to obtain a good airflow even in static conditions. Refer to the layout below (Figure 18) for a PCB layout which minimizes the thermal mass of the PCB in the region of the HDC1080, which can improve measurement response time and accuracy.

9.2.3 Application Curve

The data shown below was acquired with the HDC1080EVM. A humidity chamber was used to control the environment.

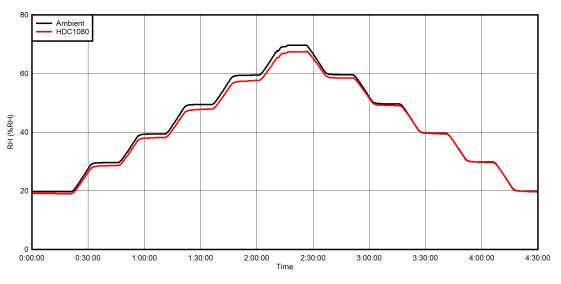


Figure 16. RH vs. Time

9.3 Implementation and Usage Recommendations

9.3.1 Soldering

When soldering the HDC1080 use the standard soldering profile IPC/JEDEC J-STD-020 with peak temperatures of 260 °C.

When soldering the HDC1080 it is mandatory to use no-clean solder paste and no board wash should be applied. The HDC1080 should be limited to a single IR reflow and no rework is recommended.

9.3.2 Chemical Exposure and Sensor Protection

The humidity sensor is not a standard IC and therefore should not be exposed to particulates or volatile chemicals such as solvents or other organic compounds. If any type of protective coating must be applied to the circuit board, the sensor must be protected during the coating process.

9.3.3 High Temperature and Humidity Exposure

Long exposure outside the recommended operating conditions may temporarily offset the RH output. Table 10 shows the RH offset values that can be expected for exposure to 85 °C and 85 % RH for durations between 12 and 500 hours (continuous).

Table 10. Induced RH Offset Due to Extended Exposure to High Humidity and High Temperature (85°C/85% RH)

85°C/85% RH Duration (hours)	12	24	168	500
RH Offset (%)	3	6	12	15

When the sensor is exposed to less severe conditions, Figure 17 shows the typical RH offset at other combinations of temperature and RH.

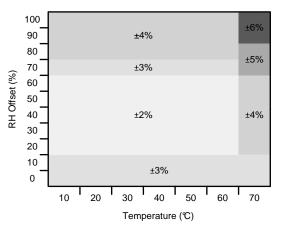


Figure 17. Relative Humidity Accuracy vs Temperature

10 Power Supply Recommendations

The HDC1080 requires a voltage supply within 2.7V and 5.5V. A multilayer ceramic bypass X7R capacitor of 0.1μ F between the VDD and GND pins is recommended.

11 Layout

11.1 Layout Guidelines

The Relative Humidity sensor element is located on the top side of the package.

It is recommended to isolate the sensor from the rest of the PCB by eliminating copper layers below the device (GND, V_{DD}) and creating a slot into the PCB around the sensor to enhance thermal isolation.

11.2 Layout Example

The only component next to the device is the supply bypass capacitor. Since the relative humidity is dependent on the temperature, the HDC1080 should be positioned away from hot spots present on the board, such as a battery, display or micro-controller. Slots around the device can be used to reduce the thermal mass, for a quicker response to environmental changes. The DAP may be soldered to a floating pad on the board, but the board pad should NOT be connected to GND.

Layout Example (continued)

