

Support & training

SN65HVD30, SN65HVD31, SN65HVD32 SN65HVD33, SN65HVD34, SN65HVD35 SLLS665M – SEPTEMBER 2005 – REVISED FEBRUARY 2023

SN65HVD3x 3.3-V Full-Duplex RS-485 Drivers and Receivers

1 Features

Texas

INSTRUMENTS

- 1/8 Unit-load option available (up to 256 nodes on the bus)
- Bus-pin ESD protection exceeds 15-kV HBM
- Optional driver output transition times for signaling rates of 1 Mbps, 5 Mbps and 26 Mbps
 - Line signaling rate is the number of voltage transitions made per second expressed in units of bps (bits per second)
- Low-current standby mode: <1 μA
- Glitch-free power-up and power-down protection for hot-plugging applications
- 5-V Tolerant inputs
- Bus idle, open, and short-circuit failsafe
- Driver current limiting and thermal shutdown
- Designed for RS-422 and RS-485 networks
- 5-V Devices available, SN65HVD50-55

2 Applications

- · Utility meters
- DTE and DCE interfaces
- Industrial, process, and building automation
- Point-of-sale (POS) pins and networks

3 Description

The SN65HVD3x devices are 3-state differential line drivers and differential-input line receivers that operate with 3.3-V power supply.

Each driver and receiver has separate input and output pins for full-duplex bus communication designs. They are designed for RS-422 and RS-485 data transmission over cable lengths of up to 1500 meters.

The SN65HVD30, SN65HVD31, and SN65HVD32 devices are fully enabled with no external enabling pins.

The SN65HVD33, SN65HVD34, and SN65HVD35 devices have active-high driver enables and active-low receiver enables. A low, less than 1 μ A, standby current can be achieved by disabling both the driver and receiver.

All devices are characterized for ambient temperatures from -40°C to 85°C. Low power dissipation allows operation at temperatures up to 105°C or 125°C, depending on package option.

Deelesse Information

Package Information						
PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)				
SN65HVD30		4.90 mm × 3.91 mm				
SN65HVD31	SOIC (8)					
SN65HVD32						
SN65HVD33	SOIC (14)	8.65 mm × 3.91 mm				
	VQFN (20)	4.50 mm × 3.50 mm				
SN65HVD34	SOIC (14)	8.65 mm × 3.91 mm				
SN65HVD35	3010 (14)					

(1) For all available packages, see the orderable addendum at the end of the data sheet.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features	1	Parameter Measurement Information	16
2 Applications	1	8 Detailed Description	20
3 Description		8.1 Overview	
4 Revision History		8.2 Functional Block Diagram	20
5 Device Comparison	4	8.3 Feature Description	20
6 Pin Configuration and Functions		8.4 Device Functional Modes	
7 Specifications		9 Application and Implementation	26
7.1 Absolute Maximum Ratings		9.1 Application Information	
7.2 ESD Ratings		9.2 Typical Application	
7.3 Recommended Operating Conditions	8	9.3 Power Supply Recommendations	30
7.4 Thermal Information	8	9.4 Layout.	. 30
7.5 Electrical Characteristics: Driver	9	10 Device and Documentation Support	31
7.6 Electrical Characteristics: Receiver	10	10.1 Receiving Notification of Documentation Updates	31
7.7 Device Power Dissipation – P _D	10	10.2 Support Resources	. 31
7.8 Supply Current Characteristics	11	10.3 Trademarks	31
7.9 Switching Characteristics: Driver	11	10.4 Electrostatic Discharge Caution	31
7.10 Switching Characteristics: Receiver		10.5 Glossary	
7.11 Dissipation Ratings		11 Mechanical, Packaging, and Orderable	
7.12 Typical Characteristics		Information	. 31
••			

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision L (January 2017) to Revision M (February 2023)	Page
•	Changed the D package values the Thermal Information	8

С	hanges from Revision K (October 2015) to Revision L (January 2017)	Page
•	Changed text From: "defaults to Y high and Z low" To: "defaults to Y low and Z high" in the Low-Power	
	Standby Mode section	20

Changes from Revision J (July 2015) to Revision K (October 2015)

- Changed device listing in the Device Information table to match the Package Option Addendum listing.1
- Changed device listing in the *Pinout Configuration* section to match the *Package Option Addendum* listing.....
- Changed device listing in the Thermal Information table to match the Package Option Addendum listing.......8

Changes from Revision I (April 2010) to Revision J (July 2015)

 Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

Changes from Revision H (May 2009) to Revision I (April 2010) Page

Changes from Revision G (December 2008) to Revision H (May 2009)

- Added explanatory notes for pin 1 and pin 10 to the 20-Pin VQFN......4

Page

Page

Page

•	Added Supply current typical value of 3.8 mA for SN65HVD31, SN65HVD3 in the Supply Current		
	Characteristics table	11	1
•	Changed characteristic graph for Figure 7-6	13	3
•	Changed characteristic graph for Figure 7-7	13	3
	Added subsection Safe Operation With Bus Contention		
	·		

Changes from Revision F (July 2008) to Revision G (December 2008)

Page

•	Changed From: 5-V Devices Available, SN65HVD50-59 To: 5-V Devices Available, SN65HVD50-55 in the	Э
	Features	1
•	Deleted SN65HVD36 and SN65HVD37 from the Description	1
•	Deleted SN65HVD38 and SN65HVD39 from the Description	1
•	Deleted last 2 paragraphs of <i>Description</i>	1
•	Deleted SN65HVD36, SN65HVD37 from the 8-Pin SOIC	4
•	Deleted SN65HVD36, SN65HVD37 from the the 14-Pin SOIC	4
•	Deleted devices SN65HVD36, SN65HVD38 from the Recommended Operating Conditions	<mark>8</mark>
•	Deleted devices SN65HVD37, SN65HVD39 from the Recommended Operating Conditions	<mark>8</mark>
•	Deleted all HVD36, HVD38, HVD37, HVD39 from the Electrical Characteristics: Driver table	9
•	Added added last sentence to note 4 in the Electrical Characteristics: Driver table	9
•	Deleted all HVD36, HVD38, HVD37, HVD39 from the Electrical Characteristics: Receiver table	10
•	Deleted all HVD36, HVD38, HVD37, HVD39 rows from the Supply Current Characteristics table	11
•	Deleted all HVD36, HVD38, HVD37, HVD39 from the Switching Characteristics: Driver table	11
•	Deleted HVD36, HVD38, HVD37, and HVD39 from the Switching Characteristics: Receiver table	11
•	Deleted Receiver Equalization Characteristics table	13
•	Added subsection Driver Output Current Limiting	21
•	Added subsection Hot-Plugging	21
•	Added subsection Receiver Failsafe	22
•	Deleted SN65HVD38 and SN65HVD39 from Table 8-1 title	24
•	Deleted SN65HVD38 and SN65HVD39 from Table 8-2 title	24
•	Deleted SN65HVD36 and SN65HVD37 from Table 8-3 title	<mark>24</mark>
•	Deleted SN65HVD36 and SN65HVD37 from Table 8-4 title	
•	Deleted SN65HVD36 and SN65HVD37 from first row of Table 8-5	
•	Deleted SN65HVD37, SN65HVD38 and SN65HVD39 from second row of Table 8-5	24
_		

С	hanges from Revision E (March 2008) to Revision F (July 2008)	Page
•	Changed From: Meets or Exceeds the Requirements of ANSI TIA/EIA-485-A and RS-422 Compatible T	o:
	Designed for RS-422 and RS-485 Networks in the Features	1
•	Added Table Note 4 in the <i>Electrical Characteristics: Driver</i> table	9
c	hanges from Revision D (January 2008) to Revision E (March 2008)	Page

~		i ugo
•	Changed spelling From: termperatures To: temperatures	1

5 Device Comparison

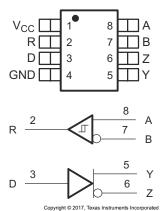
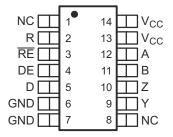
Table 5-1. Device Teatures						
BASE PART NUMBER	SIGNALING RATE	UNIT LOADS	ENABLES			
SN65HVD30	26 Mbps	1/2	No			
SN65HVD31	5 Mbps	1/8	No			
SN65HVD32	1 Mbps	1/8	No			
SN65HVD33	26 Mbps	1/2	Yes			
SN65HVD34	5 Mbps	1/8	Yes			
SN65HVD35	1 Mbps	1/8	Yes			

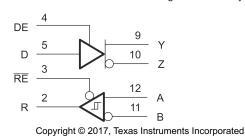
Table 5-1. Device Features

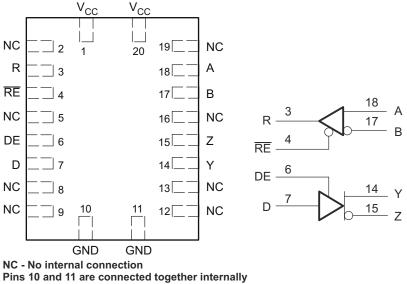
Table 5-2. Improved Replacement for Devices

PART NUMBER	REPLACE WITH	BENEFITS		
MAX3491 MAX3490	SN65HVD33 SN65HVD30	Better ESD protection (15 kV versus 2 kV, or not specified) Higher Signaling Rate (26 Mbps versus 10 Mbps) Fractional Unit Load (64 Nodes versus 32)		
MAX3491E MAX3490E	SN65HVD33 SN65HVD30	ligher Signaling Rate (26 Mbps versus 12 Mbps) Fractional Unit Load (64 Nodes versus 32)		
MAX3076E MAX3077E	SN65HVD33 SN65HVD30	Higher Signaling Rate (26 Mbps versus 16 Mbps) Lower Standby Current (1 μA versus 10 $\mu A)$		
MAX3073E MAX3074E	SN65HVD34 SN65HVD31	Higher Signaling Rate (5 Mbps versus 500 kbps) Lower Standby Current (1 μ A versus 10 μ A)		
MAX3070E MAX3071E	SN65HVD35 SN65HVD32	Higher Signaling Rate (1 Mbps versus 250 kbps) Lower Standby Current (1 μ A versus 10 μ A)		