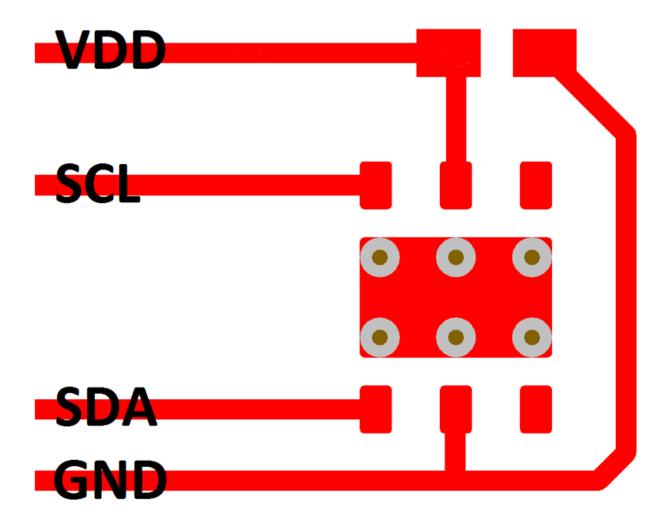


Figure 18. Layout

12 器件和文档支持

12.1 文档支持

12.1.1 相关文档

《德州仪器湿度传感器》, SNAA216, 提供 湿度 感测的一般性说明和重要设计指南。

《适用于星形网络的湿度和温度传感器节点参考设计,可实现 10 年以上的纽扣电池使用寿命》TIDA-00374

《适用于低于 1GHz 的星型网络的湿度和温度传感器节点,可实现 10 年以上的纽扣电池使用寿命》TIDA-00484

《具有 NFC 接口的超低功耗多传感器数据记录器参考设计》TIDA-00524

12.2 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 商标

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损 伤。

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对 本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

重要声明

德州仪器(TI)及其下属子公司有权根据 JESD46 最新标准,对所提供的产品和服务进行更正、修改、增强、改进或其它更改,并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。

TI保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用 此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法 律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障 及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而 对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2016, 德州仪器半导体技术(上海)有限公司

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
HDC1080DMBR	ACTIVE	WSON	DMB	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1R	Samples
HDC1080DMBT	ACTIVE	WSON	DMB	6	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1R	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

10-Dec-2020

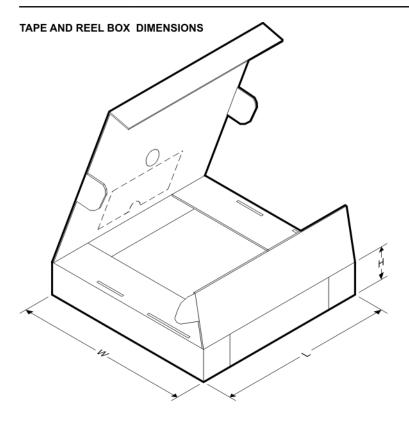
PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimer	nsions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
HD	C1080DMBR	WSON	DMB	6	3000	330.0	15.4	3.3	3.3	1.1	8.0	12.0	Q2
HD	C1080DMBT	WSON	DMB	6	250	178.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Aug-2016

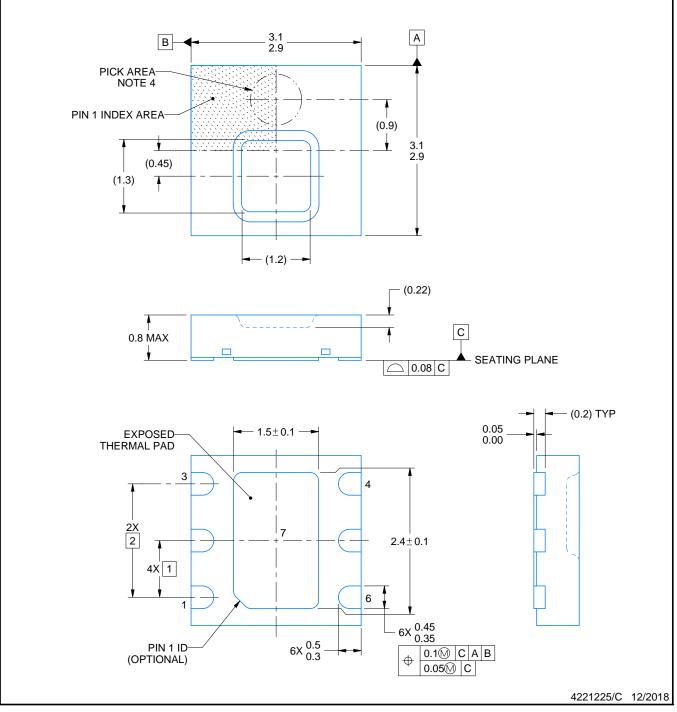
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
HDC1080DMBR	WSON	DMB	6	3000	335.0	335.0	32.0
HDC1080DMBT	WSON	DMB	6	250	336.6	336.6	41.3