6 Pin Configuration and Functions


Figure 6-1. SN65HVD30, SN65HVD31, SN65HVD32, D Package 8-Pin SOIC Top View



NC - No internal connection

Pins 6 and 7 are connected together internally Pins 13 and 14 are connected together internally

Pins 1 and 20 are connected together internally

Copyright © 2017, Texas Instruments Incorporated

Figure 6-3. SN65HVD33 RHL Package 20-Pin VQFN Top View

Copyright © 2023 Texas Instruments Incorporated

SN65HVD30, SN65HVD31, SN65HVD32 SN65HVD33, SN65HVD34, SN65HVD35 SLLS665M – SEPTEMBER 2005 – REVISED FEBRUARY 2023

PIN						
NAME	D (8-Pins)	D (14-Pins)	RHL (20-Pins)	ТҮРЕ	DESCRIPTION	
A	8	12	18	Bus input	Receiver input (complementary to B)	
В	7	11	17	Bus input	Receiver input (complementary to A)	
D	3	5	7	Digital input	Driver data input	
DE	_	4	6	Digital input	Driver enable, active high	
GND	4	6, 7	10, 11	Reference potential	Local device dround	
NC	_	1, 8	2, 5, 8, 9, 12, 13, 16, 19	No connect	No connect; must be left floating	
R	2	2	3	Digital output	Receive data output	
RE	_	3	4	Digital output	Receiver enable, active low	
V _{cc}	1	13, 14	1, 20	Supply 3-V to 3.6-V supply		
Y	5	9	14	Bus output Driver output (complementary to Z)		
Z 6 10 15		Bus output	Driver output (complementary to Y)			

Table 6-1. Pin Functions

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range unless otherwise noted⁽¹⁾ ⁽²⁾

		MIN	MAX	UNIT
V _{CC}	Supply voltage	-0.3	6	V
$V_{(A)}, V_{(B)}, V_{(Y)}, V_{(Z)}$	Voltage at any bus terminal (A, B, Y, Z)	-9	14	V
V _(TRANS)	Voltage input, transient pulse through 100 Ω . See Figure 8-13 (A, B, Y, Z) ⁽³⁾	-50	50	V
VI	Input voltage (D, DE, RE)	-0.5	7	V
I _O	Output current (receiver output only, R)		11	mA
T _{stg}	Storage Temperature		125	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 7.3 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

(3) This tests survivability only and the output state of the receiver is not specified.

7.2 ESD Ratings

				VALUE	UNIT	
- 1:	Human body model (HBM), per ANSI/ESDA/JEDEC	Bus pins and GND	±16000			
V _(ESD)	V _(ESD) Electrostatic discharge	JS-001 ⁽¹⁾	All pins	±4000	V	
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾				

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range unless otherwise noted

						MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage					3		3.6	V
V _I or V _{IC}	Voltage at any b	us pin (separa	ately or common r	node)		_7 ⁽¹⁾		12	V
		SN65HVD	30, SN65HVD33					26	
1/t _{UI}	Signaling rate	Signaling rate SN65HVD31, SN65HVD34				5	Mbps		
		SN65HVD	32, SN65HVD35					1	
RL	Differential load	ferential load resistance		54	60		Ω		
V _{IH}	High-level input	voltage	D, DE, RE			2		V _{CC}	V
V _{IL}	Low-level input v	voltage	D, DE, RE			0		0.8	V
V _{ID}	Differential input	voltage				-12		12	V
1	Lligh lovel output	tourrant	Driver			-60			m (
I _{ОН}	High-level output currer		Receiver			-8			mA
	Low-level output current		Driver					60	
IOL			Receiver					8	mA
TJ	Junction tempera	ature				-40		150	°C

(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

7.4 Thermal Information

		SN65HVD30, SN65HVD31, SN65HVD32	SN65HVD33, SN65HVD34, SN65HVD35	SN65HVD33	
	THERMAL METRIC ⁽¹⁾	D (SOIC)		RHL (VQFN)	UNIT
		8 PINS	14 PINS	20 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	116.7	93.2	73	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	56.3	47.5	14	°C/W
R _{θJB}	Junction-to-board thermal resistance	63.4	49.4	13.7	°C/W
ΨJT	Junction-to-top characterization parameter	8.8	11.2	0.5	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	62.6	48.9	13.7	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	—		2.8	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics: Driver

over recommended operating conditions unless otherwise noted

	PARAMETER	2	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{I(K)}	Input clamp voltage		I _I = -18 mA	-1.5			V
			I _O = 0	2.5		V _{CC}	
IVI	Steady-state differen	tial output voltago	R _L = 54 Ω, See Figure 8-2 (RS-485)	1.5	2		V
V _{OD(SS)}	Steady-state differen	niai ouiput voltage	R_L = 100 Ω, See Figure 8-2, ⁽²⁾ (RS-422)	2	2.3		v
			V _{test} = -7 V to 12 V, See Figure 8-3	1.5			
Δ V _{OD(SS)}	Change in magnitud differential output vo states	,	$R_L = 54 \Omega$, See Figure 8-2 and Figure 8-3	-0.2		0.2	V
V _{OD(RING)}	Differential Output Ve and undershoot	oltage overshoot	R_L = 54 Ω,C_L = 50 pF, See Figure 8-6 and Figure 8-4			10% ⁽³⁾	V
	Peak-to-peak	SN65HVD30, SN65HVD33	See Figure 8-5		0.5		
V _{OC(PP)}	common-mode output voltage	SN65HVD31, SN65HVD34, SN65HVD32, SN65HVD35	34, 32, See Figure 8-5 0.25			V	
V _{OC(SS)}	Steady-state commo voltage	n-mode output	See Figure 8-5	1.6		2.3	V
$\Delta V_{OC(SS)}$	Change in steady-sta output voltage	ate common-mode	See Figure 8-5	-0.05		0.05	V
		SN65HVD30,	$V_{CC} = 0 V$, V_Z or $V_Y = 12 V$, Other input at 0 V			90	
		SN65HVD31, SN65HVD32	$V_{CC} = 0 V$, V_Z or $V_Y = -7 V$, Other input at 0 V	-10			
$I_{Z(Z)}$ or $I_{Y(Z)}$	High-impedance state output current	SN65HVD33,	$V_{CC} = 3 V \text{ or } 0 V$, DE = 0 V $V_Z \text{ or } V_Y = 12 V$ Other input at 0 V			90	μA
		SN65HVD34, SN65HVD35	$V_{CC} = 3 V \text{ or } 0 V, DE = 0 V$ $V_Z \text{ or } V_Y = -7 V$ Other input at 0 V	-10			
I _{Z(S)} or	Short Circuit output o	surront ⁽⁴⁾	V_Z or $V_Y = -7 V$ Other input at 0 V	-250		250	mA
$I_{Y(S)}$		Jun entry	V _Z or V _Y = 12 V Other input at 0 V	-250		250	ШA
l _l	Input current	D, DE		0		100	μA
C _(OD)	Differential output ca	pacitance	V _{OD} = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V		16		pF

(1) All typical values are at 25°C and with a 3.3-V supply.

(2) V_{CC} is 3.3 $V_{DC} \pm 5\%$.

(3) 10% of the peak-to-peak differential output voltage swing, per TIA/EIA-485.

(4) Under some conditions of short-circuit to negative voltages, output currents exceeding the ANSI TIA/EIA-485-A maximum current of 250 mA may occur. Continuous exposure can affect device reliability. This applies to the SN65HVD30, SN65HVD31, SN65HVD33, and SN65HVD34.

7.6 Electrical Characteristics: Receiver

over recommended operating conditions unless otherwise noted

	PARAME	TER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IT+}	Positive-going different voltage	ial input threshold	I _O = -8 mA			-0.02	V
V _{IT-}	Negative-going differer voltage	tial input threshold	I _O = 8 mA	-0.20			V
V _{hys}	Hysteresis voltage (V _{IT}	+ – V _{IT–})			50		mV
V _{IK}	Enable-input clamp vol	tage	I _I = -18 mA	-1.5			V
Vo	Output voltage		V_{ID} = 200 mV, I_O = -8 mA, See Figure 8-9	2.4			V
۷O	Output voltage		V_{ID} = -200 mV, I_O = 8 mA, See Figure 8-9			0.4	v
I _{O(Z)}	High-impedance-state	output current	$V_{O} = 0$ or V_{CC} , \overline{RE} at V_{CC}	-1		1	μA
			V_A or V_B = 12 V Other input at 0 V		0.05	0.1	
		SN65HVD31, SN65HVD32,	V_A or V_B = 12 V, V_{CC} = 0 V Other input at 0 V		0.06	0.1	
		SN65HVD34, SN65HVD35	V_A or $V_B = -7 V$ Other input at 0 V	-0.10	-0.04		mA
l _A or			V_A or $V_B = -7 V$, $V_{CC} = 0 V$ Other input at 0 V	-0.10	-0.03		
I _B	Bus input current		V _A or V _B = 12 V Other input at 0 V		0.20	0.35	
		SN65HVD30,	V_A or V_B = 12 V, V_{CC} = 0 V Other input at 0 V		0.24	0.4	A
		SN65HVD33	V_A or $V_B = -7 V$ Other input at 0 V	-0.35	-0.18		mA
			V_A or $V_B = -7 V$, $V_{CC} = 0 V$ Other input at 0 V	-0.25	-0.13		
I _{IH}	Input current, RE		V _{IH} = 0.8 V or 2 V	-60			μA
C _{ID}	Differential input capac	itance	V _{ID} = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V		15		pF

(1) All typical values are at 25°C and with a 3.3-V supply.

7.7 Device Power Dissipation – P_D

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Driver cycle s P _D rate: SN65H SN65H	Power Dissipation (worst case) Driver and receiver enabled, 50% duty	SN65HVD30, SN65HVD33		197 213),		
	cycle square-wave signal at signaling rate: SN65HVD30, SN65HVD33 at 25 Mbps,	SN65HVD31, SN65HVD34	$V_{CC} = 3.6 \text{ V}, T_J = 140^{\circ}\text{C},$ $R_L = 54 \Omega, C_L = 50 \text{ pF (driver)},$ $C_L = 15 \text{ pF (receiver)}$			mW		
	SN65HVD31, SN65HVD34 at 5 Mbps, SN65HVD32, SN65HVD35 at 1 Mbps	SN65HVD32, SN65HVD35	$V_{CC} = 3.6 \text{ V}, T_J = 140^{\circ}\text{C},$ $R_L = 54 \Omega, C_L = 50 \text{ pF (driver)},$ $C_L = 15 \text{ pF (receiver)}$			248		
T_{SD}	T _{SD} Thermal Shut-down Junction Temperature				170		°C	

7.8 Supply Current Characteristics

over recommended operating conditions unless otherwise noted

	PAF	AMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT	
		SN65HVD30	D at 0 V or V _{CC} and No Load			2.1	mA	
	SN65HVD31, SN65HVD32			3.8	6.4	ША		
	SN65HVD33	RE at 0 V, D at 0 V or V _{CC} , DE at 0 V,			1.8			
	SN65HVD34, SN65HVD35	No load (Receiver enabled and driver disabled)			2.2	mA		
I _{CC}	Supply current	SN65HVD33, SN65HVD34, SN65HVD35	$\overline{\text{RE}}$ at $V_{\text{CC}},$ D at $V_{\text{CC}},$ DE at 0 V, No load (Receiver disabled and driver disabled)		0.022	1	μA	
		SN65HVD33	\overline{RE} at 0 V, D at 0 V or V _{CC} , DE at V _{CC} , No load (Receiver enabled and driver enabled)		\overline{RE} at 0 V, D at 0 V or V _{CC} , DE at V _{CC} ,		2.1	mA
		SN65HVD34, SN65HVD35				6.5	ШA	
		SN65HVD33	\overline{RE} at V _{CC} , D at 0 V or V _{CC} , DE at V _{CC}		1.8		mA	
		SN65HVD34, SN65HVD35	No load (Receiver disabled and driver enabled)			6.2	ША	

(1) All typical values are at 25°C and with a 3.3-V supply.

7.9 Switching Characteristics: Driver

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
		SN65HVD30, SN65HVD33		4	10	18	
t _{PLH}	Propagation delay time, low-to-high-level output	SN65HVD31, SN65HVD34		25	38	65	ns
		SN65HVD32, SN65HVD35		120	175	305	
		SN65HVD30, SN65HVD33		4	9	18	
t _{PHL}	Propagation delay time, high-to-low-level output	SN65HVD31, SN65HVD34		25	38	65	ns
		SN65HVD32, SN65HVD35		120	175	305	
		SN65HVD30, SN65HVD33	R _L = 54 Ω, C _L = 50 pF, See Figure 8-6	2.5	5	12	ns
t _r	Differential output signal rise time	SN65HVD31, SN65HVD34		20	37	60	
		SN65HVD32, SN65HVD35		120	185	300	
		SN65HVD30, SN65HVD33		2.5	5	12	ns
t _f	Differential output signal fall time	SN65HVD31, SN65HVD34		20	35	60	
		SN65HVD32, SN65HVD35		120	180	300	
		SN65HVD30, SN65HVD33			0.6		ns
t _{sk(p)}	Pulse skew (t _{PHL} – t _{PLH})	SN65HVD31, SN65HVD34			2.0		
		SN65HVD32, SN65HVD35			5.1		

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback 11

7.9 Switching Characteristics: Driver (continued)

over recommended operating conditions unless otherwise noted

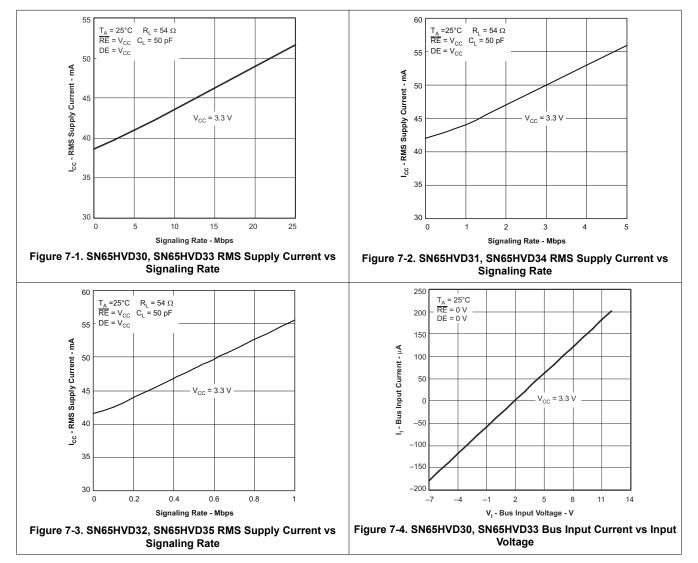
	PARAMETER		TEST CONDITIONS	MIN TYP ⁽¹⁾	MAX	UNIT
		SN65HVD33			45	
t _{PZH1}	Propagation delay time, high- impedance-to-high-level output	SN65HVD34	$\mathbb{R}_{L} = 110 \Omega, \overline{RE} \text{ at } 0 \text{ V},$		235	ns
		SN65HVD35	D = 3 V and S1 = Y, or		490	
		SN65HVD33	D = 0 V and S1 = Z		25	
t _{PHZ}	Propagation delay time, high-level-to- high-impedance output	SN65HVD34	See Figure 8-7		65	ns
	ingir inipodalioo odipat	SN65HVD35			165	
		SN65HVD33			35	
t _{PZL1}	Propagation delay time, high- impedance-to-low-level output	SN65HVD34	$\mathbb{R}_{L} = 110 \Omega, \overline{RE} \text{ at } 0 \text{ V},$	190		ns
		SN65HVD35	D = 3 V and S1 = Z, or		490	
		SN65HVD33	D = 0 V and S1 = Y		30	
t _{PLZ}	Propagation delay time, low-level-to- high-impedance output	SN65HVD34	See Figure 8-8		120	ns
		SN65HVD35			290	
t _{PZH1,} t _{PZL1}	Driver enable delay with bus voltage off	set	V _O = 2 V (Typ)	500	900	ns
t _{PZH2}	Propagation delay time, standby-to-high	R _L = 110 Ω, RE at 3 V, D = 3 V and S1 = Y, or D = 0 V and S1 = Z See Figure 8-7		4000	ns	
t _{PZL2}	Propagation delay time, standby-to-low-	$ \begin{array}{l} R_{L} = 110 \ \Omega, \ \overline{RE} \ \text{at } 3 \ V, \\ D = 3 \ V \ \text{and} \ S1 = Z, \ or \\ D = 0 \ V \ \text{and} \ S1 = Y \\ \text{See Figure 8-8} \end{array} $		4000	ns	

(1) All typical values are at 25°C and with a 3.3-V supply.

7.10 Switching Characteristics: Receiver

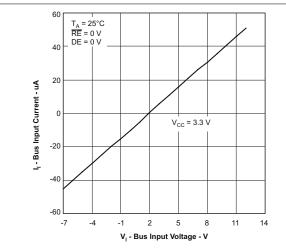
over recommended operating conditions unless otherwise noted

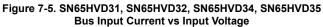
	PARA	METER	TEST	CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
	Propagation delay time,	SN65HVD30, SN65HVD33				26	45	ns
t _{PLH}	low-to-high-level output	SN65HVD31, SN65HVD32, SN65HVD34, SN65HVD35					70	ns
	Propagation dolay time	SN65HVD30, SN65HVD33		V _{ID} = –1.5 V to 1.5 V, C _L = 15 pF, See Figure 8-10		29	45	ns
t _{PHL}	Propagation delay time, high-to-low-level output	SN65HVD31, SN65HVD32, SN65HVD34, SN65HVD35				49	70	ns
		SN65HVD30, SN65HVD33	$-C_{L} = 15 \text{ pr},$				7	ns
t _{sk(p)}	Pulse skew (t _{PHL} – t _{PLH})	SN65HVD31, SN65HVD34, SN65HVD32, SN65HVD35					10	ns
t _r	Output signal rise time	·					5	ns
t _f	Output signal fall time						6	ns
t _{PHZ}	Output disable time from high	gh level	— DE at 3 V				20	ns
t _{PZH1}	Output enable time to high	level		C _L = 15 pF, See Figure 8-11			20	ns
t _{PZH2}	Propagation delay time, sta	ndby-to-high-level output	DE at 0 V				4000	ns
t _{PLZ}	Output disable time from low	w level	DE at 2 V				20	ns
t _{PZL1}	Output enable time to low le	evel		DE at 3 V C _L = 15 pF, See Figure 8-12			20	ns
t _{PZL2}	Propagation delay time, sta	ndby-to-low-level output	DE at 0 V				4000	ns

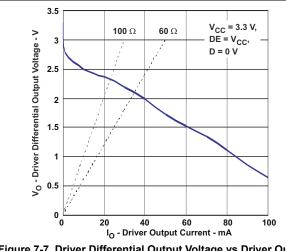

(1) All typical values are at 25°C and with a 3.3-V supply.