GENERIC PACKAGE VIEW

WSON - 0.8 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DMB0006A

PACKAGE OUTLINE

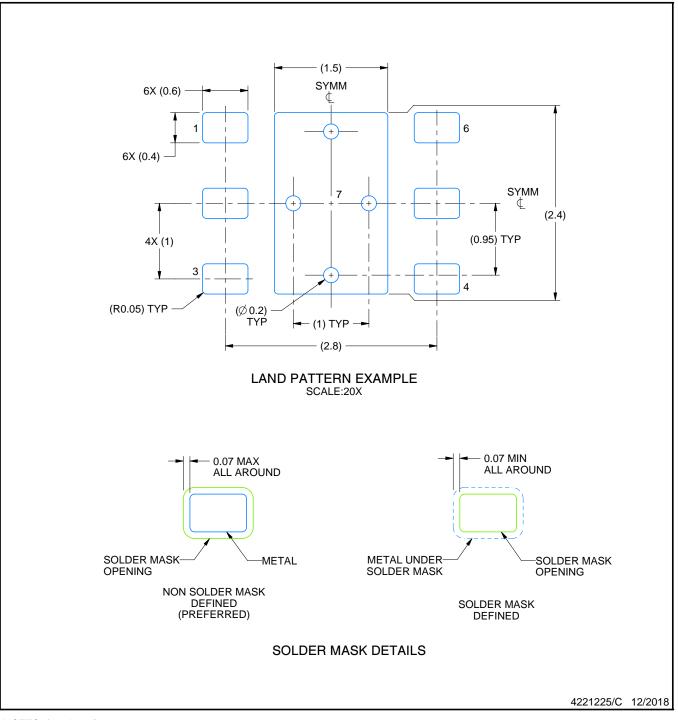
WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

- 4. Pick and place nozzle otin 0.9 mm or smaller recommended.



DMB0006A

EXAMPLE BOARD LAYOUT

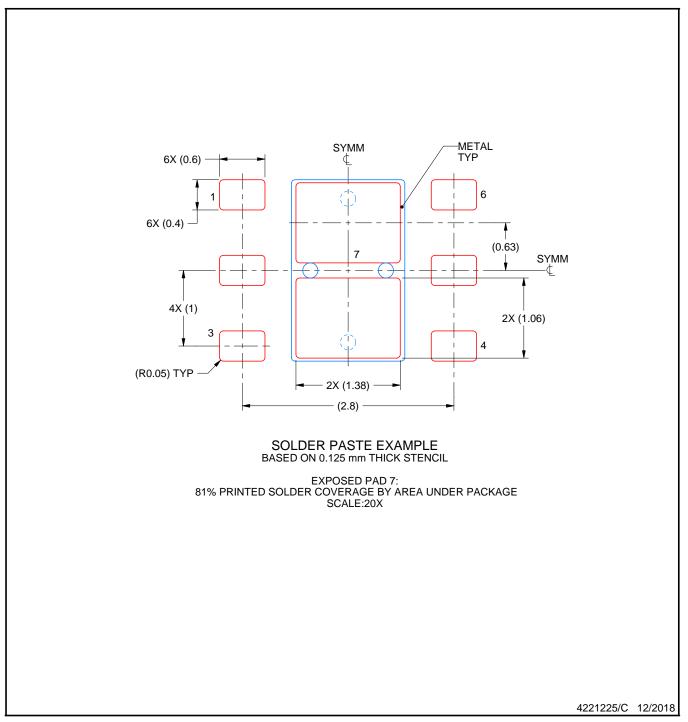
WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



DMB0006A

EXAMPLE STENCIL DESIGN

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

Ⅱ 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、 验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用 所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI所提供产品均受TI的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司