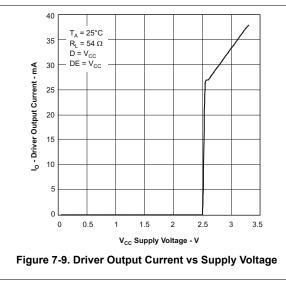
7.11 Dissipation Ratings

PACKAGE	JEDEC THERMAL MODEL	T _A < 25°C RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 85°C RATING	T _A = 105°C RATING	T _A = 125°C RATING
8-pin D (SOIC)	Low k	625 mW	5 mW/°C	325 mW		
8-pin D (3010)	High k	1000 mW	8 mW/°C	520 mW	360 mW	
14-pin D (SOIC)	Low k	765 mW	6.1 mW/°C	400 mW	275 mW	
14-pin D (3010)	High k	1350 mW	10.8 mW/°C	705 mW	485 mW	270 mW
20-pin RHL (VQFN)	High k	1710 mW	13.7 mW/°C	890 mW	6150 mW	340 mW


7.12 Typical Characteristics




Copyright © 2023 Texas Instruments Incorporated


7.12 Typical Characteristics (continued)

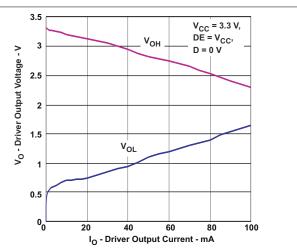
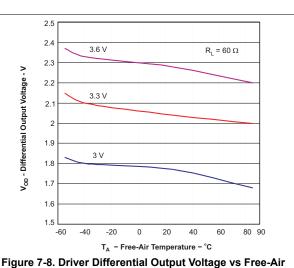
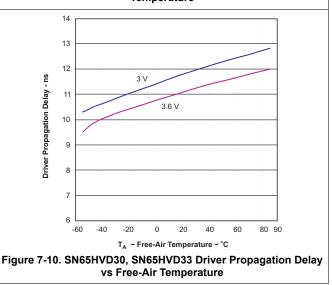
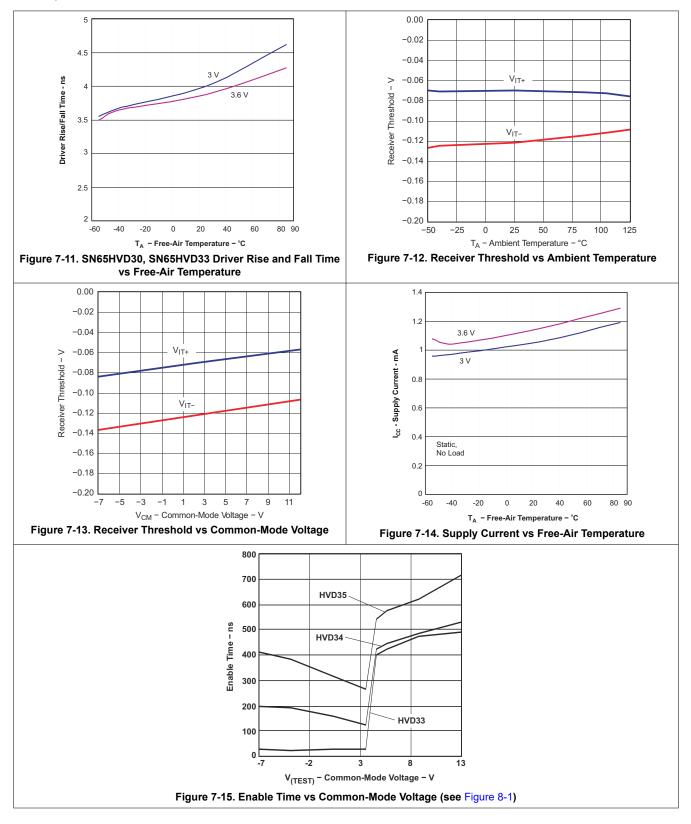
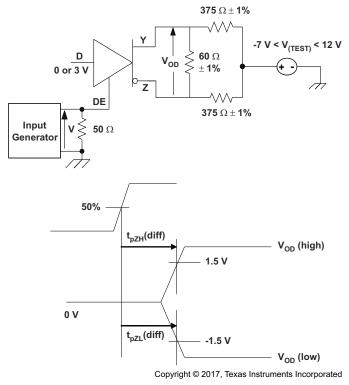




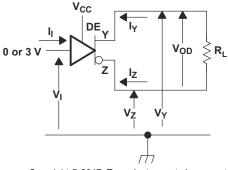
Figure 7-6. Driver Output Voltage vs Driver Output Current


Temperature

Copyright © 2023 Texas Instruments Incorporated



7.12 Typical Characteristics (continued)



Parameter Measurement Information

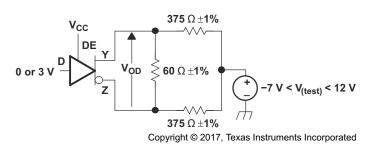
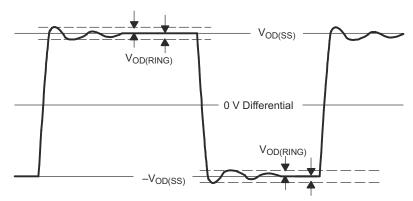
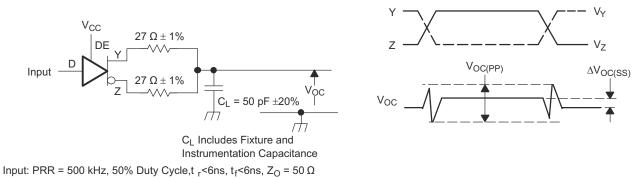
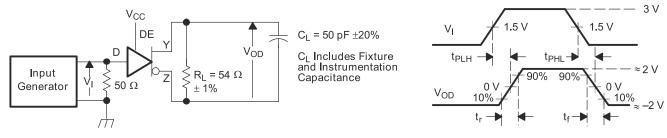

The time $t_{pZL}(x)$ is the measure from DE to $V_{OD}(x)$. V_{OD} is valid when it is greater than 1.5 V.

Figure 8-1. Driver Enable Time From DE to V_{OD}

Copyright © 2017, Texas Instruments Incorporated


Figure 8-2. Driver V_{OD} Test Circuit and Voltage and Current Definitions

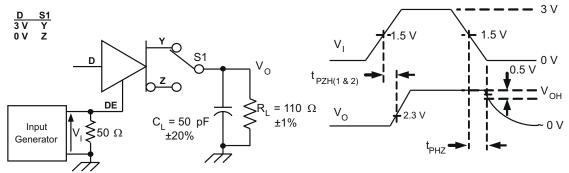

Copyright © 2023 Texas Instruments Incorporated


Figure 8-4. V_{OD(RING)} Waveform and Definitions

 $V_{OD(RING)}$ is measured at four points on the output waveform, corresponding to overshoot and undershoot from the $V_{OD(H)}$ and $V_{OD(L)}$ steady state values.

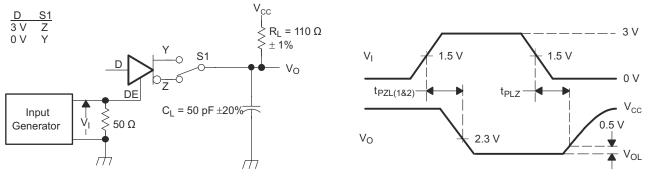
Copyright © 2017, Texas Instruments Incorporated

Figure 8-5. Test Circuit and Definitions for the Driver Common-Mode Output Voltage



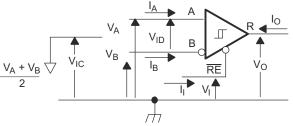
Generator: PRR = 500 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_o = 50 Ω

Copyright © 2017, Texas Instruments Incorporated


Figure 8-6. Driver Switching Test Circuit and Voltage Waveforms

Generator: PRR = 50 kHz, 50% Duty Cycle, t_r < 6 ns, t_f < 6 ns, Z₀ = 50 Ω C₁ Includes Fixture and Instrumentation Capacitance

Figure 8-7. Driver High-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms



Generator: PRR = 50 kHz, 50% Duty Cycle, t_r < 6 ns, t_f < 6 ns, Z_0 = 50 Ω

C₁ Includes Fixture and Instrumentation Capacitance

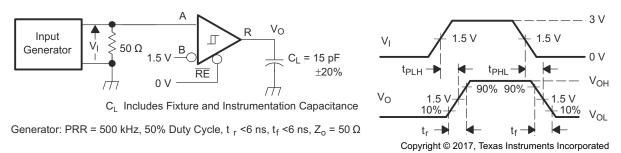

Copyright © 2017, Texas Instruments Incorporated

Figure 8-8. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms

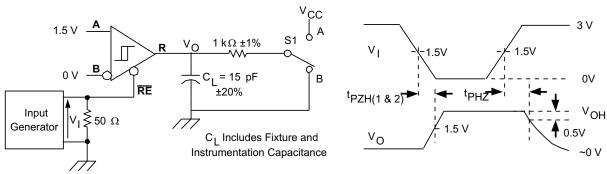
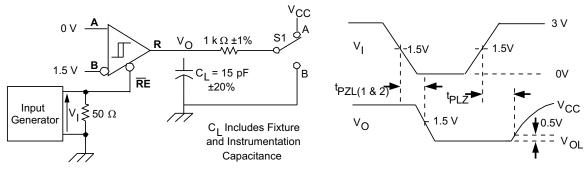

Copyright © 2017, Texas Instruments Incorporated

Figure 8-9. Receiver Voltage and Current Definitions

Figure 8-10. Receiver Switching Test Circuit and Voltage Waveforms



Generator: PRR = 50 kHz, 50% Duty Cycle, $t_r < 6$ ns, $t_f < 6$ ns, $Z_0 = 50 \Omega$

Copyright © 2017, Texas Instruments Incorporated

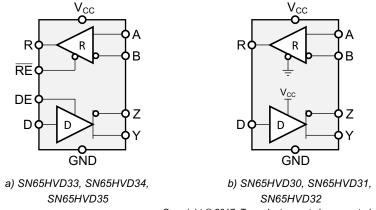
Figure 8-11. Receiver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms

Generator: PRR = 50 kHz, 50% Duty Cycle, t_r < 6 ns, t_f < 6 ns, Z_0 = 50 Ω

Copyright © 2017, Texas Instruments Incorporated

Figure 8-12. Receiver Enable Time From Standby (Driver Disabled)

Figure 8-13. Test Circuit, Transient Over Voltage Test


8 Detailed Description

8.1 Overview

The SN65HVD3x devices are low-power, full-duplex RS-485 transceivers available in three speed grades suitable for data transmission of 1 Mbps, 5 Mbps, and 50 Mbps.

The SN65HVD30, SN65HVD31, and SN65HVD32 devices are fully enabled with no external enabling pins. The SN65HVD33, SN65HVD34, and SN65HVD35 devices have active-high driver enables and active-low receiver enables. A standby current of less than 1 μ A can be achieved by disabling both driver and receiver.

8.2 Functional Block Diagram

Copyright © 2017, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Low-Power Standby Mode

When both the driver and receiver are disabled (DE is low and \overline{RE} is high), the device is in standby mode. If the enable inputs are in this state for less than 60 ns, the device does not enter standby mode. This guards against inadvertently entering standby mode during driver or receiver enabling. The device in standby mode only when the enable inputs are held in this state for 300 ns or more. In this low-power standby mode, most internal circuitry is powered down, and the supply current is typically less than 1 nA. When either the driver or the receiver is re-enabled, the internal circuitry becomes active.



Figure 8-1. Low-Power Standby Logic Diagram

If only the driver is re-enabled (DE transitions to high) the driver outputs are driven according to the D input after the enable times given by t_{PZH2} and t_{PZL2} in the driver switching characteristics. If the D input is open when the driver is enabled, the driver output defaults to Y low and Z high, in accordance with the driver-failsafe feature.

If only the receiver is re-enabled (\overline{RE} transitions to low) the receiver output is driven according to the state of the bus inputs (A and B) after the enable times given by t_{PZH2} and t_{PZL2} in the receiver switching characteristics. If there is no valid state on the bus the receiver responds as described in the failsafe operation section.

If both the receiver and driver are re-enabled simultaneously, the receiver output is driven according to the state of the bus inputs (A and B) and the driver output is driven according to the D input. Note that the state of the active driver affects the inputs to the receiver. Therefore, the receiver outputs are valid as soon as the driver outputs are valid.

8.3.2 Driver Output Current Limiting

The RS-485 standard (ANSI/TIA/EIA-485-A or equivalently ISO 8482) specifies a 250-mA driver output current limit to prevent damage caused by data contention on the bus. That applies in the event that two or more transceivers drive the bus to opposing states at the same time. The SN65HVD3x family of devices includes current-limiting circuitry that prevents damage under these conditions.

Note

This current limit prevents damage during the bus contention, but the logic state of the bus can be indeterminate as specified by the standard, so communication errors can occur.

In a specific combination of circumstances, a condition can occur in which current through the bus pin exceeds the 250-mA limit. This combination of conditions is not normally included in RS-485 applications:

- Loading capacitance on the pin is less than 500 pF
- The bus pin is directly connected to a voltage more negative than –1 V
- The device is supplied with V_{CC} equal to or greater than 3.3 V
- The driver is enabled
- The bus pin is driving to the logic high state

In these specific conditions, the normal current-limit circuitry and thermal-shutdown circuitry does not limit or shutdown the current flow. If the current is allowed to continue, the device heats up in a localized area near the driver outputs, and the device can be damaged.

Typical RS-485 twisted-pair cable has a capacitance of approximately 50 pF/meter. Therefore, it is expected that 10 meters of cable can provide sufficient capacitance to prevent this latch-up condition.

The -7 to +12-V common mode range specified by RS-485 is intended to allow communication between transceivers separated by significant distances when ground offsets may occur due to temporary current surges, electrical noise, and so on. Under those circumstances, the inherent cable needed to connect separated transceivers ensures that the conditions previously listed do not occur. For a transceiver separated by only a short cable length or backplane applications, it is unusual for there to be a steady-state negative common-mode voltage. It is possible for a negative power supply to be shorted to the bus lines due to miswiring or cable damage; however, this is a different root cause fault, and robust devices such as the SN65HVD178x family should be used for surviving power supply or miswiring faults.

The 250-mA current limit in the RS-485 standard is intended to prevent damage caused by data contention on the bus; that is, in the event that two or more transceivers drive the bus to different states at the same time. These devices are not damaged under these conditions because all RS-485 drivers have output impedance sufficient to prevent the direct connection condition stated previously. Typical RS-485 driver output impedance is on the order of 10 Ω to 30 Ω .

8.3.3 Hot-Plugging

These devices are designed to operate in *hot swap* or *hot pluggable* applications. Key features for hot-pluggable applications are:

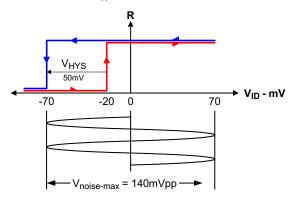
- Power-up
- Power-down glitch-free operation
- Default disabled input/output pins
- Receiver failsafe

Copyright © 2023 Texas Instruments Incorporated

As shown in Figure 7-9, an internal power-on reset circuit keeps the driver outputs in a high-impedance state until the supply voltage has reached a level at which the device reliably operates. This ensures that no spurious bits are transmitted on the bus pin outputs as the power supply turns on or turns off.

As shown in the Section 8.4, the enable inputs have the feature of default disable on both the driver enable and receiver enable. This ensures that the device neither drives the bus nor reports data on the R pin until the associated controller actively drives the enable pins.

8.3.4 Receiver Failsafe


The differential receivers of the SN65HVD3x family are failsafe to invalid bus states caused by:

- Open bus conditions such as a disconnected connector
- · Shorted bus conditions such as cable damage shorting the twisted-pair together
- · Idle bus conditions that occur when no driver on the bus is actively driving

In any of these cases, the differential receiver outputs a failsafe logic high state so that the output of the receiver is not indeterminate.

Receiver failsafe is accomplished by offsetting the receiver thresholds such that the input indeterminate range does not include zero volts differential. In order to comply with the RS-422 and RS-485 standards, the receiver output must output a high when the differential input V_{ID} is more positive than 200 mV, and must output a low when V_{ID} is more negative than -200 mV. The receiver parameters which determine the failsafe performance are V_{IT+} , V_{IT-} , and V_{HYS} (the separation between V_{IT+} and V_{IT-} . As shown in the *Electrical Characteristics* table, differential signals more negative than -200 mV always cause a low receiver output, and differential signals more positive than 200 mV always cause a high receiver output.

When the differential input signal is close to zero, it is still above the V_{IT+} threshold, and the receiver output is high. Only when the differential input is more than V_{HYS} below V_{IT+} does the receiver output transition to a low state. Therefore, the noise immunity of the receiver inputs during a bus fault conditions includes the receiver hysteresis value (V_{HYS}) as well as the value of V_{IT+} .

8.3.5 Safe Operation With Bus Contention

These devices incorporate a driver current limit of 250 mA across the RS-485 common-mode range of -7 V to +12 V. As stated in the *Application Guidelines for TIA/EIA-485-A*¹, this sets a practical limitation to prevent damage during bus contention events. Contention can occur during system initialization, during system faults, or whenever two or more drivers are active at the same time.

¹ TIA/EIA Telecommunications System Bulletin TSB89, Application Guidelines for TIA/EIA-485-A

Figure 8-3 shows a 2-node system to demonstrate bus contention by forcing both drivers to be active in opposing states.

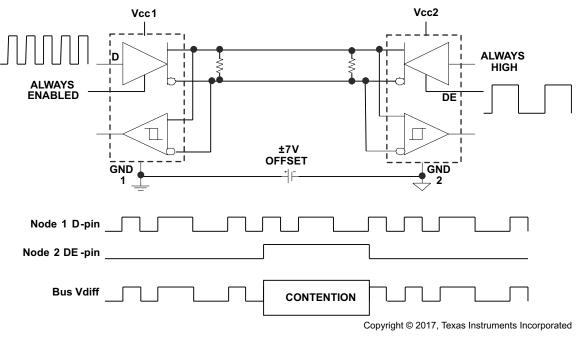


Figure 8-3. Bus Contention Example

Figure 8-4 shows typical operation in a bus contention event. The bottom trace illustrates how the SN65HVD33 device at Node 1 continues normal operation after a contention event between the two drivers with a -7-V ground offset on Node 2. This illustrates how the SN65HVD3x family of devices operates robustly in spite of bus contention faults, even with large common-mode offsets.

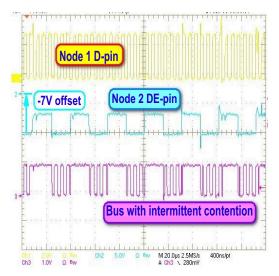


Figure 8-4. SN65HVD3x Drivers Operate Correctly After Bus Contention Faults

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback 23

Product Folder Links: SN65HVD30 SN65HVD31 SN65HVD32 SN65HVD33 SN65HVD34 SN65HVD35

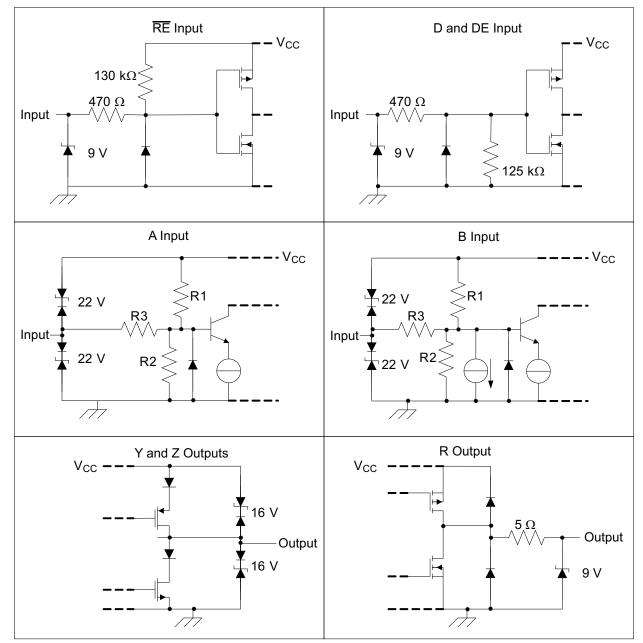
8.4 Device Functional Modes

Table 8-1. SN65HVD33, SN65HVD34, SN65HVD35 Driver

Briver							
IN	PUTS	OUTPUTS					
D	DE	Y	Z				
Н	Н	Н	L				
L	Н	L	Н				
Х	L or open	Z	Z				
Open	Н	L	Н				

Table 8-2. SN65HVD33, SN65HVD34, SN65HVD35 Receiver

$\begin{array}{c} \text{DIFFERENTIAL INPUTS} \\ \text{V}_{\text{ID}} = \text{V}_{(\text{A})} - \text{V}_{(\text{B})} \end{array}$	ENABLE RE	OUTPUT R
$V_{ID} \leq -0.2 V$	L	L
$-0.2 \text{ V} < \text{V}_{\text{ID}} < -0.02 \text{ V}$	L	?
–0.02 V ≤ V _{ID}	L	Н
Х	H or open	Z
Open Circuit	L	Н
Idle circuit	L	Н
Short Circuit, V _(A) = V _(B)	L	Н


Table 8-3. SN65HVD30, SN65HVD31, SN65HVD32 Driver

INPUT	OUTPUTS						
D	Y	Z					
Н	Н	L					
L	L	Н					
Open	L	Н					

Table 8-4. SN65HVD30, SN65HVD31, SN65HVD32 Receiver

DIFFERENTIAL INPUTS $V_{ID} = V_{(A)} - V_{(B)}$	OUTPUT R
$V_{\text{ID}} \leq -0.2 \text{ V}$	L
-0.2 V < V _{ID} < -0.02 V	?
-0.02 V ≤ V _{ID}	Н
Open Circuit	Н
Idle circuit	Н
Short Circuit, $V_{(A)} = V_{(B)}$	Н

Copyright © 2017, Texas Instruments Incorporated

Figure 8-5. Equivalent Input and Output Schematic Diagrams

Table 8-5. Input Attenuator Resistance Values

PART NUMBER	R1, R2	R3
SN65HVD30, SN65HVD33	9 kΩ	45 kΩ
SN65HVD31, SN65HVD32, SN65HVD34, SN65HVD35	36 kΩ	180 kΩ

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback 25

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The SN65HVD3x family consists of full-duplex RS-485 transceivers commonly used for asynchronous data transmissions. Full-duplex implementation requires two signal pairs (four wires), and allows each node to transmit data on one pair while simultaneously receiving data on the other pair.

To eliminate line reflections, each cable end is terminated with a termination resistor (R_T) whose value matches the characteristic impedance (Z_0) of the cable. This method, known as parallel termination, allows for higher data rates over longer cable length.

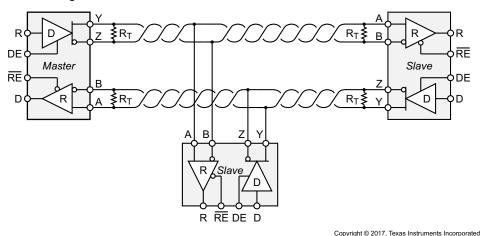


Figure 9-1. Typical RS-485 Network With Full-Duplex Transceivers

9.2 Typical Application

A full-duplex RS-485 network consists of multiple transceivers connecting in parallel to two bus cables. On one signal pair, a master driver transmits data to multiple slave receivers. The master driver and slave receivers can remain fully enabled at all times. On the other signal pair, multiple slave drivers transmit data to the master receiver. To avoid bus contention, the slave drivers must be intermittently enabled and disabled such that only one driver is enabled at any time, as in half-duplex communication. The master receiver can remain fully enabled at all times.

Because the driver cannot be disabled, only connect one driver to the bus when using the SN65HVD30, SN65HVD31, or SN65HVD32 devices.

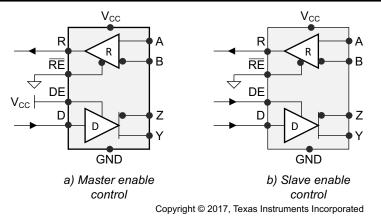


Figure 9-2. Full-Duplex Transceiver Configurations

9.2.1 Design Requirements

RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of applications with varying requirements, such as distance, data rate, and number of nodes.

9.2.1.1 Data Rate and Bus Length

There is an inverse relationship between data rate and bus length, meaning the higher the data rate, the shorter the cable length; and conversely, the lower the data rate, the longer the cable can be without introducing data errors. While most RS-485 systems use data rates between 10 kbps and 100 kbps, some applications require data rates up to 250 kbps at distances of 4000 feet and longer. Longer distances are possible by allowing for small signal jitter of up to 5 or 10%.

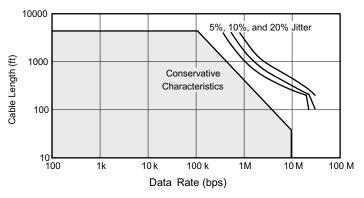


Figure 9-3. Cable Length vs Data Rate Characteristic

Even higher data rates are achievable (such as 26 Mbps for the SN65HVD30 and SN65HVD33 devices) in cases where the interconnect is short enough (or has suitably low attenuation at signal frequencies) to not degrade the data.

Copyright © 2023 Texas Instruments Incorporated

9.2.1.2 Stub Length

When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as the stub, must be as short as possible. Stubs present a nonterminated piece of bus line that can introduce reflections as the length of the stub increases. As a general guideline, the electrical length, or round-trip delay, of a stub must be less than one-tenth of the rise time of the driver; thus giving a maximum physical stub length as shown in Equation 1.

$$L_{stub} \le 0.1 \times t_r \times v \times c$$

(1)

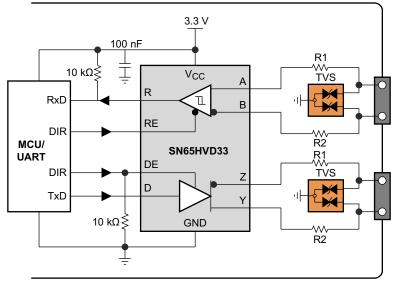
where:

- t_r is the 10/90 rise time of the driver
- c is the speed of light $(3 \times 10^8 \text{ m/s})$
- v is the signal velocity of the cable or trace as a factor of c

Per Equation 1, Table 9-1 shows the maximum cable-stub lengths for the minimum driver output rise times of the SN65HVD3x full-duplex family of transceivers for a signal velocity of 78%.

DEVICE	MINIMUM DRIVER OUTPUT RISE TIME	MAXIMUM STUB LENGTH							
	(ns)	(m)	(ft)						
SN65HVD30	4	0.1	0.3						
SN65HVD31	25	0.6	1.9						
SN65HVD32	120	2.8	9.2						
SN65HVD33	4	0.1	0.3						
SN65HVD34	25	0.6	1.9						
SN65HVD35	120	2.8	9.2						

Table 9-1. Maximum Stub Length


9.2.1.3 Bus Loading

The RS-485 standard specifies that a compliant driver must be able to driver 32 unit loads (UL), where 1 unit load represents a load impedance of approximately 12 k Ω . Because the SN65HVD30 and SN65HVD33 devices are 1/2 UL transceivers, it is possible to connect up to 64 receivers to the bus. Likewise, the SN65HVD31, SN65HVD32, SN65HVD34, and SN65HVD35 devices are 1/8 UL transceivers that can support up to 256 receivers.

9.2.2 Detailed Design Procedure

To protect bus nodes against high-energy transients, the implementation of external transient protection devices is necessary (see Figure 9-4).

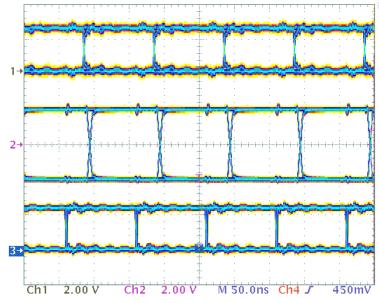

Copyright © 2017, Texas Instruments Incorporated

Figure 9-4. Transient Protection Against ESD, EFT, and Surge Transients

Table 9-2. Bill of Materials

DEVICE	FUNCTION	ORDER NUMBER	MANUFACTURER
XCVR	3.3-V Full-Duplex RS-485 Transceiver	SN65HVD33	ТІ
R1, R2	10-Ω, Pulse-Proof Thick-Film Resistor	CRCW060310RJNEAHP	Vishay
TVS	Bidirectional 400-W Transient Suppressor	CDSOT23-SM712	Bourns

9.2.3 Application Curve

Signals from top to bottom: D, Y, Z, VOD

Figure 9-5. SN65HVD33 Transient Waveform

Product Folder Links: SN65HVD30 SN65HVD31 SN65HVD32 SN65HVD33 SN65HVD34 SN65HVD35

9.3 Power Supply Recommendations

To ensure reliable operation at all data rates and supply voltages, each supply must be decoupled with a 100-nF ceramic capacitor located as close as possible to the supply pins. This helps to reduce supply voltage ripple present on the outputs of switched-mode power supplies and also helps compensate for the resistance and inductance of the PCB power planes.

9.4 Layout

9.4.1 Layout Guidelines

Robust and reliable bus-node design often requires the use of external transient protection devices to protect against EFT and surge transients that can occur in industrial environments. Because these transients have a wide frequency bandwidth (from approximately 3 MHz to 3 GHz), high-frequency layout techniques must be applied during PCB design.

- Place the protection circuitry close to the bus connector to prevent noise transients from entering the board.
- Use V_{CC} and ground planes to provide low-inductance. High-frequency currents follow the path of least inductance and not the path of least impedance.
- Design the protection components into the direction of the signal path. Do not force the transients currents to divert from the signal path to reach the protection device.
- Apply 100-nF to 220-nF bypass capacitors as close as possible to the V_{CC} pins of transceiver, UART, and controller ICs on the board.
- Use at least two vias for V_{CC} and ground connections of bypass capacitors and protection devices to minimize effective via inductance.
- Use 1-kΩ to 10-kΩ pullup or pulldown resistors for enable lines to limit noise currents in these lines during transient events.
- Insert series pulse-proof resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified maximum voltage of the transceiver bus pins. These resistors limit the residual clamping current into the transceiver and prevent it from latching up.
- While pure TVS protection is sufficient for surge transients up to 1 kV, higher transients require metal-oxide varistors (MOVs), which reduces the transients to a few hundred volts of clamping voltage and transient blocking units (TBUs) that limit transient current to 200 mA.

9.4.2 Layout Example

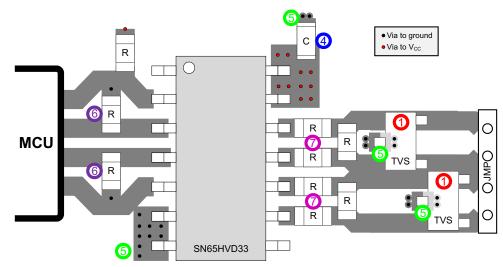


Figure 9-6. SN65HVD33 Layout Example

10 Device and Documentation Support

10.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2023 Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN65HVD30D	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VP30	Samples
SN65HVD30DG4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VP30	Samples
SN65HVD30DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VP30	Samples
SN65HVD30DRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VP30	Samples
SN65HVD31D	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VP31	Samples
SN65HVD31DG4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VP31	Samples
SN65HVD31DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VP31	Samples
SN65HVD32D	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VP32	Samples
SN65HVD32DG4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VP32	Samples
SN65HVD32DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VP32	Samples
SN65HVD33D	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65HVD33	Samples
SN65HVD33DG4	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65HVD33	Samples
SN65HVD33DR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65HVD33	Samples
SN65HVD33DRG4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65HVD33	Samples
SN65HVD33RHLR	ACTIVE	VQFN	RHL	20	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	65HVD33	Samples
SN65HVD33RHLT	ACTIVE	VQFN	RHL	20	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	65HVD33	Samples
SN65HVD34D	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65HVD34	Samples
SN65HVD34DG4	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65HVD34	Samples
SN65HVD34DR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65HVD34	Samples
SN65HVD35D	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65HVD35	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN65HVD35DG4	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65HVD35	Samples
SN65HVD35DR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65HVD35	Samples
SN65HVD35DRG4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65HVD35	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

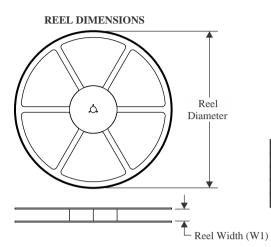
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

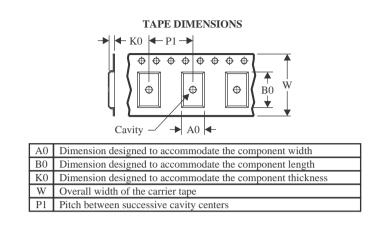
PACKAGE OPTION ADDENDUM

OTHER QUALIFIED VERSIONS OF SN65HVD30, SN65HVD33 :

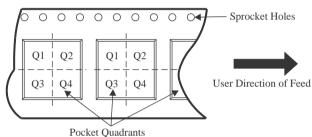
• Enhanced Product : SN65HVD30-EP, SN65HVD33-EP

NOTE: Qualified Version Definitions:


• Enhanced Product - Supports Defense, Aerospace and Medical Applications

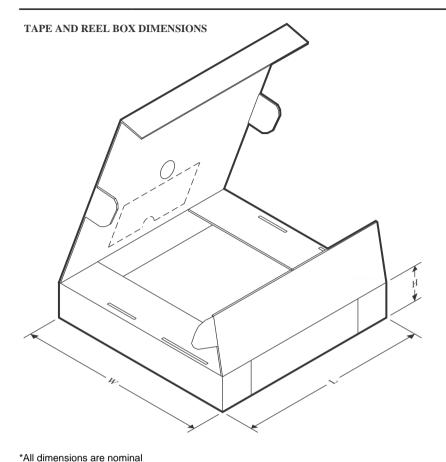


Texas


STRUMENTS

TAPE AND REEL INFORMATION

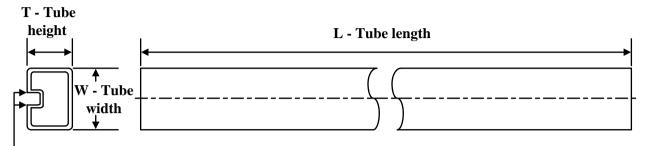
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65HVD30DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65HVD31DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65HVD32DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65HVD33DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN65HVD33RHLR	VQFN	RHL	20	3000	330.0	12.4	3.8	4.8	1.6	8.0	12.0	Q1
SN65HVD33RHLT	VQFN	RHL	20	250	180.0	12.4	3.8	4.8	1.6	8.0	12.0	Q1
SN65HVD34DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN65HVD35DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

1-Feb-2023

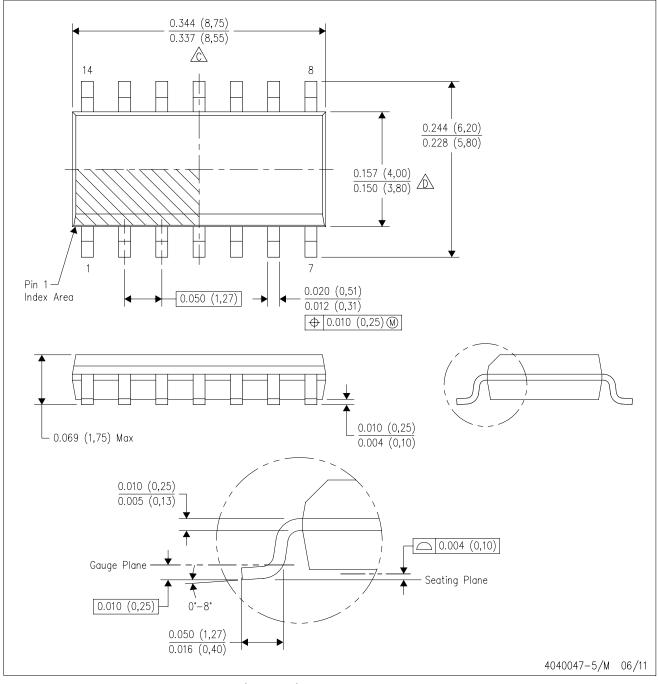


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65HVD30DR	SOIC	D	8	2500	356.0	356.0	35.0
SN65HVD31DR	SOIC	D	8	2500	356.0	356.0	35.0
SN65HVD32DR	SOIC	D	8	2500	356.0	356.0	35.0
SN65HVD33DR	SOIC	D	14	2500	356.0	356.0	35.0
SN65HVD33RHLR	VQFN	RHL	20	3000	356.0	356.0	35.0
SN65HVD33RHLT	VQFN	RHL	20	250	210.0	185.0	35.0
SN65HVD34DR	SOIC	D	14	2500	350.0	350.0	43.0
SN65HVD35DR	SOIC	D	14	2500	350.0	350.0	43.0

TEXAS INSTRUMENTS

www.ti.com

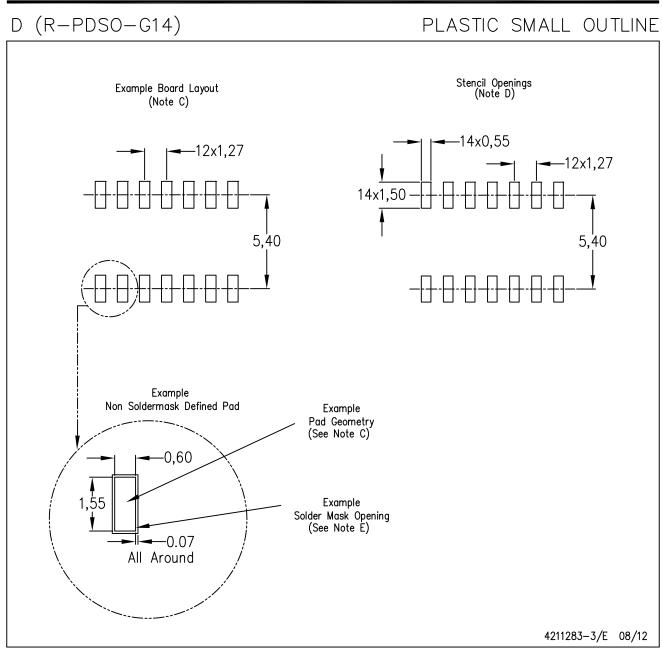
TUBE


- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN65HVD30D	D	SOIC	8	75	506.6	8	3940	4.32
SN65HVD30DG4	D	SOIC	8	75	506.6	8	3940	4.32
SN65HVD31D	D	SOIC	8	75	506.6	8	3940	4.32
SN65HVD31DG4	D	SOIC	8	75	506.6	8	3940	4.32
SN65HVD32D	D	SOIC	8	75	506.6	8	3940	4.32
SN65HVD32DG4	D	SOIC	8	75	506.6	8	3940	4.32
SN65HVD33D	D	SOIC	14	50	506.6	8	3940	4.32
SN65HVD33D	D	SOIC	14	50	505.46	6.76	3810	4
SN65HVD33DG4	D	SOIC	14	50	505.46	6.76	3810	4
SN65HVD33DG4	D	SOIC	14	50	506.6	8	3940	4.32
SN65HVD34D	D	SOIC	14	50	505.46	6.76	3810	4
SN65HVD34DG4	D	SOIC	14	50	505.46	6.76	3810	4
SN65HVD35D	D	SOIC	14	50	505.46	6.76	3810	4
SN65HVD35DG4	D	SOIC	14	50	505.46	6.76	3810	4

D (R-PDSO-G14)

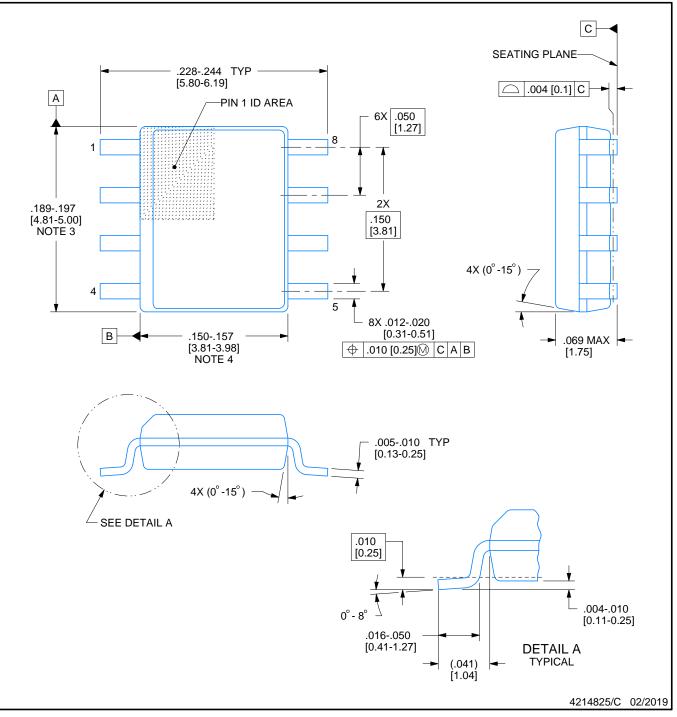

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


D0008A

PACKAGE OUTLINE

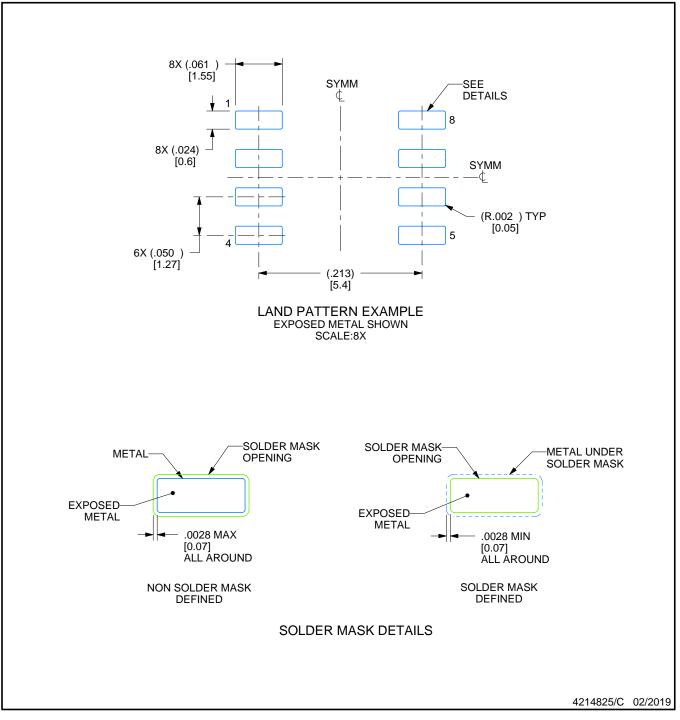
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.



D0008A

EXAMPLE BOARD LAYOUT

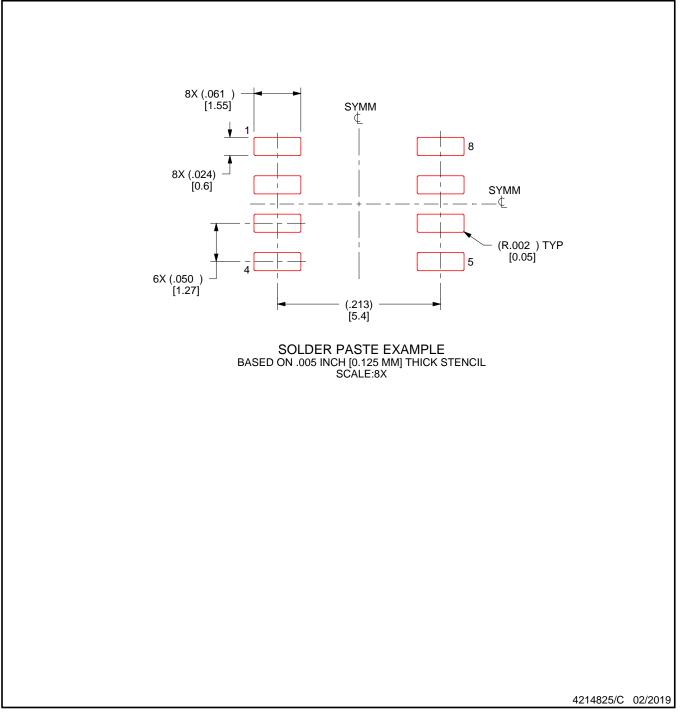
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



D0008A

EXAMPLE STENCIL DESIGN

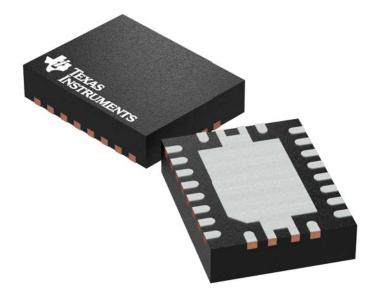
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.


RHL 20

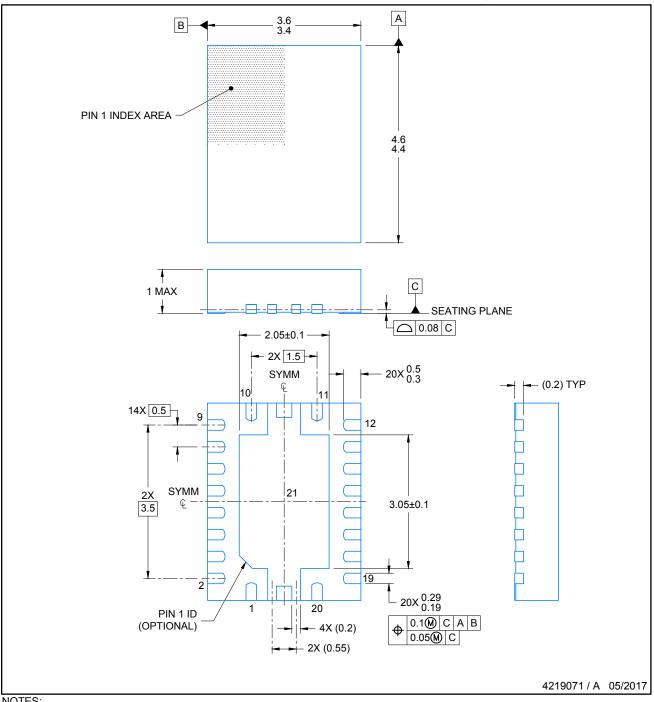
3.5 x 4.5 mm, 0.5 mm pitch

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


4205346/L

RHL0020A

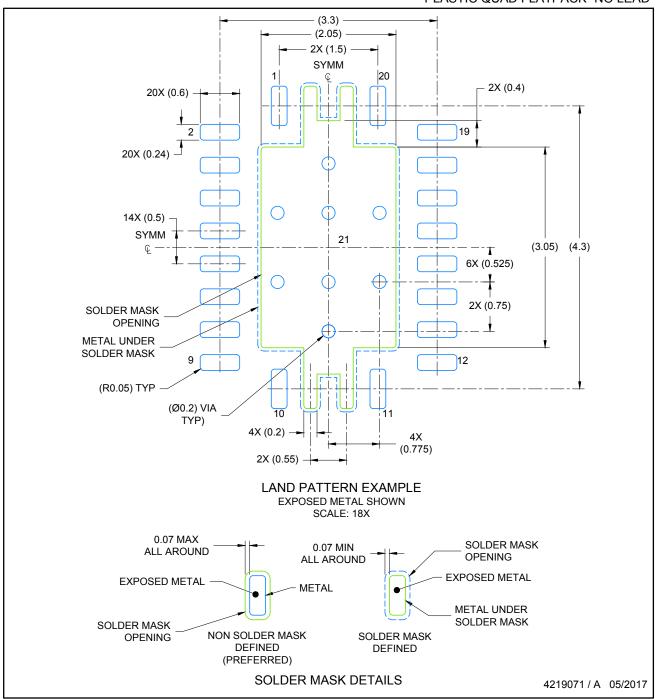
PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK- NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



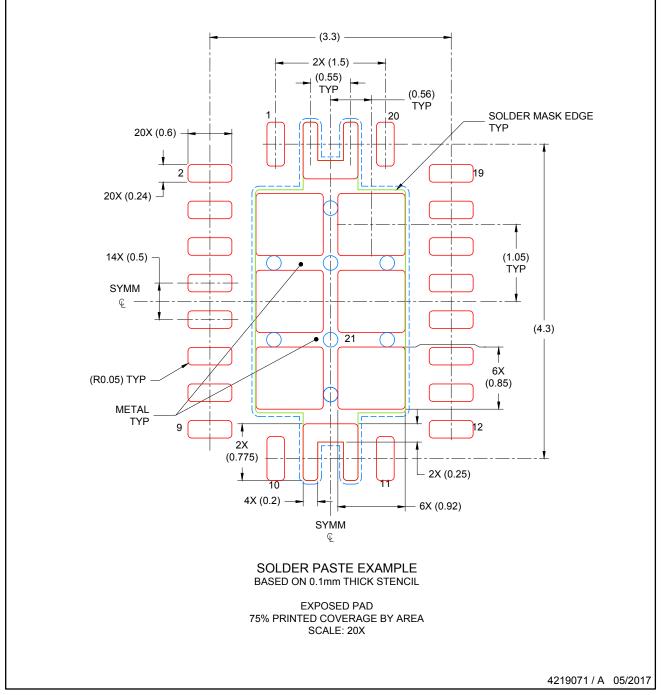
RHL0020A

EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK- NO LEAD

NOTES: (continued)


- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to theri locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

RHL0020A

EXAMPLE STENCIL DESIGN VQFN - 1 mm max height

PLASTIC QUAD FLATPACK- NO LEAD

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations..

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated